
ModelSim®
SE

User’s Manual
V e r s i o n 5 . 8 c

P u b l i s h e d : 5 / M a r / 0 4
T h e w o r l d ’ s m o s t p o p u l a r H D L s i m u l a t o r

ii

Model
ModelSim /VHDL, ModelSim /VLOG, ModelSim /LNL, and ModelSim /PLUS are
produced by Model Technology™, a Mentor Graphics Corporation company.
Copying, duplication, or other reproduction is prohibited without the written consent
of Model Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark and Signal Spy, TraceX, ChaseX, and Model
Technology are trademarks of Mentor Graphics Corporation. PostScript is a
registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXlm is a trademark of
Macrovision, Inc. IBM, AT, and PC are registered trademarks, AIX and RISC
System/6000 are trademarks of International Business Machines Corporation.
Windows, Microsoft, and MS-DOS are registered trademarks of Microsoft
Corporation. OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
USA and other countries. SPARC is a registered trademark and SPARCstation is
a trademark of SPARC International, Inc. Sun Microsystems is a registered
trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright © 1990-2004, Model Technology, a Mentor Graphics Corporation
company. All rights reserved. Confidential. Online documentation may be printed
by licensed customers of Model Technology and Mentor Graphics for internal
business purposes only.

Model Technology
8005 Boeckman Road, Bldg. E4
Wilsonville, OR 97070 USA

phone: (503) 685-0820
fax: (503) 685-0910
e-mail: support@model.com, sales@model.com
home page: http://www.model.com
support page: http://www.model.com/support
Sim SE User’s Manual

mailto:support@model.com
mailto:sales@model.com
http://www.model.com

 UM-3
Table of Contents

1 - Introduction (UM-21)

ModelSim graphic interface . UM-22

ModelSim modes of operation . UM-23
Command-line mode . UM-23
Batch mode . . UM-24

Standards supported . UM-25

Assumptions . UM-25

Sections in this document . UM-26

What is an "Item" . UM-28

Text conventions . UM-28

Where to find our documentation . UM-29
Download a free PDF reader with Search . UM-29

Technical support and updates . UM-30

2 - Projects (UM-31)

Introduction . UM-32
What are projects? . UM-32
What are the benefits of projects? . UM-32
Project conversion between versions . UM-33

Getting started with projects . UM-34
Step 1 — Creating a new project . UM-34
Step 2 — Adding items to the project . UM-35
Step 3 — Compiling the files . . UM-38
Step 4 — Simulating a design . UM-39
Other basic project operations . UM-39

The Project tab . UM-40
Sorting the list . . UM-40
Project tab context menu . UM-41

Changing compile order . UM-42
Auto-generating compile order . UM-42
Grouping files . . UM-43

Creating a Simulation Configuration . . UM-44

Organizing projects with folders . UM-46
Adding a folder . UM-46

Specifying file properties and project settings . UM-48
File compilation properties . . UM-48
Project settings . UM-49

Accessing projects from the command line . UM-51
ModelSim SE User’s Manual

UM-4 Table of Contents

Model
3 - Design libraries (UM-53)

Design library overview . UM-54
Design unit information . UM-54
Working library versus resource libraries . UM-54
Archives . UM-55

Working with design libraries . UM-56
Creating a library . UM-56
Managing library contents . UM-57
Assigning a logical name to a design library UM-59
Moving a library . . UM-60
Setting up libraries for group use . UM-60

Specifying the resource libraries . UM-61
Verilog resource libraries . UM-61
VHDL resource libraries . UM-61
Default binding rules for VHDL resource libraries UM-61
Predefined libraries . . UM-62
Alternate IEEE libraries supplied . UM-62
Rebuilding supplied libraries . UM-63
Regenerating your design libraries . . UM-63
Maintaining 32-bit and 64-bit versions in the same library UM-64

Protecting source code and using -nodebug . UM-65

Referencing source files with location maps . . UM-66
Using location mapping . UM-66
Pathname syntax . . UM-67
How location mapping works . . UM-67
Mapping with Tcl variables . UM-67

Importing FPGA libraries . UM-68

Protecting source code using -nodebug . . UM-69

4 - VHDL simulation (UM-71)

Compiling VHDL designs . . UM-73
Creating a design library . UM-73
Invoking the VHDL compiler . UM-73
Dependency checking . . UM-73
Range and index checking . UM-74
Differences between language versions . . UM-74

Simulating VHDL designs . . UM-77
Simulator resolution limit . UM-77
Delta delays . UM-78

Simulating with an elaboration file . UM-80
Overview . UM-80
Elaboration file flow . UM-80
Creating an elaboration file . UM-81
Loading an elaboration file . . UM-81
Modifying stimulus . UM-82
Sim SE User’s Manual

 UM-5
Using with the PLI or FLI . UM-82
Syntax . . UM-82
Example . UM-83

Checkpointing and restoring simulations . UM-84
Checkpoint file contents . . UM-84
Controlling checkpoint file compression . UM-85
The difference between checkpoint/restore and restart UM-85
Using macros with restart and checkpoint/restore UM-85

Using the TextIO package . . UM-86
Syntax for file declaration . UM-86
Using STD_INPUT and STD_OUTPUT within ModelSim UM-87

TextIO implementation issues . UM-88
Writing strings and aggregates . UM-88
Reading and writing hexadecimal numbers UM-89
Dangling pointers . UM-89
The ENDLINE function . . UM-89
The ENDFILE function . UM-89
Using alternative input/output files . UM-90
Flushing the TEXTIO buffer . UM-90
Providing stimulus . UM-90

VITAL specification and source code . UM-91

VITAL packages . UM-91

ModelSim VITAL compliance . UM-91
VITAL compliance checking . . UM-91
VITAL compliance warnings . . UM-92

Compiling and simulating with accelerated VITAL packages UM-93
Compiler options for VITAL optimization UM-93

Util package . UM-94
get_resolution . . UM-94
init_signal_driver() . . UM-95
init_signal_spy() . . UM-95
signal_force() . UM-95
signal_release() . UM-95
to_real() . UM-96
to_time() . . UM-97

Foreign language interface . UM-98

Modeling memory . . UM-99

Affecting performance by cancelling scheduled events UM-102

Converting an integer into a bit_vector . UM-103

5 - Verilog simulation (UM-105)

Introduction . UM-107

Compilation . UM-108
Incremental compilation . UM-109
Library usage . UM-111
ModelSim SE User’s Manual

UM-6 Table of Contents

Model
Verilog-XL compatible compiler arguments UM-113
Verilog-XL `uselib compiler directive . UM-114
Verilog configurations . UM-115

Simulation . UM-116
Invoking the simulator . UM-116
Simulator resolution limit . UM-117
Event ordering in Verilog designs . UM-119
Negative timing check limits . UM-123
Verilog-XL compatible simulator arguments UM-126

Compiling for faster performance . UM-127
Compiling with -fast . UM-127
Compiling with +opt . UM-128
Compiling mixed designs with -fast . UM-129
Compiling gate-level designs with -fast . UM-129
Referencing the optimized design . UM-130
Enabling design object visibility with the +acc option UM-133
Using pre-compiled libraries . UM-134
Event order and optimized designs . UM-135
Timing checks in optimized designs . UM-135
Using -fast on cells with internal delay . UM-135

Simulating with an elaboration file . UM-136
Overview . UM-136
Elaboration file flow . UM-136
Creating an elaboration file . UM-137
Loading an elaboration file . UM-137
Modifying stimulus . UM-138
Using with the PLI or FLI . UM-138
Syntax . UM-138
Example . UM-139

Checkpointing and restoring simulations . UM-140
Checkpoint file contents . UM-140
Controlling checkpoint file compression UM-141
The difference between checkpoint/restore and restart UM-141
Using macros with restart and checkpoint/restore UM-141

Cell libraries . UM-142
SDF timing annotation . UM-142
Delay modes . UM-142

System tasks . UM-144
IEEE Std 1364 system tasks . UM-144
Verilog-XL compatible system tasks . UM-147
ModelSim Verilog system tasks . UM-149

Compiler directives . UM-150
IEEE Std 1364 compiler directives . UM-150
Verilog-XL compatible compiler directives UM-151
ModelSim compiler directives . UM-152
Sim SE User’s Manual

 UM-7
6 - Verilog PLI / VPI (UM-153)

Introduction . UM-154

Registering PLI applications . UM-155

Registering VPI applications . UM-157
Example . UM-157

Compiling and linking PLI/VPI C applications UM-159

Compiling and linking PLI/VPI C++ applications UM-164

Specifying the PLI/VPI file to load . UM-168

PLI example . UM-169

VPI example . UM-170

The PLI callback reason argument . UM-171

The sizetf callback function . UM-173

PLI object handles . UM-174

Third party PLI applications . UM-175

Support for VHDL objects . UM-176

IEEE Std 1364 ACC routines . UM-177

IEEE Std 1364 TF routines . UM-179

Verilog-XL compatible routines . UM-181

Using 64-bit ModelSim with 32-bit PLI/VPI Applications UM-182

64-bit support in the PLI . UM-182

PLI/VPI tracing . UM-183
The purpose of tracing files . UM-183
Invoking a trace . UM-183
Syntax . UM-183
Arguments . UM-183
Examples . UM-184

Debugging PLI/VPI application code . UM-185

7 - SystemC simulation (UM-187)

Supported platforms and compiler versions . UM-188
Building gcc with custom configuration options UM-188

Usage flow for SystemC-only designs . UM-189

Compiling SystemC designs . UM-190
Creating a design library . UM-190
Modifying SystemC source code . UM-190
Invoking the SystemC compiler . UM-192
Compiling optimized and/or debug code UM-192
Specifying an alternate g++ installation . UM-193
Maintaining portability between OSCI and ModelSim UM-193
Restrictions on compiling with HP aCC UM-194
Switching platforms and compilation . UM-194
ModelSim SE User’s Manual

UM-8 Table of Contents

Model
Using sccom vs. raw C++ compiler . UM-195
Issues with C++ templates . UM-196

Linking the compiled source . UM-197
sccom -link . UM-197

Simulating SystemC designs . UM-198
Simulator resolution limit . UM-198
Initialization and cleanup of SystemC state-based code UM-200

Debugging the design . UM-201
Source-level debug . UM-201

Differences between ModelSim and the OSCI simulator UM-204
Name association (binding) . UM-204
Fixed point types . UM-205
OSCI 2.1 features supported . UM-205

Troubleshooting SystemC . UM-206
Errors during compilation . UM-206
Errors during loading . UM-206

8 - Mixed-language simulations (UM-209)

Usage flow for mixed-language simulations . UM-210

Separate compilers, common design libraries UM-211
Access limitations in mixed-language designs UM-211
Simulator resolution limit . UM-211
Runtime modeling semantics . UM-212

Mapping data types . UM-213
Verilog to VHDL mappings . UM-213
VHDL to Verilog mappings . UM-216
Verilog and SystemC signal interaction and mappings UM-217
VHDL and SystemC signal interaction and mappings UM-221

VHDL: instantiating Verilog . UM-225
Verilog instantiation criteria . UM-225
Component declaration . UM-225
vgencomp component declaration . UM-226
Modules with unnamed ports . UM-228

Verilog: instantiating VHDL . UM-229
VHDL instantiation criteria . UM-229
Entity/architecture names and escaped identifiers UM-229
Named port associations . UM-229
Generic associations . UM-229
SDF annotation . UM-230

SystemC: instantiating Verilog . UM-231
Verilog instantiation criteria . UM-231
SystemC foreign module declaration . UM-231

Verilog: instantiating SystemC . UM-234
SystemC instantiation criteria . UM-234
Exporting SystemC modules . UM-234
Sim SE User’s Manual

 UM-9
sccom -link . UM-234

SystemC: instantiating VHDL . UM-235
VHDL instantiation criteria . UM-235
SystemC foreign module declaration . UM-235

VHDL: instantiating SystemC . UM-237
SystemC instantiation criteria . UM-237
Component declaration . UM-237
vgencomp component declaration . UM-238
Exporting SystemC modules . UM-238
sccom -link . UM-238

9 - WLF files (datasets) and virtuals (UM-239)

WLF files (datasets) . UM-240
Saving a simulation to a WLF file . UM-241
Hiding library cell signals when saving a waveform file UM-241
Opening datasets . UM-242
Viewing dataset structure . UM-243
Managing multiple datasets . UM-244
Saving at intervals with Dataset Snapshot UM-246

Virtual Objects (User-defined buses, and more) UM-248
Virtual signals . UM-248
Virtual functions . UM-249
Virtual regions . UM-250
Virtual types . UM-250

Dataset, WLF file, and virtual commands . UM-251

10 - Graphic interface (UM-253)

Window overview . UM-254

Common window features . UM-255
Quick access toolbars . UM-256
Columnar information display . UM-257
Docking and undocking panes . UM-257
Drag and drop . UM-258
Automatic window updating . UM-258
Finding names and searching for values UM-259
Sorting items . UM-259
Multiple window copies . UM-259
Saving window layout . UM-259
Context menus . UM-259
Menu tear off . UM-259
Customizing menus and buttons . UM-260
Controlling fonts in an X-session . UM-260
Tree window hierarchical view . UM-261

Main window . UM-262
Workspace . UM-263
Transcript . UM-264
ModelSim SE User’s Manual

UM-10 Table of Contents

Model
Active processes . UM-264
The Main window menu bar . UM-265
The Main window status bar . UM-269
Mouse and keyboard shortcuts . UM-269

Dataflow window . UM-270
Items you can view . UM-270
Adding items to the window . UM-271
Links to other windows . UM-271
Dataflow window menu bar . UM-272
Exploring the connectivity of your design UM-274
Zooming and panning . UM-276
Tracing events (causality) . UM-277
Tracing the source of an unknown (X) . UM-278
Finding items by name in the Dataflow window UM-279
Printing and saving the display . UM-280
Configuring page setup . UM-282
Symbol mapping . UM-283
Configuring window options . UM-284

List window . UM-286
Items you can view . UM-286
Adding items to the List window . UM-287
The List window menu bar . UM-288
The List window context menu . UM-289
Editing and formatting items in the List window UM-290
Combining items in the List window . UM-292
Setting List window display properties . UM-293
Configuring a List trigger with the Expression Builder UM-296
Sampling signals at a clock change . UM-297
Finding items by name in the List window UM-297
Searching for item values in the List window UM-298
Setting time markers in the List window UM-300
Saving List window data to a file . UM-301
List window keyboard shortcuts . UM-301

Memory window . UM-302
Memories you can view . UM-302
The Memory window menu bar . UM-303
Viewing memory contents . UM-304
Modifying the memory window display UM-305
Navigating to memory locations within a memory instance UM-307
Initializing memories . UM-309

Process window . UM-314
Understanding process status . UM-314
Links to other windows . UM-314
The Process window menu bar . UM-315

Signals window . UM-316
Items you can view . UM-316
The Signals window menu bar . UM-317
Filtering the signal list . UM-319
Finding items in the Signals window . UM-320
Sim SE User’s Manual

 UM-11
Forcing signal and net values . UM-321
Adding items to the Wave and List windows or a WLF file UM-322
Setting signal breakpoints in HDL designs UM-323
Defining clock signals in HDL designs . UM-323

Source window . UM-325
The Source window menu bar . UM-326
Setting file-line breakpoints . UM-329
Checking item values and descriptions . UM-329
Finding and replacing in the Source window UM-329
Setting tab stops in the Source window . UM-330

Structure window . UM-331
Items you can view . UM-331
Structure window menu bar . UM-332
Structure window context menu . UM-333
Finding items in the Structure window . UM-333

Variables window . UM-334
The Variables window menu bar . UM-335
Finding items in the Variables window . UM-336

Wave window . UM-337
Pathname pane . UM-337
Value pane . UM-338
Waveform pane . UM-338
Cursor panes . UM-338
Items you can view . UM-338
Adding items in the Wave window . UM-339
Saving the Wave window format . UM-340
The Wave window menu bar . UM-340
Using dividers . UM-343
Splitting Wave window panes . UM-344
Combining items in the Wave window . UM-345
Displaying drivers of the selected waveform UM-347
Editing and formatting items in the Wave window UM-347
Setting Wave window display properties UM-352
Sorting a group of items . UM-354
Setting signal breakpoints . UM-354
Finding items by name or value in the Wave window UM-355
Searching for item values in the Wave window UM-356
Using time cursors in the Wave window UM-358
Examining waveform values . UM-360
Zooming - changing the waveform display range UM-360
Saving zoom range and scroll position with bookmarks UM-361
Wave window mouse and keyboard shortcuts UM-363
Printing and saving waveforms . UM-363

Compiling with the graphic interface . UM-368
Locating source errors during compilation UM-369
Setting default compile options . UM-370
Setting SystemC link options . UM-376

Simulating with the graphic interface . UM-377
Design tab . UM-377
ModelSim SE User’s Manual

UM-12 Table of Contents

Model
VHDL tab . UM-379
Verilog tab . UM-381
Libraries tab . UM-382
SDF tab . UM-383
Options tab . UM-385
Setting default simulation options . UM-386
Enabling design object visibility in optimized simulations UM-389

Creating and managing breakpoints . UM-391
Signal breakpoints . UM-391
File-line breakpoints . UM-391
Breakpoints dialog . UM-392

Miscellaneous tools and add-ons . UM-395
The GUI Expression Builder . UM-395
HDL language templates . UM-397
The Button Adder . UM-400
The Macro Helper . UM-401
The Tcl Debugger . UM-402

11 - Performance Analyzer (UM-407)

Introducing Performance Analysis . UM-408
A statistical sampling profiler . UM-408

Getting started . UM-410

Interpreting the data . UM-411
Viewing Performance Analyzer results . UM-411
Interpreting the Name field . UM-413
Interpreting the Under(%) and In(%) fields UM-413
Differences in the ranked and hierarchical views UM-414

Analyzing C code performance . UM-415

Reporting results . UM-416

Profile menu . UM-417

Performance Analyzer commands . UM-417

Performance Analyzer preference variables . UM-417

12 - Code Coverage (UM-419)

Introduction . UM-420
Usage flow for Code Coverage . UM-420
Supported types . UM-421
Important notes about coverage statistics UM-422

Enabling Code Coverage . UM-423

Viewing coverage data in the Main window . UM-426
Workspace pane . UM-427
Missed Coverage pane . UM-430
Current Exclusions pane . UM-431
Instance Coverage pane . UM-432
Sim SE User’s Manual

 UM-13
Details pane . UM-433

Viewing coverage data in the Source window UM-435

Toggle coverage . UM-437
Enabling Toggle coverage . UM-437
Excluding nodes from Toggle coverage . UM-438
Viewing toggle coverage data in the Signals window UM-439
Toggle coverage reporting . UM-440

Filtering coverage data . UM-441
Covfilter toolbar . UM-442

Excluding items from coverage . UM-443
Excluding lines/files via the GUI . UM-443
Excluding lines/files with pragmas . UM-443
Excluding lines/files with a filter file . UM-444
Excluding nodes from toggle statistics . UM-445

Reporting coverage data . UM-446
Sample reports . UM-448

Saving and reloading coverage data . UM-450
From the command line . UM-450
From the graphic interface . UM-450
With the vcover utility . UM-451

Coverage statistics details . UM-452
Condition coverage . UM-452
Expression coverage . UM-453

Code Coverage preference variables . UM-454

13 - Waveform Compare (UM-455)

Introduction . UM-456
Two modes of comparison . UM-457
Comparing hierarchical and flattened designs UM-458

Graphic interface to Waveform Compare . UM-459
Opening dataset comparison . UM-459
Adding signals, regions, and clocks . UM-461
Setting compare options . UM-465
Wave window display . UM-466
Waveform Compare menu . UM-468
Printing compare differences . UM-470
Compare objects in the List window . UM-470

Waveform Compare commands . UM-471

Waveform Compare preference variables . UM-472

14 - C Debug (UM-473)

Supported platforms and gdb versions . UM-474

Setting up C Debug . UM-475
ModelSim SE User’s Manual

UM-14 Table of Contents

Model
Setting breakpoints . UM-476

Stepping in C Debug . UM-478
Known problems with stepping in C Debug UM-478

Finding function entry points with Auto find bp UM-479

Identifying all registered function calls . UM-480
Enabling Auto step mode . UM-480
Example . UM-481
Auto find bp versus Auto step mode . UM-482

Debugging functions during elaboration . UM-483
FLI functions in initialization mode . UM-484
PLI functions in initialization mode . UM-484
VPI functions in initialization mode . UM-486
Completing design load . UM-486

Debugging functions when quitting simulation UM-487

C Debug menu reference . UM-488

C Debug command reference . UM-489

C Debug dialog reference . UM-490
C Debug setup dialog . UM-490
Command entry dialog . UM-491

15 - PSL Assertions (UM-493)

What are assertions? . UM-495
Definition . UM-495
Types of assertions . UM-495
PSL assertion language . UM-495

Using assertions in ModelSim . UM-496
Assertion flow . UM-496
Limitations . UM-496

Embedding assertions in your code . UM-498
Syntax . UM-498
Restrictions . UM-498
Example . UM-498

Writing assertions in an external file . UM-500
Syntax . UM-500
Restrictions . UM-500
Example . UM-500

Understanding clock declarations . UM-502
Default clock . UM-502
Partially clocked properties . UM-502

Understanding assertion names . UM-504

General assertion writing guidelines . UM-505
Understanding operator precedence and curly braces UM-505

Compiling and simulating assertions . UM-506
Embedded assertions . UM-506
Sim SE User’s Manual

 UM-15
External assertions file . UM-506
Making changes to assertions . UM-506
Simulating assertions . UM-506
VHDL code inside PSL statements . UM-506

Managing assertions . UM-507
Viewing assertions in the Assertion Browser UM-507
Hiding/showing fields in the Assertion Browser UM-509
Enabling/disabling failure and pass checking UM-510
Enabling/disabling failure and pass logging UM-511
Setting failure and pass limits . UM-512
Setting failure action . UM-513

Reporting on assertions . UM-514
Specifying an alternative output file for assertion messages UM-514

Viewing assertions in the Wave window . UM-515
Assertion ’signals’ . UM-515

Example debugging session . UM-516
How would you debug without assertions? UM-516
The example assertions file . UM-516
Debugging the assertion failure . UM-517

ModelSim assertion commands . UM-521

16 - Signal Spy (UM-523)

Introduction . UM-524
Designed for testbenches . UM-524

init_signal_driver . UM-525

init_signal_spy . UM-528

signal_force . UM-530

signal_release . UM-532

$init_signal_driver . UM-534

$init_signal_spy . UM-537

$signal_force . UM-539

$signal_release . UM-541

17 - Standard Delay Format (SDF) Timing Annotation (UM-543)

Specifying SDF files for simulation . UM-544
Instance specification . UM-544
SDF specification with the GUI . UM-545
Errors and warnings . UM-545

VHDL VITAL SDF . UM-546
SDF to VHDL generic matching . UM-546
Resolving errors . UM-547

Verilog SDF . UM-548
The $sdf_annotate system task . UM-548
ModelSim SE User’s Manual

UM-16 Table of Contents

Model
SDF to Verilog construct matching . UM-549
Optional edge specifications . UM-552
Optional conditions . UM-553
Rounded timing values . UM-553

SDF for mixed VHDL and Verilog designs . UM-554

Interconnect delays . UM-555

Disabling timing checks . UM-555

Troubleshooting . UM-556
Specifying the wrong instance . UM-556
Mistaking a component or module name for an instance label UM-557
Forgetting to specify the instance . UM-557

18 - Value Change Dump (VCD) Files (UM-559)

Creating a VCD file . UM-560
Flow for four-state VCD file . UM-560
Flow for extended VCD file . UM-560
Case sensitivity . UM-560
Checkpoint/restore and writing VCD files UM-561

Using extended VCD as stimulus . UM-562
Simulating with input values from a VCD file UM-562
Replacing instances with output values from a VCD file UM-563

ModelSim VCD commands and VCD tasks . UM-565
Compressing files with VCD tasks . UM-566

A VCD file from source to output . UM-567
VHDL source code . UM-567
VCD simulator commands . UM-567
VCD output . UM-568

Capturing port driver data . UM-571
Supported TSSI states . UM-571
Strength values . UM-572
Port identifier code . UM-572
Example VCD output from vcd dumpports UM-573

19 - Logic Modeling SmartModels (UM-575)

VHDL SmartModel interface . UM-576
Creating foreign architectures with sm_entity UM-577
Vector ports . UM-579
Command channel . UM-580
SmartModel Windows . UM-581
Memory arrays . UM-582

Verilog SmartModel interface . UM-583
Linking the LMTV interface to the simulator UM-583
Sim SE User’s Manual

 UM-17
20 - Logic Modeling hardware models (UM-585)

VHDL hardware model interface . UM-586
Creating foreign architectures with hm_entity UM-587
Vector ports . UM-589
Hardware model commands . UM-590

21 - Tcl and macros (DO files) (UM-591)

Tcl features within ModelSim . UM-592

Tcl References . UM-592

Tcl commands . UM-593

Tcl command syntax . UM-594
if command syntax . UM-596
set command syntax . UM-597
Command substitution . UM-597
Command separator . UM-598
Multiple-line commands . UM-598
Evaluation order . UM-598
Tcl relational expression evaluation . UM-598
Variable substitution . UM-599
System commands . UM-599

List processing . UM-600

ModelSim Tcl commands . UM-600

ModelSim Tcl time commands . UM-601
Conversions . UM-601
Relations . UM-601
Arithmetic . UM-602

Tcl examples . UM-603

Macros (DO files) . UM-607
Creating DO files . UM-607
Using Parameters with DO files . UM-607
Making macro parameters optional . UM-608
Useful commands for handling breakpoints and errors UM-609
Error action in DO files . UM-609

A - ModelSim variables (UM-611)

Variable settings report . UM-612

Personal preferences . UM-612

Returning to the original ModelSim defaults UM-613

Environment variables . UM-613
Creating environment variables in Windows UM-615
Referencing environment variables within ModelSim UM-616
Removing temp files (VSOUT) . UM-616
ModelSim SE User’s Manual

UM-18 Table of Contents

Model
Preference variables located in INI files . UM-617
[Library] library path variables . UM-617
[vlog] Verilog compiler control variables UM-618
[vcom] VHDL compiler control variables UM-619
[sccom] SystemC compiler control variables UM-620
[vsim] simulator control variables . UM-621
[lmc] Logic Modeling variables . UM-627
Reading variable values from the INI file UM-627
Commonly used INI variables . UM-628

Preference variables located in Tcl files . UM-631
Setting variables from the GUI . UM-631
Setting variables from the command line UM-632
User-defined variables . UM-632
More preferences . UM-632

Variable precedence . UM-633

Simulator state variables . UM-634
Referencing simulator state variables . UM-634
Special considerations for the now variable UM-635

B - ModelSim shortcuts (UM-637)

Command shortcuts . UM-637

Command history shortcuts . UM-638

Main and Source window mouse and keyboard shortcuts UM-639

List window keyboard shortcuts . UM-642

Wave window mouse and keyboard shortcuts UM-643

Right mouse button . UM-644

C - ModelSim messages (UM-645)

ModelSim message system . UM-646
Message format . UM-646
Getting more information . UM-646

Suppressing warning messages . UM-647
Suppressing VCOM warning messages . UM-647
Suppressing VLOG warning messages . UM-647
Suppressing VSIM warning messages . UM-647

Exit codes . UM-648

Miscellaneous messages . UM-650
Empty port name warning . UM-650
Lock message . UM-650
Metavalue detected warning . UM-650
Sensitivity list warning . UM-651
Tcl Initialization error 2 . UM-651
Too few port connections . UM-652
VSIM license lost . UM-653
Sim SE User’s Manual

 UM-19
D - System initialization (UM-655)

Files accessed during startup . UM-656

Environment variables accessed during startup UM-657

Initialization sequence . UM-658

Licensing Agreement (UM-661)

Index (UM-667)
ModelSim SE User’s Manual

UM-20 Table of Contents

Model
Sim SE User’s Manual

 UM-21
1 - Introduction

Chapter contents
ModelSim graphic interface UM-22

ModelSim modes of operation UM-23
Command-line mode UM-23
Batch mode UM-24

Standards supported UM-25

Assumptions UM-25

Sections in this document UM-26

What is an "Item" UM-28

Text conventions UM-28

Where to find our documentation UM-29

Technical support and updates UM-30

This documentation was written for ModelSim SE for UNIX and Microsoft Windows.
ModelSim SE User’s Manual

UM-22 1 - Introduction

Model
ModelSim graphic interface

While your operating system interface provides the window-management frame,
ModelSim controls all internal-window features including menus, buttons, and scroll bars.
The resulting simulator interface remains consistent within these operating systems:

• SPARCstation with OpenWindows, OSF/Motif, or CDE

• IBM RISC System/6000 with OSF/Motif

• Hewlett-Packard HP 9000 Series 700 with HP VUE, OSF/Motif, or CDE

• Redhat Linux with KDE or GNOME

• Microsoft Windows 98/Me/NT/2000/XP

Because ModelSim’s graphic interface is based on Tcl/TK, you also have the tools to build
your own simulation environment. Preference variables and configuration commands (see
"Preference variables located in INI files" (UM-617) for details) give you control over the
use and placement of windows, menus, menu options, and buttons. See "Tcl and macros
(DO files)" (UM-591) for more information on Tcl.

For an in-depth look at ModelSim’s graphic interface, see Chapter 10 - Graphic interface.
Sim SE User’s Manual

ModelSim modes of operation UM-23
ModelSim modes of operation

Many users run ModelSim interactively–pushing buttons and/or pulling down menus in a
series of windows in the GUI (graphic user interface). But there are really three modes of
ModelSim operation, the characteristics of which are outlined in the following table.:

The ModelSim User’s Manual focuses primarily on the GUI mode of operation. However,
this section provides an introduction to the Command-line and Batch modes.

Command-line mode

In command-line mode ModelSim executes any startup command specified by the Startup
(UM-625) variable in the modelsim.ini file. If vsim (CR-357) is invoked with the -do
<"command_string"> option, a DO file (macro) is called. A DO file executed in this
manner will override any startup command in the modelsim.ini file.

During simulation a transcript file is created containing any messages to stdout. A transcript
file created in command-line mode may be used as a DO file if you invoke the transcript
on command (CR-278) after the design loads (see the example below). The transcript on
command writes all of the commands you invoke to the transcript file. For example, the
following series of commands results in a transcript file that can be used for command input
if top is re-simulated (remove the quit -f command from the transcript file if you want to
remain in the simulator).

vsim -c top

library and design loading messages... then execute:

transcript on
force clk 1 50, 0 100 -repeat 100
run 500
run @5000
quit -f

Rename transcript files that you intend to use as DO files. They will be overwritten the next
time you run vsim if you don’t rename them. Also, simulator messages are already
commented out, but any messages generated from your design (and subsequently written
to the transcript file) will cause the simulator to pause. A transcript file that contains only
valid simulator commands will work fine; comment out anything else with a "#".

ModelSim use mode Characteristics How ModelSim is invoked

GUI interactive; has graphical
windows, push-buttons,
menus, and a command line in
the transcript.
Default mode.

via a desktop icon or from the OS command shell
prompt. Example:

OS> vsim

Command-line interactive command line; no
GUI.

with -c argument at the OS command prompt. Example:

OS> vsim -c

Batch non-interactive batch script;
no windows or interactive
command line.

at OS command shell prompt using "here document"
technique or redirection of standard input. Example:

C:\modeltech> vsim vfiles.v <infile >outfile
ModelSim SE User’s Manual

UM-24 1 - Introduction

Model
Stand-alone tools pick up project settings in command-line mode if they are invoked in the
project's root directory. If invoked outside the project directory, stand-alone tools pick up
project settings only if you set the MODELSIM environment variable to the path to the
project file (<Project_Root_Dir>/<Project_Name>.mpf).

Batch mode

Batch mode is an operational mode that provides neither an interactive command line nor
interactive windows. In a UNIX environment, vsim can be invoked in batch mode by
redirecting standard input using the “here-document” technique. In a Windows
environment, vsim is run from a Windows command prompt and standard input and output
are re-directed from and to files.

Here is an example of the "here-document" technique:

vsim top <<!
log -r *
run 100
do test.do
quit -f
!

Here is an example of a batch mode simulation using redirection of std input and output:

c:\modeltech\vsim counter < yourfile > outfile

where "yourfile" is a script containing various ModelSim commands.
Sim SE User’s Manual

Standards supported UM-25
Standards supported

ModelSim VHDL implements the VHDL language as defined by IEEE Standards
1076-1987, 1076-1993, and 1076-2002. ModelSim also supports the 1164-1993 Standard
Multivalue Logic System for VHDL Interoperability, and the 1076.2-1996 Standard VHDL
Mathematical Packages standards. Any design developed with ModelSim will be
compatible with any other VHDL system that is compliant with the 1076 specs.

ModelSim Verilog implements the Verilog language as defined by the IEEE Std 1364-1995
and 1364-2001. ModelSim Verilog also supports a partial implementation of System
Verilog 3.1, Accellera’s Extensions to Verilog® (see /<install_dir>/modeltech/docs/
technotes/svlog.note for implementation details). The Open Verilog International Verilog
LRM version 2.0 is also applicable to a large extent. Both PLI (Programming Language
Interface) and VCD (Value Change Dump) are supported for ModelSim PE and SE users.

In addition, all products support SDF 1.0 through 3.0, VITAL 2.2b, VITAL’95 – IEEE
1076.4-1995, and VITAL 2000 – IEEE 1076.4-2000.

ModelSim implements the SystemC language based on the Open SystemC Initiative
(OSCI) SystemC 2.0.1 reference simulator.

Assumptions

We assume that you are familiar with the use of your operating system and its graphic
interface.

We also assume that you have a working knowledge of VHDL, Verilog, and/or SystemC.
Although ModelSim is an excellent tool to use while learning HDL concepts and practices,
this document is not written to support that goal.

Finally, we assume that you have worked the appropriate lessons in the ModelSim Tutorial
and are familiar with the basic functionality of ModelSim. The ModelSim Tutorial is
available from the ModelSim Help menu. The ModelSim Tutorial is also available from the
Support page of our web site: www.model.com.
ModelSim SE User’s Manual

http://www.model.com/products/release.asp

UM-26 1 - Introduction

Model
Sections in this document

In addition to this introduction, you will find the following major sections in this document:

2 - Projects (UM-31)

This chapter discusses ModelSim "projects", a container for design files and their
associated simulation properties.

3 - Design libraries (UM-53)

To simulate an HDL design using ModelSim, you need to know how to create,
compile, maintain, and delete design libraries as described in this chapter.

4 - VHDL simulation (UM-71)

This chapter is an overview of compilation and simulation for VHDL within the
ModelSim environment.

5 - Verilog simulation (UM-105)

This chapter is an overview of compilation and simulation for Verilog within the
ModelSim environment.

6 - Verilog PLI / VPI (UM-153)

This chapter describes the ModelSim implementation of the Verilog PLI and VPI.

7 - SystemC simulation (UM-187)

This chapter is an overview of preparation, compilation, and simulation for SystemC
within the ModelSim environment.

8 - Mixed-language simulations (UM-209)

This chapter outlines data mapping and the criteria established to instantiate design
units between VHDL, Verilog, and SystemC.

9 - WLF files (datasets) and virtuals (UM-239)

This chapter describes datasets and virtuals - both methods for viewing and organizing
simulation data in ModelSim.

10 - Graphic interface (UM-253)

This chapter describes the graphic interface available while operating ModelSim.
ModelSim’s graphic interface is designed to provide consistency throughout all
operating system environments.

11 - Performance Analyzer (UM-407)

This chapter describes how the ModelSim Performance Analyzer is used to easily
identify areas in your simulation where performance can be improved.

12 - Code Coverage (UM-419)

This chapter describes the Code Coverage feature. Code Coverage gives you graphical
and report file feedback on how the source code is being executed.

13 - Waveform Compare (UM-455)

This chapter describes Waveform Compare, a feature that lets you compare simulations.
Sim SE User’s Manual

Sections in this document UM-27
14 - C Debug (UM-473)

This chapter describes C Debug, a graphic interface to the gdb debugger that can be used
to debug FLI/PLI/VPI/SystemC C/C++ source code.

15 - PSL Assertions (UM-493)

This chapter describes how to simulate and debug with PSL assertions.

16 - Signal Spy (UM-523)

This chapter describes Signal Spy, a set of VHDL procedures and Verilog system tasks
that let you monitor, drive, force, or release an item from anywhere in the hierarchy of
a VHDL or mixed design.

17 - Standard Delay Format (SDF) Timing Annotation (UM-543)

This chapter discusses ModelSim’s implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

18 - Value Change Dump (VCD) Files (UM-559)

This chapter explains Model Technology’s Verilog VCD implementation for
ModelSim. The VCD usage is extended to include VHDL designs.

19 - Logic Modeling SmartModels (UM-575)

This chapter describes the use of the SmartModel Library and SmartModel Windows
with ModelSim.

20 - Logic Modeling hardware models (UM-585)

This chapter describes the use of the Logic Modeling Hardware Modeler with
ModelSim.

21 - Tcl and macros (DO files) (UM-591)

This chapter provides an overview of Tcl (tool command language) as used with
ModelSim.

A - ModelSim variables (UM-611)

This appendix describes environment, system, and preference variables used in
ModelSim.

B - ModelSim shortcuts (UM-637)

This appendix describes ModelSim keyboard and mouse shortcuts.

C - ModelSim messages (UM-645)

This appendix describes ModelSim error and warning messages.

D - System initialization (UM-655)

This appendix describes what happens during ModelSim startup.
ModelSim SE User’s Manual

UM-28 1 - Introduction

Model
What is an "Item"

Because ModelSim works with VHDL, Verilog, and System C, an “item” refers to any
valid design element in VHDL, Verilog, or SystemC. The word "item" is used whenever a
specific language reference is not needed. Depending on the context, “item” can refer to
any of the following:

Text conventions

Text conventions used in this manual include:

VHDL block statement, component instantiation, constant, generate
statement, generic, package, signal, alias, or variable

Verilog function, module instantiation, named fork, named begin, net,
task, register, or variable

SystemC module instantiation, named fork, named begin, net, task,
register, or variable

italic text provides emphasis and sets off filenames, pathnames, and
design unit names

bold text indicates commands, command options, menu choices,
package and library logical names, as well as variables,
dialog box selections, and language keywords

monospace type monospace type is used for program and command examples

The right angle (>) is used to connect menu choices when traversing menus as
in: File > Quit

path separators examples will show either UNIX or Windows path
separators - use separators appropriate for your operating
system when trying the examples

UPPER CASE denotes file types used by ModelSim (e.g., DO, WLF, INI,
MPF, PDF, etc.)
Sim SE User’s Manual

Where to find our documentation UM-29
Where to find our documentation

ModelSim documentation is available from our website at www.model.com/support or in
the following formats and locations:

Download a free PDF reader with Search

Model Technology’s PDF documentation requires an Adobe Acrobat Reader for viewing.
The Reader may be installed from the ModelSim CD. It is also available without cost from
Adobe at www.adobe.com. Be sure to download the Acrobat Reader with Search to take
advantage of the index file supplied with our documentation; the index makes searching for
keywords much faster.

Document Format How to get it

ModelSim SE Installation &
Licensing Guide

paper shipped with ModelSim

PDF select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSim SE Quick Guide
(command and feature
quick-reference)

paper shipped with ModelSim

PDF select Main window > Help > SE Documentation, also available
from the Support page of our web site: www.model.com

ModelSim SE Tutorial PDF, HTML select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSim SE User’s
Manual

PDF, HTML select Main window > Help > SE Documentation

ModelSim SE Command
Reference

PDF, HTML select Main window > Help > SE Documentation

Foreign Language
Interface Reference

PDF, HTML select Main window > Help > SE Documentation

Std_DevelopersKit User’s
Manual

PDF www.model.com/support/documentation/BOOK/sdk_um.pdf

The Standard Developer’s Kit is for use with Mentor Graphics
QuickHDL.

Command Help ASCII type help [command name] at the prompt in the Main window

Error message help ASCII type verror <msgNum> at the Main window or shell prompt

Tcl Man Pages (Tcl
manual)

HTML select Main window > Help > Tcl Man Pages, or find
contents.htm in \modeltech\docs\tcl_help_html

Technotes HTML select Technotes dropdown on www.model.com/support
ModelSim SE User’s Manual

http://www.adobe.com
http://www.model.com/support
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/support/documentation/BOOK/sdk_um.pdf
http://www.model.com/support

UM-30 1 - Introduction

Model
Technical support and updates

Support

Model Technology online and email technical support options, maintenance renewal, and
links to international support contacts:
www.model.com/support/default.asp

Mentor Graphics support:
www.mentor.com/supportnet

Updates

Access to the most current version of ModelSim:
www.model.com/downloads/default.asp

Latest version email

Place your name on our list for email notification of news and updates:
www.model.com/products/informant.asp
Sim SE User’s Manual

http://www.model.com/support/default.asp
http://www.mentor.com/supportnet/
http://www.model.com/downloads/default.asp
http://www.model.com/products/informant.asp

 UM-31
2 - Projects

Chapter contents
Introduction UM-32

What are projects?. UM-32
What are the benefits of projects?. UM-32
Project conversion between versions UM-33

Getting started with projects UM-34
Step 1 — Creating a new project UM-34
Step 2 — Adding items to the project. UM-35
Step 3 — Compiling the files UM-35
Step 4 — Simulating a design. UM-35
Other basic project operations. UM-39

The Project tab UM-40
Sorting the list UM-40
Project tab context menu UM-41

Changing compile order UM-42
Auto-generating compile order UM-42
Grouping files UM-43

Creating a Simulation Configuration UM-44

Organizing projects with folders UM-46

Specifying file properties and project settings UM-48
File compilation properties UM-48
Project settings UM-49

Accessing projects from the command line UM-51

This chapter discusses ModelSim projects. Projects simplify the process of compiling and
simulating a design and are a great tool for getting started with ModelSim.
ModelSim SE User’s Manual

UM-32 2 - Projects

Model
Introduction

What are projects?

Projects are collection entities for HDL/SystemC designs under specification or test. At a
minimum, projects have a root directory, a work library, and "metadata" which are stored
in a .mpf file located in a project's root directory. The metadata include compiler switch
settings, compile order, and file mappings. Projects may also include:

• HDL and SystemC source files or references to source files

• other files such as READMEs or other project documentation

• local libraries

• references to global libraries

• Simulation Configurations (see "Creating a Simulation Configuration" (UM-44))

• Folders (see "Organizing projects with folders" (UM-46))

What are the benefits of projects?

Projects offer benefits to both new and advanced users. Projects

• simplify interaction with ModelSim; you don’t need to understand the intricacies of
compiler switches and library mappings

• eliminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project. Compile order is maintained for HDL-only designs.

• remove the necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to HDL/SystemC source files

• allow users to share libraries without copying files to a local directory; you can establish
references to source files that are stored remotely or locally

• allow you to change individual parameters across multiple files; in previous versions you
could only set parameters one file at a time

• enable "what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

• reload the initial settings from the project .mpf file every time the project is opened

Important: Project metadata are updated and stored only for actions taken within the
project itself. For example, if you have a file in a project, and you compile that file from
the command line rather than using the project menu commands, the project will not
update to reflect any new compile settings.
Sim SE User’s Manual

Introduction UM-33
Project conversion between versions

Projects are generally not backwards compatible for either number or letter releases. When
you open a project created in an earlier version (e.g, you’re using 5.6 and you open a project
created in 5.5), you’ll see a message warning that the project will be converted to the newer
version. You have the option of continuing with the conversion or cancelling the operation.

As stated in the warning message, a backup of the original project is created before the
conversion occurs. The backup file is named <project name>.mpf.bak and is created in the
same directory in which the original project is located.

Note: Due to the significant changes, projects created in versions prior to 5.5 cannot be
converted automatically. If you created a project in an earlier version, you will need to
recreate it in versions later than 5.5. With the new interface even the most complex
project should take less than 15 minutes to recreate. Follow the instructions in the
ensuing pages to recreate your project.
ModelSim SE User’s Manual

UM-34 2 - Projects

Model
Getting started with projects

This section describes the four basic steps to working with a project.

Step 1 — Creating a new project (UM-34)

This creates a .mpf file and a working library.

Step 2 — Adding items to the project (UM-35)

Projects can reference or include HDL/SystemC source files, folders for organization,
simulations, and any other files you want to associate with the project. You can copy files
into the project directory or simply create mappings to files in other locations.

Step 3 — Compiling the files (UM-38)

This checks syntax and semantics and creates the pseudo machine code ModelSim uses
for simulation.

Step 4 — Simulating a design (UM-39)

This specifies the design unit you want to simulate and opens a structure tab in the Main
window workspace.

Step 1 — Creating a new project

Select File > New > Project (Main window) to create a new project. This opens the Create
Project dialog.

The dialog includes these options:

• Project Name
The name of the new project.

• Project Location
The directory in which the .mpf file will be created.
Sim SE User’s Manual

Getting started with projects UM-35
• Default Library Name
The name of the working library. See "Working library versus resource libraries" (UM-54)
for more details on work libraries. You can generally leave the Default Library Name
set to "work." The name you specify will be used to create a working library subdirectory
within the Project Location.

After selecting OK, you will see a blank Project tab in the workspace area of the Main
window and the Add Items to the Project dialog.

The name of the current project is shown at the bottom left corner of the Main window.

Step 2 — Adding items to the project

The Add Items to the Project dialog includes these options:

• Create New File
Create a new VHDL, Verilog, SystemC, Tcl, or text file using the Source window. See
below for details.

• Add Existing File
Add an existing file. See below for details.

• Create Simulation
Create a Simulation Configuration that specifies source files and simulator options. See
"Creating a Simulation Configuration" (UM-44) for details.

• Create New Folder
Create an organization folder. See "Organizing projects with folders" (UM-46) for details.

workspace
ModelSim SE User’s Manual

UM-36 2 - Projects

Model
Create New File

The Create New File command lets you create a new VHDL, Verilog, SystemC, Tcl, or
text file using the Source window. You can also access this command by selecting File >
Add to Project > New File (Main window) or right-clicking (2nd button in Windows; 3rd
button in UNIX) in the Project tab and selecting Add to Project > New File.

The Create Project File dialog includes these options:

• File Name
The name of the new file.

• Add file as type
The type of the new file. Select VHDL, Verilog, SystemC, TCL, or text.

• Folder
The organization folder in which you want the new file placed. You must first create
folders in order to access them here. See "Organizing projects with folders" (UM-46) for
details.

When you select OK, the file is listed in the Project tab of the Main window workspace.
Sim SE User’s Manual

Getting started with projects UM-37
Add Existing File

You can also access this command by selecting File > Add to Project > Existing File
(Main window) or by right-clicking (2nd button in Windows; 3rd button in UNIX) in the
Project tab and selecting Add to Project > Existing File.

The Add file to Project dialog includes these options:

• File Name
The name of the file to add. You can add multiple files at one time.

• Add file as type
The type of the file. "Default" assigns type based on the file extension (e.g., .v is type
Verilog).

• Folder
The organization folder in which you want the file placed. You must first create folders
in order to access them here. See "Organizing projects with folders" (UM-46) for details.

• Reference from current location/Copy to project directory
Choose whether to reference the file from its current location or to copy it into the project
directory.

When you select OK, the file(s) is listed in the Project tab of the Main window workspace.
ModelSim SE User’s Manual

UM-38 2 - Projects

Model
Step 3 — Compiling the files

The question marks next to the files in the Project tab denote either the files haven’t been
compiled into the project or the source has changed since the last compile. To compile the
files, select Compile > Compile All (Main window) or right click in the Project tab and
select Compile > Compile All.

Once compilation is finished, click the Library tab, expand library work by clicking the "+",
and you will see the compiled design units.
Sim SE User’s Manual

Getting started with projects UM-39
Step 4 — Simulating a design

To simulate one of the designs, either double-click the name or right-click the name and
select Simulate. A new tab named sim appears that shows the structure of the active
simulation.

At this point you are ready to run the simulation and analyze your results. You often do this
by adding signals to the Wave window and running the simulation for a given period of
time. See the ModelSim Tutorial for examples.

Other basic project operations

Open an existing project

If you previously exited ModelSim with a project open, ModelSim automatically will open
that same project upon startup. You can open a different project by selecting File > Open
> Project (Main window).

Close a project

Select File > Close > Project (Main window) or right-click in the Project tab and select
Close Project. This closes the Project tab but leaves the Library tab open in the workspace.
Note that you cannot close a project while a simulation is in progress.

Delete a project

Select File > Delete > Project (Main window). You cannot delete a project while it is open.
ModelSim SE User’s Manual

UM-40 2 - Projects

Model
The Project tab

The Project tab contains information about the items in your project. By default the tab is
divided into five columns.

Name – The name of a file or object.

Status – Identifies whether a source file has been successfully compiled. Applies only to
VHDL or Verilog files. A question mark means the file hasn’t been compiled or the source
file has changed since the last successful compile; an X means the compile failed; a check
mark means the compile succeeded; a checkmark with a yellow triangle behind it means
the file compiled but there were warnings generated.

Type – The file type as determined by registered file types on Windows or the type you
specify when you add the file to the project.

Order – The order in which the file will be compiled when you execute a Compile All
command.

Modified – The date and time of the last modification to the file.

You can hide or show columns by right-clicking on a column title and selecting or
deselecting entries.

Sorting the list

You can sort the list by any of the five columns. Click on a column heading to sort by that
column; click the heading again to invert the sort order. An arrow in the column heading
indicates which field the list is sorted by and whether the sort order is descending (down
arrow) or ascending (up arrow).
Sim SE User’s Manual

The Project tab UM-41
Project tab context menu

Like the other workspace tabs, the Project tab has a context menu that you access by
clicking your right mouse button (2nd button in Windows; 3rd button in UNIX) anywhere
in the tab. The context menu has the following commands:

Edit open the selected file in an editor

Execute execute the selected Verilog, VHDL, WLF, or DO file

Compile provides these options:
Compile Selected – compile the selected file(s); note that if you select a
folder and select Compile Selected, it will compile all files in the folder
and any sub-folders
Compile All – compile all source files included in the project
Compile Out-of-Date – compile source files that have been modified
since the last compile
Compile Order – set compile order for all files in the project; see
"Changing compile order" (UM-42) for more details. Compile Order is not
supported for SystemC files.
Compile Report – show the compilation history of the selected file
Compile Summary – show the compilation history of the entire project
Compile Properties – view/change project compiler settings for the
selected source file(s)

Simulate load the design unit(s) and associated simulation options from the
selected Simulation Configuration; see "Creating a Simulation
Configuration" (UM-44) for more details

Add to
Project

provides these options:
New File – add a new file to the project
Existing File – add an existing file to the project
Simulation Configuration – create a new Simulation Configuration; see
"Creating a Simulation Configuration" (UM-44) for more details
Folder – add an organization folder to the project; see "Organizing
projects with folders" (UM-46) for more details

Remove
from Project

remove the selected item from the project

Close
Project

close the active project

Properties view/change compiler settings for the selected source file(s)

Project
Settings

change settings for the project; see "Project settings" (UM-49)
ModelSim SE User’s Manual

UM-42 2 - Projects

Model
Changing compile order

The Compile Order dialog box is functional for HDL-only designs. When you compile all
files in a project, ModelSim by default compiles the files in the order in which they were
added to the project. You have two alternatives for changing the default compile order: 1)
select and compile each file individually; 2) specify a custom compile order.

To specify a custom compile order, follow these steps:

1 Select Compile > Compile Order (Main window) or select it from the context menu in
the Project tab.

2 Drag the files into the correct order or use the up and down arrow buttons. Note that you
can select multiple files and drag them simultaneously.

Auto-generating compile order

Auto Generate is supported for HDL-only designs. The Auto Generate button in the
Compile Order dialog (see above) "determines" the correct compile order by making
multiple passes over the files. It starts compiling from the top; if a file fails to compile due
to dependencies, it moves that file to the bottom and then recompiles it after compiling the
rest of the files. It continues in this manner until all files compile successfully or until a
file(s) can’t be compiled for reasons other than dependency.

Files can be displayed in the Project tab in alphabetical or compile order (using the Sort by
Alphabetical Order or Sort by Compile Order commands on the context menu). Keep
in mind that the order you see in the Project tab is not necessarily the order in which the
files will be compiled.
Sim SE User’s Manual

Changing compile order UM-43
Grouping files

You can group two or more files in the Compile Order dialog so they are sent to the
compiler at the same time. For example, you might have one file with a bunch of Verilog
define statements and a second file that is a Verilog module. You would want to compile
these two files together.

To group files, follow these steps:

1 Select the files you want to group.

2 Click the Group button.

To ungroup files, select the group and click the Ungroup button.
ModelSim SE User’s Manual

UM-44 2 - Projects

Model
Creating a Simulation Configuration

A Simulation Configuration associates a design unit(s) and its simulation options. For
example, say you routinely load a particular design and you have to specify the simulator
resolution, generics, and SDF timing files. Ordinarily you would have to specify those
options each time you load the design. With a Simulation Configuration, you would specify
the design and those options and then save the configuration with a name (e.g., top_config).
The name is then listed in the Project tab and you can double-click it to load the design
along with its options.

To create a Simulation Configuration, follow these steps:

1 Select File > Add to Project > Simulation Configuration (Main window) or select it
from the context menu in the Project tab.

2 Specify a name in the Simulation Configuration Name field.

3 Specify the folder in which you want to place the configuration (see "Organizing projects
with folders" (UM-46)).

4 Select one or more design unit(s). Use the Control and/or Shift keys to select more than
one design unit. The design unit names appear in the Simulate field when you select
them.
Sim SE User’s Manual

Creating a Simulation Configuration UM-45
5 Use the other tabs in the dialog to specify any required simulation options. All of the
options in this dialog are described under "Simulating with the graphic interface" (UM-

377).

Click OK and the simulation configuration is added to the Project tab.

Double-click the Simulation Configuration item to load it.
ModelSim SE User’s Manual

UM-46 2 - Projects

Model
Organizing projects with folders

The more files you add to a project, the harder it can be to locate the item you need. You
can add "folders" to the project to organize your files. These folders are akin to directories
in that you can have multiple levels of folders and sub-folders. However, no actual
directories are created via the file system–the folders are present only within the project
file.

Adding a folder

To add a folder to your project, select File > Add to Project > Folder or right-click in the
Project tab and select Add to Project > Folder.

Specify the Folder Name, the location for the folder, and click OK. The folder will be
displayed in the Project tab.
Sim SE User’s Manual

Organizing projects with folders UM-47
You use the folders when you add new objects to the project. For example, when you add
a file, you can select which folder to place it in.

If you want to move a file into a folder later on, you can do so using the Properties dialog
for the file (right-click on the file and select Properties from the context menu).

On Windows platforms, you can also just drag-and-drop a file into a folder.
ModelSim SE User’s Manual

UM-48 2 - Projects

Model
Specifying file properties and project settings

You can set two types of properties in a project: file properties and project settings. File
properties affect individual files; project settings affect the entire project.

File compilation properties

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options
that affect how a design is compiled and subsequently simulated. You can customize the
settings on individual files or a group of files.

To customize specific files, select the file(s) in the Project tab, right click on the file names,
and select Properties. The resulting dialog varies depending on the number and type of
files you have selected. If you select a single VHDL, Verilog file, you’ll see the General
tab and the VHDL or Verilog tab, respectively. If you select a SystemC file, you will see
only the General tab. On the General tab, you’ll see file properties such as Type, Location,
and Size. If you select multiple files, the file properties on the General tab are not listed.
Finally, if you select both a VHDL file and a Verilog file, you’ll see all four tabs but no file
information on the General tab.

The General tab includes these options:

• Do Not Compile
Determines whether the file is excluded from the compile.

• Compile to library
Specifies to which library you want to compile the file; defaults to the working library.

• Place in Folder
Specifies the folder in which to place the selected file(s). See "Organizing projects with
folders" (UM-46) for details on folders.

Important: Any changes you make to the compile properties outside of the project,
whether from the command line, the GUI, or the modelsim.ini file, will not affect the
properties of files already in the project.
Sim SE User’s Manual

Specifying file properties and project settings UM-49
• File Properties
A variety of information about the selected file (e.g, type, size, path). Displays only if a
single file is selected in the Project tab.

The definitions of the options on the VHDL and Verilog tabs can be found in the section
"Setting default compile options" (UM-370). The definitions for the options on the Coverage
tab can be found in the section "Enabling Code Coverage" (UM-423).

When setting options on a group of files, keep in mind the following:

• If two or more files have different settings for the same option, the checkbox in the dialog
will be "grayed out." If you change the option, you cannot change it back to a "multi- state
setting" without cancelling out of the dialog. Once you click OK, ModelSim will set the
option the same for all selected files.

• If you select a combination of VHDL and Verilog files, the options you set on the VHDL
and Verilog tabs apply only to those file types.

Project settings

To modify project settings, right-click anywhere within the Project tab and select Project
Settings.

The Project Settings dialog includes these options:

• Display compiler output
Prints verbose compile output to the Transcript. By default verbose output is produced in
the Compile Report only.

• Save compile report
Saves verbose compile output to disk. You can access the report by right-clicking a file
and selecting Compile > Compile Report.
ModelSim SE User’s Manual

UM-50 2 - Projects

Model
• Location map
Specifies whether physical paths for the project files should be saved as soft paths if they
are present in the location map. See "Referencing source files with location maps" (UM-

66) for more details on using location maps.

• Double-click Behavior
Specifies the action to take when you double-click a type of file. If you select Custom,
you can specify a Tcl command in the text box below the file type.

You can use %f for filename substitution. For example, if you wanted double click on a
Tcl file to open the file with Notepad, you would insert the following in the text box:

notepad %f

ModelSim will substitute the %f with the filename that was clicked on, then execute the
string.
Sim SE User’s Manual

Accessing projects from the command line UM-51
Accessing projects from the command line

Generally, projects are used from within the ModelSim GUI. However, standalone tools
will use the project file if they are invoked in the project's root directory. If you want to
invoke outside the project directory, set the MODELSIM environment variable with the
path to the project file (<Project_Root_Dir>/<Project_Name>.mpf).

You can also use the project command (CR-227) from the command line to perform
common operations on projects.
ModelSim SE User’s Manual

UM-52 2 - Projects

Model
Sim SE User’s Manual

 UM-53
3 - Design libraries

Chapter contents
Design library overview UM-54

Design unit information UM-54
Working library versus resource libraries UM-54
Archives UM-55

Working with design libraries UM-56
Creating a library UM-56
Managing library contents UM-57
Assigning a logical name to a design library UM-59
Moving a library UM-60
Setting up libraries for group use UM-60

Specifying the resource libraries UM-61
Verilog resource libraries UM-61
VHDL resource libraries UM-61
Predefined libraries UM-62
Alternate IEEE libraries supplied UM-62
Rebuilding supplied libraries UM-63
Regenerating your design libraries UM-63
Maintaining 32-bit and 64-bit versions in the same library . . . UM-64

Protecting source code and using -nodebug UM-65

Referencing source files with location maps UM-66

Importing FPGA libraries UM-68

VHDL contains libraries, which are objects that contain compiled design units; libraries
are given names so they may be referenced. Verilog designs simulated within ModelSim
are compiled into libraries as well.
ModelSim SE User’s Manual

UM-54 3 - Design libraries

Model
Design library overview

A design library is a directory or archive that serves as a repository for compiled design
units. The design units contained in a design library consist of VHDL entities, packages,
architectures, and configurations; Verilog modules and UDPs (user-defined primitives);
and SystemC modules. The design units are classified as follows:

• Primary design units
Consist of entities, package declarations, configuration declarations, modules, UDPs,
and SystemC modules. Primary design units within a given library must have unique
names.

• Secondary design units
Consist of architecture bodies, package bodies, and optimized Verilog modules.
Secondary design units are associated with a primary design unit. Architectures by the
same name can exist if they are associated with different entities or modules.

Design unit information

The information stored for each design unit in a design library is:

• retargetable, executable code

• debugging information

• dependency information

Working library versus resource libraries

Design libraries can be used in two ways: 1) as a local working library that contains the
compiled version of your design; 2) as a resource library. The contents of your working
library will change as you update your design and recompile. A resource library is typically
static and serves as a parts source for your design. You can create your own resource
libraries, or they may be supplied by another design team or a third party (e.g., a silicon
vendor).

Only one library can be the working library. In contrast any number of libraries can be
resource libraries during a compilation. You specify which resource libraries will be used
when the design is compiled, and there are rules to specify in which order they are searched
(see "Specifying the resource libraries" (UM-61)).

A common example of using both a working library and a resource library is one where
your gate-level design and testbench are compiled into the working library, and the design
references gate-level models in a separate resource library.

The library named work has special attributes within ModelSim; it is predefined in the
compiler and need not be declared explicitly (i.e. library work). It is also the library name
used by the compiler as the default destination of compiled design units (i.e., it doesn’t need
to be mapped). In other words the work library is the default working library.
Sim SE User’s Manual

Design library overview UM-55
Archives

By default, design libraries are stored in a directory structure with a sub-directory for each
design unit in the library. Alternatively, you can configure a design library to use archives.
In this case each design unit is stored in its own archive file. To create an archive, use the
-archive argument to the vlib command (CR-344).

Generally you would do this only in the rare case that you hit the reference count limit on
I-nodes due to the ".." entries in the lower-level directories (the maximum number of sub-
directories on UNIX and Linux is 65533). An example of an error message that is produced
when this limit is hit is:

mkdir: cannot create directory `65534': Too many links

Archives may also have limited value to customers seeking disk space savings.

Note that GMAKE won’t work with these archives on the IBM platform.
ModelSim SE User’s Manual

UM-56 3 - Design libraries

Model
Working with design libraries

The implementation of a design library is not defined within standard VHDL or Verilog.
Within ModelSim, design libraries are implemented as directories and can have any legal
name allowed by the operating system, with one exception; extended identifiers are not
supported for library names.

Creating a library

When you create a project (see "Getting started with projects" (UM-34)), ModelSim
automatically creates a working design library. If you don’t create a project, you need to
create a working design library before you run the compiler. This can be done from either
the command line or from the ModelSim graphic interface.

From the ModelSim prompt or a UNIX/DOS prompt, use this vlib command (CR-344):

vlib <directory_pathname>

To create a new library with the ModelSim graphic interface, select File > New > Library
(Main window).

The Create a New Library dialog box includes these options:

• Create a new library and a logical mapping to it
Type the new library name into the Library Name field. This creates a library sub-
directory in your current working directory, initially mapped to itself. Once created, the
mapped library is easily remapped to a different library.

• Create a map to an existing library
Type the new library name into the Library Name field, then type into the Library
Maps to field or Browse to select a library name for the mapping.

• Library Name
Type the logical name of the new library into this field.
Sim SE User’s Manual

Working with design libraries UM-57
• Library Physical Name
Type the physical name of the new library into this field. ModelSim will create a
directory with this name.

• Library Maps to
Type or Browse for a mapping for the specified library. This field is visible and can be
changed only when the Create a map to an existing library option is selected.

When you click OK, ModelSim creates the specified library directory and writes a
specially-formatted file named _info into that directory. The _info file must remain in the
directory to distinguish it as a ModelSim library.

The new map entry is written to the modelsim.ini file in the [Library] section. See
"[Library] library path variables" (UM-617) for more information.

Managing library contents

Library contents can be viewed, deleted, recompiled, edited and so on using either the
graphic interface or command line.

The Library tab in the Main window workspace provides access to design units
(configurations, modules, packages, entities, architectures, and SystemC modules) in a
library. The listing is organized hierarchically, and the unit types are identified both by icon
(entity (E), module (M), and so forth) and the Type column.

Note: Remember that a design library is a special kind of directory; the only way to
create a library is to use the ModelSim GUI or the vlib command (CR-344). Do not create
libraries using UNIX or Windows commands.
ModelSim SE User’s Manual

UM-58 3 - Design libraries

Model
The Library tab has a context menu that you access by clicking your right mouse button
(Windows—2nd button, UNIX—3rd button) in the Library tab.

The context menu includes the following commands:

• Simulate
Loads the selected design unit and opens structure and Files tabs in the workspace.
Related command line command is vsim (CR-357).

• Edit
Opens the selected design unit in the Source window, or if a library is selected, opens the
Edit Library Mapping dialog (see "Library mappings with the GUI" (UM-59)).

• Refresh
Rebuilds the library image of the selected library without using source code. Related
command line command is vcom (CR-303) or vlog (CR-345) with the -refresh argument.

• Recompile
Recompiles the selected design unit. Related command line command is vcom (CR-303)
or vlog (CR-345).

• Optimize
Optimizes a Verilog design unit. Related command line command is vlog (CR-345) with
the +opt argument. See "Compiling with +opt" (UM-128) for further details.

• Update
Updates the display of available libraries and design units.

• Delete
Deletes the selected design unit. Related command line command is vdel (CR-315).

Deleting a package, configuration, or entity will remove the design unit from the library.
If you delete an entity that has one or more architectures or a Verilog module that has one
or more optimized versions, the entity and all its associated architectures or the module
and all its optimized versions will be deleted.

You can also delete an architecture without deleting its associated entity. Expand the
entity, right-click the desired architecture name, and select Delete. You are prompted for
confirmation before any design unit is actually deleted.

• New
Create a new library.

• Properties
Displays various properties (e.g., Name, Type, Source, etc.) of the selected design unit
or library.
Sim SE User’s Manual

Working with design libraries UM-59
Assigning a logical name to a design library

VHDL uses logical library names that can be mapped to ModelSim library directories. By
default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located elsewhere, you need to map a logical library name
to the pathname of the library.

You can use the GUI, a command, or a project to assign a logical name to a design library.

Library mappings with the GUI

To associate a logical name with a library, select the library in the workspace, right-click
and select Edit from the context menu. This brings up a dialog box that allows you to edit
the mapping.

The dialog box includes these options:

• Library Mapping Name
The logical name of the library.

• Library Pathname
The pathname to the library.

Library mapping from the command line

You can issue a command to set the mapping between a logical library name and a
directory; its form is:

vmap <logical_name> <directory_pathname>

You may invoke this command from either a UNIX/DOS prompt or from the command line
within ModelSim.

The vmap (CR-356) command adds the mapping to the library section of the modelsim.ini
file. You can also modify modelsim.ini manually by adding a mapping line. To do this, use
a text editor and add a line under the [Library] section heading using the syntax:

<logical_name> = <directory_pathname>
ModelSim SE User’s Manual

UM-60 3 - Design libraries

Model
More than one logical name can be mapped to a single directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Library]
work = /usr/rick/design
my_asic = /usr/rick/design

This would allow you to use either the logical name work or my_asic in a library or use
clause to refer to the same design library.

Unix symbolic links

You can also create a UNIX symbolic link to the library using the host platform command:

ln -s <directory_pathname> <logical_name>

The vmap command (CR-356) can also be used to display the mapping of a logical library
name to a directory. To do this, enter the shortened form of the command:

vmap <logical_name>

Library search rules

The system searches for the mapping of a logical name in the following order:

• First the system looks for a modelsim.ini file.

• If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error is generated by the compiler if you specify a logical name that does not resolve to
an existing directory.

Moving a library

Individual design units in a design library cannot be moved. An entire design library can
be moved, however, by using standard operating system commands for moving a directory
or an archive.

Setting up libraries for group use

By adding an “others” clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools don’t find a mapping in the modelsim.ini file, then they
will search the library section of the initialization file specified by the “others” clause. For
example:

[library]
asic_lib = /cae/asic_lib
work = my_work
others = /usr/modeltech/modelsim.ini
Sim SE User’s Manual

Specifying the resource libraries UM-61
Specifying the resource libraries

Verilog resource libraries

ModelSim supports and encourages separate compilation of distinct portions of a Verilog
design. The vlog (CR-345) compiler is used to compile one or more source files into a
specified library. The library thus contains pre-compiled modules and UDPs that are
referenced by the simulator as it loads the design. See "Library usage" (UM-111).

VHDL resource libraries

Within a VHDL source file, you use the VHDL library clause to specify logical names of
one or more resource libraries to be referenced in the subsequent design unit. The scope of
a library clause includes the text region that starts immediately after the library clause and
extends to the end of the declarative region of the associated design unit. It does not extend
to the next design unit in the file.

Note that the library clause is not used to specify the working library into which the design
unit is placed after compilation. The vcom command (CR-303) adds compiled design units
to the current working library. By default, this is the library named work. To change the
current working library, you can use vcom -work and specify the name of the desired target
library.

Default binding rules for VHDL resource libraries

A common question related to VHDL resource libraries is how ModelSim handles default
binding for components. ModelSim addresses default binding at compile time. When
looking for an entity to bind with, ModelSim searches the currently visible libraries for an
entity with the same name as the component. ModelSim does this because IEEE 1076-1987
contained a flaw that made it almost impossible for an entity to be directly visible if it had
the same name as the component. In short, if a component was declared in an architecture,
any like-named entity above that declaration would be hidden because component/entity
names cannot be overloaded. As a result we implemented the following rules for
determining default binding:

• If a directly visible entity has the same name as the component, use it.

• If the component is declared in a package, search the library that contained the package
for an entity with the same name.

If neither of these methods is successful, ModelSim will also do the following:

• Search the work library.

• Search all other libraries that are currently visible by means of the library clause.

Note that these second two searches are an extension to the 1076 standard.

Important: Resource libraries are specified differently for Verilog and VHDL. For
Verilog you use either the -L or -Lf argument to vlog (CR-345).
ModelSim SE User’s Manual

UM-62 3 - Design libraries

Model
Predefined libraries

Certain resource libraries are predefined in standard VHDL. The library named std
contains the packages standard and textio, which should not be modified. The contents of
these packages and other aspects of the predefined language environment are documented
in the IEEE Standard VHDL Language Reference Manual, Std 1076. See also, "Using the
TextIO package" (UM-86).

A VHDL use clause can be specified to select particular declarations in a library or package
that are to be visible within a design unit during compilation. A use clause references the
compiled version of the package—not the source.

By default, every VHDL design unit is assumed to contain the following declarations:

LIBRARY std, work;
USE std.standard.all

To specify that all declarations in a library or package can be referenced, add the suffix .all
to the library/package name. For example, the use clause above specifies that all
declarations in the package standard, in the design library named std, are to be visible to
the VHDL design unit immediately following the use clause. Other libraries or packages
are not visible unless they are explicitly specified using a library or use clause.

Another predefined library is work, the library where a design unit is stored after it is
compiled as described earlier. There is no limit to the number of libraries that can be
referenced, but only one library is modified during compilation.

Alternate IEEE libraries supplied

The installation directory may contain two or more versions of the IEEE library:

• ieeepure
Contains only IEEE approved packages (accelerated for ModelSim).

• ieee
Contains precompiled Synopsys and IEEE arithmetic packages which have been
accelerated by Model Technology including math_complex, math_real, numeric_bit,
numeric_std, std_logic_1164, std_logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std_logic_unsigned, vital_primitives, and vital_timing.

You can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini file in the installation directory defaults to the ieee library.
Sim SE User’s Manual

Specifying the resource libraries UM-63
Rebuilding supplied libraries

Resource libraries are supplied precompiled in the modeltech installation directory. If you
need to rebuild these libraries, the sources are provided in the vhdl_src directory; a macro
file is also provided for Windows platforms (rebldlibs.do). To rebuild the libraries, invoke
the DO file from within ModelSim with this command:

do rbldlibs.do

Make sure your current directory is the modeltech install directory before you run this file.

Shell scripts are provided for UNIX (rebuild_libs.csh and rebuild_libs.sh). To rebuild the
libraries, execute one of the rebuild_libs scripts while in the modeltech directory.

Regenerating your design libraries

Depending on your current ModelSim version, you may need to regenerate your design
libraries before running a simulation. Check the installation README file to see if your
libraries require an update. You can regenerate your design libraries using the Refresh
command from the Library tab context menu (see "Managing library contents" (UM-57)), or
by using the -refresh argument to vcom (CR-303) and vlog (CR-345).

From the command line, you would use vcom with the -refresh option to update VHDL
design units in a library, and vlog with the -refresh option to update Verilog design units.
By default, the work library is updated; use -work <library> to update a different library.
For example, if you have a library named mylib that contains both VHDL and Verilog
design units:

vcom -work mylib -refresh
vlog -work mylib -refresh

An important feature of -refresh is that it rebuilds the library image without using source
code. This means that models delivered as compiled libraries without source code can be
rebuilt for a specific release of ModelSim (4.6 and later only). In general, this works for
moving forwards or backwards on a release. Moving backwards on a release may not work
if the models used compiler switches or directives that do not exist in the older release.

Note: Because accelerated subprograms require attributes that are available only under
the 1993 standard, many of the libraries are built using vcom (CR-303) with the -93
option.

Note: You don't need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you
cannot use the -refresh option to update libraries that were built before the 4.6 release.
ModelSim SE User’s Manual

UM-64 3 - Design libraries

Model
Maintaining 32-bit and 64-bit versions in the same library

It is possible with ModelSim to maintain 32-bit and 64-bit versions of a design in the same
library. To do this, compile the design with the 32-bit version and "refresh" the design with
the 64-bit version. For example:

Using the 32-bit version of ModelSim:

vcom file1.vhd -work asic_lib
vcom file2.vhd -work asic_lib

Next, using the 64-bit version of ModelSim:

vcom -work asic_lib -refresh

This allows you to use either version without having to do a refresh.

Do not compile the design with one version, and then recompile it with the other. If you do
this, ModelSim will remove the first module, because it could be "stale."
Sim SE User’s Manual

Protecting source code and using -nodebug UM-65
Protecting source code and using -nodebug

The -nodebug argument for both vcom (CR-303) and vlog (CR-345) hides internal model
data. This allows a model supplier to provide pre-compiled libraries without providing
source code and without revealing internal model variables and structure.

When you compile with -nodebug, all source text, identifiers, and line number information
are stripped from the resulting compiled object, so ModelSim cannot locate or display any
information of the model except for the external pins. Specifically, the Source window will
not display the design units’ source code, the Structure window will not display the internal
structure, the Signals window will not display internal signals, the Process window will not
display internal processes, and the Variables window will not display internal variables. In
addition, none of the hidden objects may be accessed through the Dataflow window or with
ModelSim commands.

You can access the design units comprising your model via the library, and you may invoke
vsim (CR-357) directly on any of these design units and see the ports. To restrict even this
access in the lower levels of your design, you can use the following -nodebug options when
you compile:

Don’t use the =ports option on a design without hierarchy, or on the top level of a
hierarchical design. If you do, no ports will be visible for simulation. Rather, compile all
lower portions of the design with -nodebug=ports first, then compile the top level with
-nodebug alone.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug.

Note: -nodebug encrypts entire files. The Verilog `protect compiler directive allows
you to encrypt regions within a file. See "ModelSim compiler directives" (UM-152) for
details.

Command and switch Result

vcom -nodebug=ports makes the ports of a VHDL design unit invisible

vlog -nodebug=ports makes the ports of a Verilog design unit invisible

vlog -nodebug=pli prevents the use of PLI functions to interrogate the module for
information

vlog -nodebug=ports+pli combines the functions of -nodebug=ports and -nodebug=pli
ModelSim SE User’s Manual

UM-66 3 - Design libraries

Model
Referencing source files with location maps

Pathnames to source files are recorded in libraries by storing the working directory from
which the compile is invoked and the pathname to the file as specified in the invocation of
the compiler. The pathname may be either a complete pathname or a relative pathname.

ModelSim tools that reference source files from the library locate a source file as follows:

• If the pathname stored in the library is complete, then this is the path used to reference
the file.

• If the pathname is relative, then the tool looks for the file relative to the current working
directory. If this file does not exist, then the path relative to the working directory stored
in the library is used.

This method of referencing source files generally works fine if the libraries are created and
used on a single system. However, when multiple systems access a library across a
network, the physical pathnames are not always the same and the source file reference rules
do not always work.

Using location mapping

Location maps are used to replace prefixes of physical pathnames in the library with
environment variables. The location map defines a mapping between physical pathname
prefixes and environment variables.

ModelSim tools open the location map file on invocation if the MGC_LOCATION_MAP
(UM-613) environment variable is set. If MGC_LOCATION_MAP is not set, ModelSim
will look for a file named "mgc_location_map" in the following locations, in order:

• the current directory

• your home directory

• the directory containing the ModelSim binaries

• the ModelSim installation directory

Use these two steps to map your files:

1 Set the environment variable MGC_LOCATION_MAP to the path to your location map
file.

2 Specify the mappings from physical pathnames to logical pathnames:

$SRC
/home/vhdl/src
/usr/vhdl/src

$IEEE
/usr/modeltech/ieee
Sim SE User’s Manual

Referencing source files with location maps UM-67
Pathname syntax

The logical pathnames must begin with $ and the physical pathnames must begin with /.
The logical pathname is followed by one or more equivalent physical pathnames. Physical
pathnames are equivalent if they refer to the same physical directory (they just have
different pathnames on different systems).

How location mapping works

When a pathname is stored, an attempt is made to map the physical pathname to a path
relative to a logical pathname. This is done by searching the location map file for the first
physical pathname that is a prefix to the pathname in question. The logical pathname is then
substituted for the prefix. For example, "/usr/vhdl/src/test.vhd" is mapped to "$SRC/
test.vhd". If a mapping can be made to a logical pathname, then this is the pathname that is
saved. The path to a source file entry for a design unit in a library is a good example of a
typical mapping.

For mapping from a logical pathname back to the physical pathname, ModelSim expects
an environment variable to be set for each logical pathname (with the same name).
ModelSim reads the location map file when a tool is invoked. If the environment variables
corresponding to logical pathnames have not been set in your shell, ModelSim sets the
variables to the first physical pathname following the logical pathname in the location map.
For example, if you don't set the SRC environment variable, ModelSim will automatically
set it to "/home/vhdl/src".

Mapping with Tcl variables

Two Tcl variables may also be used to specify alternative source-file paths; SourceDir and
SourceMap. See "Preference variables located in Tcl files" (UM-631) for more information on Tcl
preference variables.
ModelSim SE User’s Manual

UM-68 3 - Design libraries

Model
Importing FPGA libraries

ModelSim includes an import wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependencies in the libraries and determines the correct
mappings and target directories.

To import an FPGA library, select File > Import > Library (Main window).

Follow the instructions in the wizard to complete the import.

Important: The FPGA libraries you import must be pre-compiled. Most FPGA vendors
supply pre-compiled libraries configured for use with ModelSim.
Sim SE User’s Manual

Protecting source code using -nodebug UM-69
Protecting source code using -nodebug

The -nodebug argument for both vcom (CR-303) and vlog (CR-345) hides internal model
data. This allows a model supplier to provide pre-compiled libraries without providing
source code and without revealing internal model variables and structure.

When you compile with -nodebug, all source text, identifiers, and line number information
are stripped from the resulting compiled object, so ModelSim cannot locate or display any
information of the model except for the external pins. Specifically, this means that:

• the Source window will not display the design units’ source code

• the Structure window will not display the internal structure

• the Signals window will not display internal signals

• the Process window will not display internal processes

• the Variables window will not display internal variables

• none of the hidden objects may be accessed through the Dataflow window or with
ModelSim commands

You can access the design units comprising your model via the library, and you may invoke
vsim (CR-357) directly on any of these design units and see the ports. To restrict even this
access in the lower levels of your design, you can use the following -nodebug options when
you compile:

Don’t use the =ports option on a design without hierarchy, or on the top level of a
hierarchical design. If you do, no ports will be visible for simulation. Rather, compile all
lower portions of the design with -nodebug=ports first, then compile the top level with
-nodebug alone.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug.

Note: -nodebug encrypts entire files. The Verilog `protect compiler directive allows
you to encrypt regions within a file. See "ModelSim compiler directives" (UM-152) for
details.

Command and switch Result

vcom -nodebug=ports makes the ports of a VHDL design unit invisible

vlog -nodebug=ports makes the ports of a Verilog design unit invisible

vlog -nodebug=pli prevents the use of PLI functions to interrogate the module for
information

vlog -nodebug=ports+pli combines the functions of -nodebug=ports and -nodebug=pli
ModelSim SE User’s Manual

UM-70 3 - Design libraries

Model
Sim SE User’s Manual

 UM-71
4 - VHDL simulation

Chapter contents
Compiling VHDL designs UM-73

Creating a design library UM-73
Invoking the VHDL compiler UM-73
Dependency checking UM-73
Range and index checking UM-74
Differences between language versions UM-74

Simulating VHDL designs UM-77
Simulator resolution limit UM-77
Delta delays UM-78

Simulating with an elaboration file UM-80
Overview UM-80
Elaboration file flow UM-80
Creating an elaboration file UM-81
Loading an elaboration file UM-81
Modifying stimulus UM-82
Using with the PLI or FLI. UM-82

Checkpointing and restoring simulations UM-84
Checkpoint file contents UM-84
Controlling checkpoint file compression UM-85
The difference between checkpoint/restore and restart UM-85
Using macros with restart and checkpoint/restore UM-85

Using the TextIO package UM-86
Syntax for file declaration. UM-86
Using STD_INPUT and STD_OUTPUT within ModelSim . . . UM-87

TextIO implementation issues UM-88
Writing strings and aggregates UM-88
Reading and writing hexadecimal numbers UM-89
Dangling pointers UM-89
The ENDLINE function UM-89
The ENDFILE function UM-89
Using alternative input/output files UM-90
Providing stimulus UM-90

VITAL specification and source code UM-91

VITAL packages UM-91

ModelSim VITAL compliance. UM-91
VITAL compliance checking UM-91
VITAL compliance warnings UM-92

Compiling and simulating with accelerated VITAL packages . . . UM-93

Util package UM-94
get_resolution UM-94
ModelSim SE User’s Manual

UM-72 4 - VHDL simulation

Model
init_signal_driver() UM-95
init_signal_spy() UM-95
signal_force() UM-95
signal_release() UM-95
to_real() UM-96
to_time() UM-97

Foreign language interface UM-98

Modeling memory UM-99

Affecting performance by cancelling scheduled events UM-102

Converting an integer into a bit_vector UM-103

This chapter provides an overview of compilation and simulation for VHDL; using the
TextIO package with ModelSim; ModelSim’s implementation of the VITAL (VHDL
Initiative Towards ASIC Libraries) specification for ASIC modeling; and documentation
on ModelSim’s special built-in utilities package.

The TextIO package is defined within the VHDL Language Reference Manual, IEEE Std
1076; it allows human-readable text input from a declared source within a VHDL file
during simulation.
Sim SE User’s Manual

Compiling VHDL designs UM-73
Compiling VHDL designs

Creating a design library

Before you can compile your design, you must create a library in which to store the
compilation results. Use vlib (CR-344) to create a new library. For example:

vlib work

This creates a library named work. By default, compilation results are stored in the work
library.

The work library is actually a subdirectory named work. This subdirectory contains a
special file named _info. Do not create libraries using UNIX, MS Windows, or DOS
commands – always use the vlib command (CR-344).

See "Design libraries" (UM-53) for additional information on working with libraries.

Invoking the VHDL compiler

ModelSim compiles one or more VHDL design units with a single invocation of vcom (CR-

303), the VHDL compiler. The design units are compiled in the order that they appear on
the command line. For VHDL, the order of compilation is important – you must compile
any entities or configurations before an architecture that references them.

You can simulate a design containing units written with 1076 -1987, 1076 -1993, and
1076-2002 versions of VHDL. To do so you will need to compile units from each VHDL
version separately. The vcom (CR-303) command compiles using 1076 -2002 rules by
default; use the -87 or -93 argument to vcom (CR-303) to compile units written with version
1076-1987 or 1076 -1993, respectively. You can also change the default by modifying the
VHDL93 variable in the modelsim.ini file (see "Preference variables located in INI files"
(UM-617) for more information).

Dependency checking

Dependent design units must be reanalyzed when the design units they depend on are
changed in the library. vcom (CR-303) determines whether or not the compilation results
have changed. For example, if you keep an entity and its architectures in the same source
file and you modify only an architecture and recompile the source file, the entity
compilation results will remain unchanged and you will not have to recompile design units
that depend on the entity.
ModelSim SE User’s Manual

UM-74 4 - VHDL simulation

Model
Range and index checking

A range check verifies that a scalar value defined with a range subtype is always assigned
a value within its range. An index check verifies that whenever an array subscript
expression is evaluated, the subscript will be within the array's range.

Range and index checks are performed by default when you compile your design. You can
disable range checks (potentially offering a performance advantage) and index checks
using arguments to the vcom (CR-303) command. Or, you can use the NoRangeCheck and
NoIndexCheck variables in the modelsim.ini file to specify whether or not they are
performed. See "Preference variables located in INI files" (UM-617).

Range checks in ModelSim are slightly more restrictive than those specified by the VHDL
LRM. ModelSim requires any assignment to a signal to also be in range whereas the LRM
requires only that range checks be done whenever a signal is updated. Most assignments to
signals update the signal anyway, and the more restrictive requirement allows ModelSim
to generate better error messages.

Differences between language versions

There are three versions of the IEEE VHDL 1076 standard: VHDL-1987, VHDL-1993, and
VHDL-2002. The default language version for ModelSim is VHDL-2002. If your code was
written according to the ’87 or ’93 version, you may need to update your code or instruct
ModelSim to use the earlier versions’ rules.

To select a specific language version, do one of the following:

• Select the appropriate version from the compiler options menu in the GUI

• Invoke vcom (CR-303) using the argument -87, -93, or -2002

• Set the VHDL93 variable in the [vcom] section of the modelsim.ini file. Appropriate
values for VHDL93 are:

- 0, 87, or 1987 for VHDL-1987

- 1, 93, or 1993 for VHDL-1993

- 2, 02, or 2002 for VHDL-2002

The following is a list of language incompatibilites that may cause problems when
compiling a design.

• The only major problem between VHDL-93 and VHDL-2002 is the addition of the
keyword "PROTECTED". VHDL-93 programs which use this as an identifier should
choose a different name.

All other incompatibilities are between VHDL-87 and VHDL-93.

• VITAL and SDF

It is important to use the correct language version for VITAL. VITAL2000 must be
compiled with VHDL-93 or VHDL-2002. VITAL95 must be compiled with VHDL-87.
A typical error message that indicates the need to compile under language version
VHDL-87 is:

"VITALPathDelay DefaultDelay parameter must be locally static"
Sim SE User’s Manual

Compiling VHDL designs UM-75
• Purity of NOW

In VHDL-93 the function "now" is impure. Consequently, any function that invokes
"now" must also be declared to be impure. Such calls to "now" occur in VITAL. A typical
error message:

"Cannot call impure function 'now' from inside pure function '<name>'"

• Files

File syntax and usage changed between VHDL-87 and VHDL-93. In many cases vcom
issues a warning and continues:

"Using 1076-1987 syntax for file declaration."

In addition, when files are passed as parameters, the following warning message is
produced:

"Subprogram parameter name is declared using VHDL 1987 syntax."

This message often involves calls to endfile(<name>) where <name> is a file parameter.

• Files and packages

Each package header and body should be compiled with the same language version.
Common problems in this area involve files as parameters and the size of type
CHARACTER. For example, consider a package header and body with a procedure that
has a file parameter:

procedure proc1 (out_file : out std.textio.text) ...

If you compile the package header with VHDL-87 and the body with VHDL-93 or
VHDL-2002, you will get an error message such as:

"** Error: mixed_package_b.vhd(4): Parameter kinds do not conform between
declarations in package header and body: 'out_file'."

• Direction of concatenation

To solve some technical problems, the rules for direction and bounds of concatenation
were changed from VHDL-87 to VHDL-93. You won't see any difference in simple
variable/signal assignments such as:

v1 := a & b;

But if you (1) have a function that takes an unconstrained array as a parameter, (2) pass
a concatenation expression as a formal argument to this parameter, and (3) the body of
the function makes assumptions about the direction or bounds of the parameter, then you
will get unexpected results. This may be a problem in environments that assume all arrays
have "downto" direction.

• xnor

"xnor" is a reserved word in VHDL-93. If you declare an xnor function in VHDL-87
(without quotes) and compile it under VHDL-2002, you will get an error message like
the following:

** Error: xnor.vhd(3): near "xnor": expecting: STRING IDENTIFIER
ModelSim SE User’s Manual

UM-76 4 - VHDL simulation

Model
• 'FOREIGN attribute

In VHDL-93 package STANDARD declares an attribute 'FOREIGN. If you declare your
own attribute with that name in another package, then ModelSim issues a warning such
as the following:

-- Compiling package foopack

** Warning: foreign.vhd(9): (vcom-1140) VHDL-1993 added a definition of the
attribute foreign to package std.standard. The attribute is also defined in
package 'standard'. Using the definition from package 'standard'.

• Size of CHARACTER type

In VHDL-87 type CHARACTER has 128 values; in VHDL-93 it has 256 values. Code
which depends on this size will behave incorrectly. This situation occurs most commonly
in test suites that check VHDL functionality. It's unlikely to occur in practical designs. A
typical instance is the replacement of warning message:

"range nul downto del is null"

by

"range nul downto 'ÿ' is null" -- range is nul downto y(umlaut)

• bit string literals

In VHDL-87 bit string literals are of type bit_vector. In VHDL-93 they can also be of
type STRING or STD_LOGIC_VECTOR. This implies that some expressions that are
unambiguous in VHDL-87 now become ambiguous is VHDL-93. A typical error
message is:

** Error: bit_string_literal.vhd(5): Subprogram '=' is ambiguous. Suitable
definitions exist in packages 'std_logic_1164' and 'standard'.

• In VHDL-87 when using individual subelement association in an association list,
associating individual subelements with NULL is discouraged. In VHDL-93 such
association is forbidden. A typical message is:

"Formal '<name>' must not be associated with OPEN when subelements are
associated individually."
Sim SE User’s Manual

Simulating VHDL designs UM-77
Simulating VHDL designs

After compiling the design units, you can simulate your designs with vsim (CR-357). This
section discusses simulation from the UNIX or Windows/DOS command line. You can
also use a project to simulate (see "Getting started with projects" (UM-34)) or the Simulate
dialog box (see "Simulating with the graphic interface" (UM-377)).

For VHDL invoke vsim (CR-357) with the name of the configuration, or entity/architecture
pair. Note that if you specify a configuration you may not specify an architecture.

This example invokes vsim (CR-357) on the entity my_asic and the architecture structure:

vsim my_asic structure

vsim (CR-357) is capable of annotating a design using VITAL compliant models with timing
data from an SDF file. You can specify the min:typ:max delay by invoking vsim with the
-sdfmin, -sdftyp, or -sdfmax option. Using the SDF file f1.sdf in the current work
directory, the following invocation of vsim annotates maximum timing values for the
design unit my_asic:

vsim -sdfmax /my_asic=f1.sdf my_asic

By default, the timing checks within VITAL models are enabled. They can be disabled with
the +notimingchecks option. For example:

vsim +notimingchecks topmod

Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. The default
resolution limit is set to the value specified by the Resolution (UM-624) variable in the
modelsim.ini file. You can view the current resolution by invoking the report command
(CR-238) with the simulator state option.

Overriding the resolution

You can override ModelSim’s default resolution by specifying the -t option on the
command line or by selecting a different Simulator Resolution in the Simulate dialog box.
Available resolutions are: 1x, 10x, or 100x of fs, ps, ns, us, ms, or sec.

For example this command chooses 10 ps resolution:

vsim -t 10ps topmod

Clearly you need to be careful when doing this type of operation. If the resolution set by -t
is larger than a delay value in your design, the delay values in that design unit are rounded
to the closest multiple of the resolution. In the example above, a delay of 4 ps would be
rounded to 0 ps.

Choosing the resolution

You should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it
will limit the maximum simulation time limit, and it will degrade performance in some
cases.
ModelSim SE User’s Manual

UM-78 4 - VHDL simulation

Model
Delta delays

Event-based simulators such as ModelSim may process many events at a given simulation
time. Multiple signals may need updating, statements that are sensitive to these signals
must be executed, and any new events that result from these statements must then be
queued and executed as well. The steps taken to evaluate the design without advancing
simulation time are referred to as "delta times" or just "deltas."

The diagram below represents the process for VHDL designs. This process continues until
the end of simulation time.

This mechanism in event-based simulators may cause unexpected results. Consider the
following code snippet:

clk2 <= clk;

process (rst, clk)
 begin
 if(rst = '0')then
 s0 <= '0';
 elsif(clk'event and clk='1') then
 s0 <= inp;

end if;
 end process;

process (rst, clk2)
 begin
 if(rst = '0')then
 s1 <= '0';
 elsif(clk2'event and clk2='1') then
 s1 <= s0;
 end if;
 end process;

Execute
concurrent
statements at
current time

Advance
delta time

Any transactions
to process?

No

Yes

Any events to
process?

No

Execute concurrent
statements that are
sensitive to events

Advance
simulation
time

Yes
Sim SE User’s Manual

Simulating VHDL designs UM-79
In this example you have two synchronous processes, one triggered with clk and the other
with clk2. To your surprise, the signals change in the clk2 process on the same edge as they
are set in the clk process. As a result, the value of inp appears at s1 rather than s0.

Here is what’s happing. During simulation an event on clk occurs (from the testbench).
From this event ModelSim performs the "clk2 <= clk" assignment and the process which
is sensitive to clk. Before advancing the simulation time, ModelSim finds that the process
sensitive to clk2 can also be run. Since there are no delays present, the effect is that the
value of inp appears at s1 in the same simulation cycle.

In order to get the expected results, you must do one of the following:

• Insert a delay at every output

• Make certain to use the same clock

• Insert a delta delay

To insert a delta delay, you would modify the code like this:

process (rst, clk)
 begin
 if(rst = '0')then
 s0 <= '0';
 elsif(clk'event and clk='1') then
 s0 <= inp;
 s0_delayed <= s0;
 end if;
 end process;

 process (rst, clk2)
 begin
 if(rst = '0')then
 s1 <= '0';
 elsif(clk2'event and clk2='1') then
 s1 <= s0_delayed;
 end if;
 end process;

The best way to debug delta delay problems is observe your signals in the List window.
There you can see how values change at each delta time.

Detecting infinite zero-delay loops

If a large number of deltas occur without advancing time, it is usually a symptom of an
infinite zero-delay loop in the design. In order to detect the presence of these loops,
ModelSim defines a limit, the “iteration limit", on the number of successive deltas that can
occur. When ModelSim reaches the iteration limit, it issues a warning message.

The iteration limit default value is 5000. If you receive an iteration limit warning, first
increase the iteration limit and try to continue simulation. You can set the iteration limit
from the Simulate > Simulation Options menu, by modifying the modelsim.ini file, or by
setting a Tcl variable called IterationLimit (UM-624). See "Preference variables located in
INI files" (UM-617) for more information on modifying the modelsim.ini file.

If the problem persists, look for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which
signals or variables are continuously oscillating. Two common causes are a loop that has
no exit, or a series of gates with zero delay where the outputs are connected back to the
inputs.
ModelSim SE User’s Manual

UM-80 4 - VHDL simulation

Model
Simulating with an elaboration file

Overview

The ModelSim compiler generates a library format that is compatible across platforms.
This means the simulator can load your design on any supported platform without having
to recompile first. Though this architecture offers a benefit, it also comes with a possible
detriment: the simulator has to generate platform-specific code every time you load your
design. This impacts the speed with which the design is loaded.

Starting with ModelSim version 5.6, you can generate a loadable image (elaboration file)
which can be simulated repeatedly. On subsequent simulations, you load the elaboration
file rather than loading the design "from scratch." Elaboration files load quickly.

Why an elaboration file?

In many cases design loading time is not that important. For example, if you’re doing
"iterative design," where you simulate the design, modify the source, recompile and
resimulate, the load time is just a small part of the overall flow. However, if your design is
locked down and only the test vectors are modified between runs, loading time may
materially impact overall simulation time, particularly for large designs loading SDF files.

Another reason to use elaboration files is for benchmarking purposes. Other simulator
vendors use elaboration files, and they distinguish between elaboration and run times. If
you are benchmarking ModelSim against another simulator that uses elaboration, make
sure you use an elaboration file with ModelSim as well so you’re comparing like to like.

One caveat with elaboration files is that they must be created and used in the same
environment. The same environment means the same hardware platform, the same OS and
patch version, and the same version of any PLI/FLI code loaded in the simulation.

Elaboration file flow

We recommend the following flow to maximize the benefit of simulating elaboration files.

1 If timing for your design is fixed, include all timing data when you create the elaboration
file (using the -sdf<type> instance=<filename> argument). If your timing is not fixed
in a Verilog design, you’ll have to use $sdf_annotate system tasks. Note that use of
$sdf_annotate causes timing to be applied after elaboration.

2 Apply all normal vsim arguments when you create the elaboration file. Some arguments
(primarily related to stimulus) may be superseded later during loading of the elaboration
file (see "Modifying stimulus" (UM-82) below).

3 Load the elaboration file along with any arguments that modify the stimulus (see below).
Sim SE User’s Manual

Simulating with an elaboration file UM-81
Creating an elaboration file

Elaboration file creation is performed with the same vsim settings or switches as a normal
simulation plus an elaboration specific argument. The simulation settings are stored in the
elaboration file and dictate subsequent simulation behavior. Some of these simulation
settings can be modified at elaboration file load time, as detailed below.

To create an elaboration file, use the -elab <filename> or -elab_cont <filename>
argument to vsim (CR-357).

The -elab_cont argument is used to create the elaboration file then continue with the
simulation after the elaboration file is created. You can use the -c switch with -elab_cont
to continue the simulation in command-line mode.

Loading an elaboration file

To load an elaboration file, use the -load_elab <filename> argument to vsim (CR-357). By
default the elaboration file will load in command-line mode or interactive mode depending
on the argument (-c or -i) used during elaboration file creation. If no argument was used
during creation, the -load_elab argument will default to the interactive mode.

The vsim arguments listed below can be used with -load_elab to affect the simulation.

+<plus_args>
-c or -i
-do <do_file>
-vcdread <filename>
-vcdstim <filename>
-filemap_elab <HDLfilename>=<NEWfilename>
-l <log_file>
-trace_foreign <level>
-quiet
-wlf <filename>

Modification of an argument that was specified at elaboration file creation, in most cases,
causes the previous value to be replaced with the new value. Usage of the -quiet argument
at elaboration load causes the mode to be toggled from its elaboration creation setting.

All other vsim arguments must be specified when you create the elaboration file, and they
cannot be used when you load the elaboration file.

Important: Elaboration files can be created in command-line mode only. You cannot
create an elaboration file while running the ModelSim GUI.

Important: The elaboration file must be loaded under the same environment in which it
was created. The same environment means the same hardware platform, the same OS
and patch version, and the same version of any PLI/FLI code loaded in the simulation.
ModelSim SE User’s Manual

UM-82 4 - VHDL simulation

Model
Modifying stimulus

A primary use of elaboration files is repeatedly simulating the same design with different
stimulus. The following mechanisms allow you to modify stimulus for each run.

• Use of the change command to modify parameters or generic values. This affects values
only; it has no effect on triggers, compiler directives, or generate statements that
reference either a generic or parameter.

• Use of the -filemap_elab <HDLfilename>=<NEWfilename> argument to establish a
map between files named in the elaboration file. The <HDLfilename> file name, if it
appears in the design as a file name (for example, a VHDL FILE object as well as some
Verilog sysfuncs that take file names), is substituted with the <NEWfilename> file
name. This mapping occurs before environment variable expansion and can’t be used to
redirect stdin/stdout.

• VCD stimulus files can be specified when you load the elaboration file. Both vcdread and
vcdstim are supported. Specifying a different VCD file when you load the elaboration file
supersedes a stimulus file you specify when you create the elaboration file.

• In Verilog, the use of +args which are readable by the PLI routine mc_scan_plusargs().
+args values specified when you create the elaboration file are superseded by +args
values specified when you load the elaboration file.

Using with the PLI or FLI

PLI models do not require special code to function with an elaboration file as long as the
model doesn't create simulation objects in its standard tf routines. The sizetf, misctf and
checktf calls that occur during elaboration are played back at -load_elab to ensure the PLI
model is in the correct simulation state. Registered user tf routines called from the Verilog
HDL will not occur until -load_elab is complete and PLI model's state is restored.

By default, FLI models are activated for checkpoint during elaboration file creation and are
activated for restore during elaboration file load. (See the "Using checkpoint/restore with
the FLI" section of the FLI Reference manual for more information.) FLI models that
support checkpoint/restore will function correctly with elaboration files.

FLI models that don't support checkpoint/restore may work if simulated with the
-elab_defer_fli argument. When used in tandem with -elab, -elab_defer_fli defers calls to
the FLI model's initialization function until elaboration file load time. Deferring FLI
initialization skips the FLI checkpoint/restore activity (callbacks, mti_IsRestore(), ...) and
may allow these models to simulate correctly. However, deferring FLI initialization also
causes FLI models in the design to be initialized in order with the entire design loaded. FLI
models that are sensitive to this ordering may still not work correctly even if you use
-elab_defer_fli.

Syntax

See the vsim command (CR-357) for details on -elab, -elab_cont, -elab_defer_fli,
-compress_elab, -filemap_elab, and -load_elab.
Sim SE User’s Manual

Simulating with an elaboration file UM-83
Example

Upon first simulating the design, use vsim -elab <filename>
<library_name.design_unit> to create an elaboration file that will be used in subsequent
simulations.

In subsequent simulations you simply load the elaboration file (rather than the design) with
vsim -load_elab <filename>.

To change the stimulus without recoding, recompiling, and reloading the entire design,
Modelsim allows you to map the stimulus file (or files) of the original design unit to an
alternate file (or files) with the -filemap_elab switch. For example, the VHDL code for
initiating stimulus might be:

FILE vector_file : text IS IN "vectors";

where vectors is the stimulus file.

If the alternate stimulus file is named, say, alt_vectors, then the correct syntax for changing
the stimulus without recoding, recompiling, and reloading the entire design is as follows:

vsim -load_elab <filename> -filemap_elab vectors=alt_vectors
ModelSim SE User’s Manual

UM-84 4 - VHDL simulation

Model
Checkpointing and restoring simulations

The checkpoint (CR-99) and restore (CR-242) commands allow you to save and restore the
simulation state within the same invocation of vsim or between vsim sessions.

Checkpoint file contents

The following things are saved with checkpoint and restored with the restore command:

• simulation kernel state

• vsim.wlf file

• signals listed in the list and wave windows

• file pointer positions for files opened under VHDL

• file pointer positions for files opened by the Verilog $fopen system task

• state of foreign architectures

• state of PLI/VPI code

Checkpoint exclusions

You cannot checkpoint/restore the following:

• state of macros

• changes made with the command-line interface (such as user-defined Tcl commands)

• state of graphical user interface windows

• toggle statistics

If you use the foreign interface, you will need to add additional function calls in order to
use checkpoint/restore. See the FLI Reference Manual or Chapter 6 - Verilog PLI / VPI
for more information.

Action Definition Command used

checkpoint saves the simulation state checkpoint <filename>

"warm" restore restores a checkpoint file saved in a
current vsim session

restore <filename>

"cold" restore restores a checkpoint file saved in a
previous vsim session (i.e., after
quitting ModelSim)

vsim -restore <filename>
Sim SE User’s Manual

Checkpointing and restoring simulations UM-85
Controlling checkpoint file compression

The checkpoint file is normally compressed. To turn off the compression, use the following
command:

set CheckpointCompressMode 0

To turn compression back on, use this command:

set CheckpointCompressMode 1

You can also control checkpoint compression using the modelsim.ini file in the [vsim]
section (use the same 0 or 1 switch):

[vsim]
CheckpointCompressMode = <switch>

The difference between checkpoint/restore and restart

The restart (CR-240) command resets the simulator to time zero, clears out any logged
waveforms, and closes any files opened under VHDL and the Verilog $fopen system task.
You can get the same effect by first doing a checkpoint at time zero and later doing a
restore. Using restart, however, is likely to be faster and you don't have to save the
checkpoint. To set the simulation state to anything other than time zero, you need to use
checkpoint/restore.

Using macros with restart and checkpoint/restore

The restart (CR-240) command resets and restarts the simulation kernel, and zeros out any
user-defined commands, but it does not touch the state of the macro interpreter. This lets
you do restart commands within macros.

The pause mode indicates that a macro has been interrupted. That condition will not be
affected by a restart, and if the restart is done with an interrupted macro, the macro will still
be interrupted after the restart.

The situation is similar for using checkpoint/restore without quitting ModelSim; that is,
doing a checkpoint (CR-99) and later in the same session doing a restore (CR-242) of the
earlier checkpoint. The restore does not touch the state of the macro interpreter so you may
also do checkpoint and restore commands within macros.
ModelSim SE User’s Manual

UM-86 4 - VHDL simulation

Model
Using the TextIO package

To access the routines in TextIO, include the following statement in your VHDL source
code:

USE std.textio.all;

A simple example using the package TextIO is:

USE std.textio.all;
ENTITY simple_textio IS
END;

ARCHITECTURE simple_behavior OF simple_textio IS
BEGIN

PROCESS
VARIABLE i: INTEGER:= 42;
VARIABLE LLL: LINE;

BEGIN
WRITE (LLL, i);
WRITELINE (OUTPUT, LLL);
WAIT;

END PROCESS;
END simple_behavior;

Syntax for file declaration

The VHDL’87 syntax for a file declaration is:

file identifier : subtype_indication is [mode] file_logical_name ;

where "file_logical_name" must be a string expression.

In newer versions of the 1076 spec, syntax for a file declaration is:

file identifier_list : subtype_indication [file_open_information] ;

where "file_open_information" is:

[open file_open_kind_expression] is file_logical_name

You can specify a full or relative path as the file_logical_name; for example (VHDL’87):

file filename : TEXT is in "/usr/rick/myfile";

Normally if a file is declared within an architecture, process, or package, the file is opened
when you start the simulator and is closed when you exit from it. If a file is declared in a
subprogram, the file is opened when the subprogram is called and closed when execution
RETURNs from the subprogram. Alternatively, the opening of files can be delayed until
the first read or write by setting the DelayFileOpen variable in the modelsim.ini file. Also,
the number of concurrently open files can be controlled by the ConcurrentFileLimit
variable. These variables help you manage a large number of files during simulation. See
Appendix A - ModelSim variables for more details.
Sim SE User’s Manual

Using the TextIO package UM-87
Using STD_INPUT and STD_OUTPUT within ModelSim

The standard VHDL’87 TextIO package contains the following file declarations:

file input: TEXT is in "STD_INPUT";
file output: TEXT is out "STD_OUTPUT";

Updated versions of the TextIO package contain these file declarations:

file input: TEXT open read_mode is "STD_INPUT";
file output: TEXT open write_mode is "STD_OUTPUT";

STD_INPUT is a file_logical_name that refers to characters that are entered interactively
from the keyboard, and STD_OUTPUT refers to text that is displayed on the screen.

In ModelSim, reading from the STD_INPUT file allows you to enter text into the current
buffer from a prompt in the Main window. The lines written to the STD_OUTPUT file
appear in the Main window transcript.
ModelSim SE User’s Manual

UM-88 4 - VHDL simulation

Model
TextIO implementation issues

Writing strings and aggregates

A common error in VHDL source code occurs when a call to a WRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the
VHDL procedure:

WRITE (L, "hello");

will cause the following error:

ERROR: Subprogram "WRITE" is ambiguous.

In the TextIO package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRITE(L: inout LINE; VALUE: in BIT_VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE(L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

The error occurs because the argument "hello" could be interpreted as a string or a bit
vector, but the compiler is not allowed to determine the argument type until it knows which
function is being called.

The following procedure call also generates an error:

WRITE (L, "010101");

This call is even more ambiguous, because the compiler could not determine, even if
allowed to, whether the argument "010101" should be interpreted as a string or a bit vector.

There are two possible solutions to this problem:

• Use a qualified expression to specify the type, as in:

WRITE (L, string’("hello"));

• Call a procedure that is not overloaded, as in:

WRITE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedure in the
io_utils package, which is located in the file <install_dir>/modeltech/examples/
io_utils.vhd.
Sim SE User’s Manual

TextIO implementation issues UM-89
Reading and writing hexadecimal numbers

The reading and writing of hexadecimal numbers is not specified in standard VHDL. The
Issues Screening and Analysis Committee of the VHDL Analysis and Standardization
Group (ISAC-VASG) has specified that the TextIO package reads and writes only decimal
numbers.

To expand this functionality, ModelSim supplies hexadecimal routines in the package
io_utils, which is located in the file <install_dir>/modeltech/examples/io_utils.vhd. To use
these routines, compile the io_utils package and then include the following use clauses in
your VHDL source code:

use std.textio.all;
use work.io_utils.all;

Dangling pointers

Dangling pointers are easily created when using the TextIO package, because
WRITELINE de-allocates the access type (pointer) that is passed to it. Following are
examples of good and bad VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLINE (infile, L1); -- Read and allocate buffer
L2 := L1; -- Copy pointers
WRITELINE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and allocate buffer
L2 := new string’(L1.all); -- Copy contents
WRITELINE (outfile, L1); -- Deallocate buffer

The ENDLINE function

The ENDLINE function described in the IEEE Standard VHDL Language Reference
Manual, IEEE Std 1076-1987 contains invalid VHDL syntax and cannot be implemented
in VHDL. This is because access types must be passed as variables, but functions only
allow constant parameters.

Based on an ISAC-VASG recommendation the ENDLINE function has been removed
from the TextIO package. The following test may be substituted for this function:

(L = NULL) OR (L’LENGTH = 0)

The ENDFILE function

In the VHDL Language Reference Manuals, the ENDFILE function is listed as:

-- function ENDFILE (L: in TEXT) return BOOLEAN;

As you can see, this function is commented out of the standard TextIO package. This is
because the ENDFILE function is implicitly declared, so it can be used with files of any
type, not just files of type TEXT.
ModelSim SE User’s Manual

UM-90 4 - VHDL simulation

Model
Using alternative input/output files

You can use the TextIO package to read and write to your own files. To do this, just declare
an input or output file of type TEXT. For example, for an input file:

The VHDL’87 declaration is:

file myinput : TEXT is in "pathname.dat";

The VHDL’93 declaration is:

file myinput : TEXT open read_mode is "pathname.dat";

Then include the identifier for this file ("myinput" in this example) in the READLINE or
WRITELINE procedure call.

Flushing the TEXTIO buffer

Flushing of the TEXTIO buffer is controlled by the UnbufferedOutput (UM-625) variable in
the modelsim.ini file.

Providing stimulus

You can stimulate and test a design by reading vectors from a file, using them to drive
values onto signals, and testing the results. A VHDL test bench has been included with the
ModelSim install files as an example. Check for this file:

<install_dir>/modeltech/examples/stimulus.vhd
Sim SE User’s Manual

VITAL specification and source code UM-91
VITAL specification and source code

VITAL ASIC Modeling Specification

The IEEE 1076.4 VITAL ASIC Modeling Specification is available from the Institute of
Electrical and Electronics Engineers, Inc.:

IEEE Customer Service
445 Hoes Lane
Piscataway, NJ 08854-1331

Tel: (732) 981-0060
Fax: (732) 981-1721
home page: http://www.ieee.org

VITAL source code

The source code for VITAL packages is provided in the /<install_dir>/modeltech/
vhdl_src/vital2.2b, /vital95, or /vital2000 directories.

VITAL packages

VITAL 1995 accelerated packages are pre-compiled into the ieee library in the installation
directory. VITAL 2000 accelerated packages are pre-compiled into the vital2000 library.
If you need to use the newer library, you’ll need to add a use clause to your VHDL code to
access the VITAL 2000 packages. For example:

LIBRARY vital2000;
USE vital2000.all

ModelSim VITAL compliance

A simulator is VITAL compliant if it implements the SDF mapping and if it correctly
simulates designs using the VITAL packages, as outlined in the VITAL Model
Development Specification. ModelSim is compliant with the IEEE 1076.4 VITAL ASIC
Modeling Specification. In addition, ModelSim accelerates the VITAL_Timing,
VITAL_Primitives, and VITAL_memory packages. The optimized procedures are
functionally equivalent to the IEEE 1076.4 VITAL ASIC Modeling Specification (VITAL
1995 and 2000).

VITAL compliance checking

Compliance checking is important in enabling VITAL acceleration; to qualify for global
acceleration, an architecture must be VITAL-level-one compliant. vcom (CR-303)
automatically checks for VITAL 2000 compliance on all entities with the VITAL_Level0
attribute set, and all architectures with the VITAL_Level0 or VITAL_Level1 attribute set.

If you are using VITAL 2.2b, you must turn off the compliance checking either by not
setting the attributes, or by invoking vcom (CR-303) with the option -novitalcheck. You can
turn off compliance checking for VITAL 1995 and VITAL 2000 as well, but we strongly
suggest that you leave checking on to ensure optimal simulation.
ModelSim SE User’s Manual

http://www.ieee.org

UM-92 4 - VHDL simulation

Model
VITAL compliance warnings

The following LRM errors are printed as warnings (if they were considered errors they
would prevent VITAL level 1 acceleration); they do not affect how the architecture
behaves.

• Starting index constraint to DataIn and PreviousDataIn parameters to VITALStateTable
do not match (1076.4 section 6.4.3.2.2)

• Size of PreviousDataIn parameter is larger than the size of the DataIn parameter to
VITALStateTable (1076.4 section 6.4.3.2.2)

• Signal q_w is read by the VITAL process but is NOT in the sensitivity list (1076.4 section
6.4.3)

The first two warnings are minor cases where the body of the VITAL 1995 LRM is slightly
stricter than the package portion of the LRM. Since either interpretation will provide the
same simulation results, we chose to make these two cases warnings.

The last warning is a relaxation of the restriction on reading an internal signal that is not in
the sensitivity list. This is relaxed only for the CheckEnabled parameters of the timing
checks, and only if they are not read elsewhere.

You can control the visibility of VITAL compliance-check warnings in your vcom (CR-303)
transcript. They can be suppressed by using the vcom -nowarn switch as in
vcom -nowarn 6. The 6 comes from the warning level printed as part of the warning, i.e.,
** WARNING: [6]. You can also add the following line to your modelsim.ini file in the
[vcom] VHDL compiler control variables (UM-619) section.

[vcom]
Show_VitalChecksWarnings = 0
Sim SE User’s Manual

Compiling and simulating with accelerated VITAL packages UM-93
Compiling and simulating with accelerated VITAL packages

vcom (CR-303) automatically recognizes that a VITAL function is being referenced from
the ieee library and generates code to call the optimized built-in routines.

Optimization occurs on two levels:

• VITAL Level-0 optimization
This is a function-by-function optimization. It applies to all level-0 architectures, and any
level-1 architectures that failed level-1 optimization.

• VITAL Level-1 optimization
Performs global optimization on a VITAL 3.0 level-1 architecture that passes the VITAL
compliance checker. This is the default behavior. Note that your models will run faster
but at the cost of not being able to see the internal workings of the models.

Compiler options for VITAL optimization

Several vcom (CR-303) options control and provide feedback on VITAL optimization:

-novital

Causes vcom to use VHDL code for VITAL procedures rather than the accelerated and
optimized timing and primitive packages. Allows breakpoints to be set in the VITAL
behavior process and permits single stepping through the VITAL procedures to debug
your model. Also, all of the VITAL data can be viewed in the Variables or Signals
windows.

-O0 | -O4

Lowers the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enable optimizations with -O4 (default).

-debugVA

Prints a confirmation if a VITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration.

ModelSim VITAL built-ins will be updated in step with new releases of the VITAL
packages.
ModelSim SE User’s Manual

UM-94 4 - VHDL simulation

Model
Util package

The util package, included in ModelSim versions 5.5 and later, serves as a container for
various VHDL utilities. The package is part of the modelsim_lib library which is located in
the modeltech tree and is mapped in the default modelsim.ini file.

To access the utilities in the package, you would add lines like the following to your VHDL
code:

library modelsim_lib;
use modelsim_lib.util.all;

get_resolution

get_resolution returns the current simulator resolution as a real number. For example, 1
femtosecond corresponds to 1e-15.

Syntax

resval := get_resolution;

Returns

Arguments

None

Related functions

to_real() (UM-96)

to_time() (UM-97)

Example

If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution;

the value returned to resval would be 1e-11.

Name Type Description

resval real The simulator resolution represented as a real
Sim SE User’s Manual

Util package UM-95
init_signal_driver()

The init_signal_driver() procedure drives the value of a VHDL signal or Verilog net onto
an existing VHDL signal or Verilog net. This allows you to drive signals or nets at any level
of the design hierarchy from within a VHDL architecture (e.g., a testbench).

See init_signal_driver (UM-525) in Chapter 16 - Signal Spy for complete details.

init_signal_spy()

The init_signal_spy() utility mirrors the value of a VHDL signal or Verilog register/net
onto an existing VHDL signal or Verilog register. This allows you to reference signals,
registers, or nets at any level of hierarchy from within a VHDL architecture (e.g., a
testbench).

See init_signal_spy (UM-528) in Chapter 16 - Signal Spy for complete details.

signal_force()

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net. This allows you to force signals, registers, or nets at any level of the
design hierarchy from within a VHDL architecture (e.g., a testbench). A signal_force works
the same as the force command (CR-176) with the exception that you cannot issue a
repeating force.

See signal_force (UM-530) in Chapter 16 - Signal Spy for complete details.

signal_release()

The signal_release() procedure releases any force that was applied to an existing VHDL
signal or Verilog register or net. This allows you to release signals, registers, or nets at any
level of the design hierarchy from within a VHDL architecture (e.g., a testbench). A
signal_release works the same as the noforce command (CR-204).

See signal_release (UM-532) in Chapter 16 - Signal Spy for complete details.
ModelSim SE User’s Manual

UM-96 4 - VHDL simulation

Model
to_real()

to_real() converts the physical type time value into a real value with respect to the current
simulator resolution. The precision of the converted value is determined by the simulator
resolution. For example, if you were converting 1900 fs to a real and the simulator
resolution was ps, then the real value would be 2.0 (i.e., 2 ps).

Syntax

realval := to_real(timeval);

Returns

Arguments

Related functions

get_resolution (UM-94)

to_time() (UM-97)

Example

If the simulator resolution is set to ps, and you enter the following function:

realval := to_real(12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to be
in units of nanoseconds (ns) instead, you would use the get_resolution (UM-94) function to
recalculate the value:

realval := 1e+9 * (to_real(12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the
function this way:

realval := 1e+15 * (to_real(12.99 ns)) * get_resolution();

Name Type Description

realval real The time value represented as a real with
respect to the simulator resolution

Name Type Description

timeval time The value of the physical type time
Sim SE User’s Manual

Util package UM-97
to_time()

to_time() converts a real value into a time value with respect to the current simulator
resolution. The precision of the converted value is determined by the simulator resolution.
For example, if you were converting 5.9 to a time and the simulator resolution was ps, then
the time value would be 6 ps.

Syntax

timeval := to_time(realval);

Returns

Arguments

Related functions

get_resolution (UM-94)

to_real() (UM-96)

Example

If the simulator resolution is set to ps, and you enter the following function:

timeval := to_time(72.49);

then the value returned to timeval would be 72 ps.

Name Type Description

timeval time The real value represented as a physical type
time with respect to the simulator resolution

Name Type Description

realval real The value of the type real
ModelSim SE User’s Manual

UM-98 4 - VHDL simulation

Model
Foreign language interface

Foreign language interface (FLI) routines are C programming language functions that
provide procedural access to information within Model Technology's HDL simulator,
vsim. A user-written application can use these functions to traverse the hierarchy of an
HDL design, get information about and set the values of VHDL objects in the design, get
information about a simulation, and control (to some extent) a simulation run.

ModelSim’s FLI interface is described in detail in the ModelSim FLI Reference. This
document is available from the Help menu within ModelSim or in the docs directory of a
ModelSim installation.
Sim SE User’s Manual

Modeling memory UM-99
Modeling memory

As a VHDL user, you might be tempted to model a memory using signals. Two common
simulator problems are the likely result:

• You may get a "memory allocation error" message, which typically means the simulator
ran out of memory and failed to allocate enough storage.

• Or, you may get very long load, elaboration, or run times.

These problems are usually explained by the fact that signals consume a substantial amount
of memory (many dozens of bytes per bit), all of which needs to be loaded or initialized
before your simulation starts.

Modeling memory with variables instead provides some excellent performance benefits:

• storage required to model the memory can be reduced by 1-2 orders of magnitude

• startup and run times are reduced

• associated memory allocation errors are eliminated

In the example below, we illustrate three alternative architectures for entity "memory".
Architecture "style_87_bad" uses a vhdl signal to store the ram data. Architecture
"style_87" uses variables in the "memory" process, and architecture "style_93" uses
variables in the architecture.

For large memories, architecture "style_87_bad" runs many times longer than the other
two, and uses much more memory. This style should be avoided.

Both architectures "style_87" and "style_93" work with equal efficiently. You’ll find some
additional flexibility with the VHDL 1993 style, however, because the ram storage can be
shared between multiple processes. For example, a second process is shown that initializes
the memory; you could add other processes to create a multi-ported memory.

To implement this model, you will need functions that convert vectors to integers. To use
it you will probably need to convert integers to vectors.

Example functions are provided below in package "conversions".

library ieee;
use ieee.std_logic_1164.all;
use work.conversions.all;

entity memory is
generic(add_bits : integer := 12;

data_bits : integer := 32);
port(add_in : in std_ulogic_vector(add_bits-1 downto 0);

data_in : in std_ulogic_vector(data_bits-1 downto 0);
data_out : out std_ulogic_vector(data_bits-1 downto 0);
cs, mwrite : in std_ulogic;
do_init : in std_ulogic);

subtype word is std_ulogic_vector(data_bits-1 downto 0);
constant nwords : integer := 2 ** add_bits;
type ram_type is array(0 to nwords-1) of word;

end;

architecture style_93 of memory is

shared variable ram : ram_type;

begin
memory:
ModelSim SE User’s Manual

UM-100 4 - VHDL simulation

Model
process (cs)
variable address : natural;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = '1') then

ram(address) := data_in;
end if;
data_out <= ram(address);

end if;
end process memory;

-- illustrates a second process using the shared variable
initialize:
process (do_init)

variable address : natural;
begin

if rising_edge(do_init) then
for address in 0 to nwords-1 loop

ram(address) := data_in;
end loop;

end if;
end process initialize;

end architecture style_93;

architecture style_87 of memory is
begin
memory:
process (cs)

variable ram : ram_type;

variable address : natural;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = '1') then

ram(address) := data_in;
end if;
data_out <= ram(address);

end if;
end process;

end style_87;

architecture bad_style_87 of memory is

signal ram : ram_type;

begin
memory:
process (cs)

variable address : natural := 0;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = '1') then

ram(address) <= data_in;
data_out <= data_in;

else
data_out <= ram(address);

end if;
end if;

end process;
end bad_style_87;
Sim SE User’s Manual

Modeling memory UM-101
--
--
library ieee;
use ieee.std_logic_1164.all;

package conversions is
function sulv_to_natural(x : std_ulogic_vector) return

natural;
function natural_to_sulv(n, bits : natural) return

std_ulogic_vector;
end conversions;

package body conversions is

function sulv_to_natural(x : std_ulogic_vector) return
natural is

variable n : natural := 0;
variable failure : boolean := false;

begin
assert (x'high - x'low + 1) <= 31

report "Range of sulv_to_natural argument exceeds
natural range"

severity error;
for i in x'range loop

n := n * 2;
case x(i) is

when '1' | 'H' => n := n + 1;
when '0' | 'L' => null;
when others => failure := true;

end case;
end loop;
assert not failure

report "sulv_to_natural cannot convert indefinite
std_ulogic_vector"

severity error;

if failure then
return 0;

else
return n;

end if;
end sulv_to_natural;

function natural_to_sulv(n, bits : natural) return
std_ulogic_vector is

variable x : std_ulogic_vector(bits-1 downto 0) :=
(others => '0');

variable tempn : natural := n;
begin

for i in x'reverse_range loop
if (tempn mod 2) = 1 then

x(i) := '1';
end if;
tempn := tempn / 2;

end loop;
return x;

end natural_to_sulv;

end conversions;
ModelSim SE User’s Manual

UM-102 4 - VHDL simulation

Model
Affecting performance by cancelling scheduled events

Performance will suffer if events are scheduled far into the future but then cancelled before
they take effect. This situation will act like a memory leak and slow down simulation.

In VHDL this situation can occur several ways. The most common are waits with time-out
clauses and projected waveforms in signal assignments.

The following code shows a wait with a time-out:

signals synch : bit := '0';
...
p: process
begin

wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

At time 0, process p makes an event for time 10ms. When synch goes to 1 at 10 ns, the event
at 10 ms is marked as cancelled but not deleted, and a new event is scheduled at 10ms +
10ns. The cancelled events are not reclaimed until time 10ms is reached and the cancelled
event is processed. As a result there will be 500000 (10ms/20ns) cancelled but undeleted
events. Once 10ms is reached, memory will no longer increase because the simulator will
be reclaiming events as fast as they are added.

For projected waveforms the following would behave the same way:

signals synch : bit := '0';
...
p: process(synch)
begin
 output <= '0', '1' after 10ms;
end process;

synch <= not synch after 10 ns;
Sim SE User’s Manual

Converting an integer into a bit_vector UM-103
Converting an integer into a bit_vector

The following code demonstrates how to convert an integer into a bit_vector.

library ieee;
use ieee.numeric_bit.ALL;

entity test is
end test;

architecture only of test is
signal s1 : bit_vector(7 downto 0);
signal int : integer := 45;

begin
p:process
begin

wait for 10 ns;
s1 <= bit_vector(to_signed(int,8));

end process p;
end only;
ModelSim SE User’s Manual

UM-104 4 - VHDL simulation

Model
Sim SE User’s Manual

 UM-105
5 - Verilog simulation

Chapter contents
Introduction UM-107

Compilation UM-108
Incremental compilation UM-109
Library usage UM-111
Verilog-XL compatible compiler arguments UM-113
Verilog-XL `uselib compiler directive UM-114
Verilog configurations UM-115

Simulation UM-116
Invoking the simulator UM-116
Simulator resolution limit UM-117
Event ordering in Verilog designs UM-119
Negative timing check limits UM-123
Verilog-XL compatible simulator arguments UM-126

Compiling for faster performance UM-127
Compiling with -fast UM-127
Compiling with +opt UM-128
Compiling mixed designs with -fast UM-129
Compiling gate-level designs with -fast UM-129
Referencing the optimized design. UM-130
Enabling design object visibility with the +acc option . . . UM-133
Using pre-compiled libraries UM-134
Event order and optimized designs UM-135
Timing checks in optimized designs UM-135

Simulating with an elaboration file UM-136
Overview UM-136
Elaboration file flow UM-136
Creating an elaboration file UM-137
Loading an elaboration file UM-137
Modifying stimulus UM-138
Using with the PLI or FLI. UM-138

Checkpointing and restoring simulations UM-140
Checkpoint file contents UM-140
Controlling checkpoint file compression UM-141
The difference between checkpoint/restore and restart . . . UM-141
Using macros with restart and checkpoint/restore UM-141

Cell libraries UM-142
SDF timing annotation UM-142
Delay modes UM-142

System tasks UM-144
IEEE Std 1364 system tasks UM-144
Verilog-XL compatible system tasks UM-147
ModelSim Verilog system tasks UM-149
ModelSim SE User’s Manual

UM-106 5 - Verilog simulation

Model
Compiler directives UM-150
IEEE Std 1364 compiler directives UM-150
Verilog-XL compatible compiler directives UM-151
ModelSim compiler directives UM-152
Sim SE User’s Manual

Introduction UM-107
Introduction

This chapter describes how to compile and simulate Verilog designs with ModelSim
Verilog. ModelSim Verilog implements the Verilog language as defined by the IEEE
Standards 1364-1995 and 1364-2001. We recommend that you obtain these specifications
for reference.

In addition to the functionality described in the IEEE Std 1364, ModelSim Verilog includes
the following features:

• Standard Delay Format (SDF) annotator compatible with many ASIC and FPGA
vendors’ Verilog libraries

• Value Change Dump (VCD) file extensions for ASIC vendor test tools

• Dynamic loading of PLI/VPI applications (see Chapter 6 - Verilog PLI / VPI)

• Compilation into retargetable, executable code

• Incremental design compilation

• Extensive support for mixing VHDL and Verilog in the same design (including SDF
annotation)

• Graphic Interface that is common with ModelSim VHDL

• Extensions to provide compatibility with Verilog-XL

The following functionality is partially implemented in ModelSim Verilog:

• Verilog Procedural Interface (VPI) (see /<install_dir>/modeltech/docs/technotes/
Verilog_VPI.note for details)

• System Verilog 3.1, Accellera’s Extensions to Verilog® (see /<install_dir>/modeltech/
docs/technotes/sysvlog.note for implementation details)

Many of the examples in this chapter are shown from the command line. For compiling and
simulating within a project or ModelSim’s GUI see:

• Getting started with projects (UM-34)

• Compiling with the graphic interface (UM-368)

• Simulating with the graphic interface (UM-377)
ModelSim SE User’s Manual

UM-108 5 - Verilog simulation

Model
Compilation

Before you can simulate a Verilog design, you must first create a library and compile the
Verilog source code into that library. This section provides detailed information on
compiling Verilog designs. For information on creating a design library, see Chapter 3 -
Design libraries.

The ModelSim Verilog compiler, vlog, compiles Verilog source code into retargetable,
executable code, meaning that the library format is compatible across all supported
platforms and that you can simulate your design on any platform without having to
recompile your design specifically for that platform. As you compile your design, the
resulting object code for modules and UDPs is generated into a library. By default, the
compiler places results into the work library. You can specify an alternate library with the
-work argument. The following is a simple example of how to create a work library,
compile a design, and simulate it:

Contents of top.v:

module top;
initial $display("Hello world");

endmodule

Create the work library:

% vlib work

Compile the design:

% vlog top.v
-- Compiling module top

Top level modules:
top

View the contents of the work library (optional):

% vdir
MODULE top

Simulate the design:

% vsim -c top
Loading work.top
VSIM 1> run -all
Hello world
VSIM 2> quit

In this example, the simulator was run without the graphic interface by specifying the -c
argument. After the design was loaded, the simulator command run -all was entered,
meaning to simulate until there are no more simulator events. Finally, the quit command
was entered to exit the simulator. By default, a log of the simulation is written to the
transcript file in the current directory.
Sim SE User’s Manual

Compilation UM-109
Incremental compilation

By default, ModelSim Verilog supports incremental compilation of designs, thus saving
compilation time when you modify your design. Unlike other Verilog simulators, there is
no requirement that you compile the entire design in one invocation of the compiler
(although, you may wish to do so to optimize performance; see "Compiling for faster
performance" (UM-127)).

You are not required to compile your design in any particular order because all module and
UDP instantiations and external hierarchical references are resolved when the design is
loaded by the simulator. Incremental compilation is made possible by deferring these
bindings, and as a result some errors cannot be detected during compilation. Commonly,
these errors include: modules that were referenced but not compiled, incorrect port
connections, and incorrect hierarchical references.

The following example shows how a hierarchical design can be compiled in top-down
order:

Contents of top.v:

module top;
or2 or2_i (n1, a, b);
and2 and2_i (n2, n1, c);

endmodule

Contents of and2.v:

module and2(y, a, b);
output y;
input a, b;
and(y, a, b);

endmodule

Contents of or2.v:

module or2(y, a, b);
output y;
input a, b;
or(y, a, b);

endmodule

Compile the design in top down order (assumes work library already exists):

% vlog top.v
-- Compiling module top

Top level modules:
top

% vlog and2.v
-- Compiling module and2

Top level modules:
and2

% vlog or2.v
-- Compiling module or2

Top level modules:
or2
ModelSim SE User’s Manual

UM-110 5 - Verilog simulation

Model
Note that the compiler lists each module as a top level module, although, ultimately, only
top is a top-level module. If a module is not referenced by another module compiled in the
same invocation of the compiler, then it is listed as a top level module. This is just an
informative message and can be ignored during incremental compilation. The message is
more useful when you compile an entire design in one invocation of the compiler and need
to know the top-level module names for the simulator. For example,

% vlog top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

The most efficient method of incremental compilation is to manually compile only the
modules that have changed. This is not always convenient, especially if your source files
have compiler directive interdependencies (such as macros). In this case, you may prefer to
always compile your entire design in one invocation of the compiler. If you specify the
-incr argument, the compiler will automatically determine which modules have changed
and generate code only for those modules. This is not as efficient as manual incremental
compilation because the compiler must scan all of the source code to determine which
modules must be compiled.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

Now, suppose that you modify the functionality of the or2 module:

% vlog -incr top.v and2.v or2.v
-- Skipping module top
-- Skipping module and2
-- Compiling module or2

Top level modules:
top

The compiler informs you that it skipped the modules top and and2, and compiled or2.

Automatic incremental compilation is intelligent about when to compile a module. For
example, changing a comment in your source code does not result in a recompile; however,
changing the compiler command line arguments results in a recompile of all modules.

Note: Changes to your source code that do not change functionality but that do affect
source code line numbers (such as adding a comment line) will cause all affected
modules to be recompiled. This happens because debug information must be kept current
so that ModelSim can trace back to the correct areas of the source code.
Sim SE User’s Manual

Compilation UM-111
Library usage

All modules and UDPs in a Verilog design must be compiled into one or more libraries.
One library is usually sufficient for a simple design, but you may want to organize your
modules into various libraries for a complex design. If your design uses different modules
having the same name, then you are required to put those modules in different libraries
because design unit names must be unique within a library.

The following is an example of how you may organize your ASIC cells into one library and
the rest of your design into another:

% vlib work
% vlib asiclib
% vlog -work asiclib and2.v or2.v
-- Compiling module and2
-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v
-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to
place the results in the asiclib library rather than the default work library.

Library search rules

Since instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are
loaded from the library named work unless you prefix the modules with the <library>.
option. All other Verilog instantiations are resolved in the following order:

• Search libraries specified with -Lf arguments in the order they appear on the command
line.

• Search the library specified in the "Verilog-XL `uselib compiler directive" (UM-114).

• Search libraries specified with -L arguments in the order they appear on the command
line.

• Search the work library.

• Search the library explicitly named in the special escaped identifier instance name.
ModelSim SE User’s Manual

UM-112 5 - Verilog simulation

Model
Handling sub-modules with common names

The work library is not necessarily a library named work—rather, the work library refers
to the library containing the module that instantiates the module or UDP that is currently
being searched for. This definition is useful if you have hierarchical modules organized into
separate libraries, and you have commonly-named sub-modules in the libraries that have
different definitions. This may happen if you are using vendor-supplied libraries. For
example, say you have the following:

cellX in lib1 is defined differently than cellX in lib2. In this situation, you would specify -L
work first in the search library arguments: -L work -L lib1 -L lib2. If you just specify -L
libA -L libB, instantiations of cellX from modB resolve to the modA version of cellX.

top

modA modB

modA modB

cellX cellX

lib1: lib2:
Sim SE User’s Manual

Compilation UM-113
Verilog-XL compatible compiler arguments

The compiler arguments listed below are equivalent to Verilog-XL arguments and may
ease the porting of a design to ModelSim. See the vlog command (CR-345) for a description
of each argument.

+define+<macro_name>[=<macro_text>]
+delay_mode_distributed
+delay_mode_path
+delay_mode_unit
+delay_mode_zero
-f <filename>
+incdir+<directory>
+mindelays
+maxdelays
+nowarn<mnemonic>
+typdelays
-u

Arguments supporting source libraries

The compiler arguments listed below support source libraries in the same manner as
Verilog-XL. See the vlog command (CR-345) for a description of each argument.

Note that these source libraries are very different from the libraries that the ModelSim
compiler uses to store compilation results. You may find it convenient to use these
arguments if you are porting a design to ModelSim or if you are familiar with these
arguments and prefer to use them.

Source libraries are searched after the source files on the command line are compiled. If
there are any unresolved references to modules or UDPs, then the compiler searches the
source libraries to satisfy them. The modules compiled from source libraries may in turn
have additional unresolved references that cause the source libraries to be searched again.
This process is repeated until all references are resolved or until no new unresolved
references are found. Source libraries are searched in the order they appear on the command
line.

-v <filename>
-y <directory>
+libext+<suffix>
+librescan
+nolibcell
-R [<simargs>]
ModelSim SE User’s Manual

UM-114 5 - Verilog simulation

Model
Verilog-XL `uselib compiler directive

The `uselib compiler directive is an alternative source library management scheme to the
-v, -y, and +libext compiler arguments. It has the advantage that a design may reference
different modules having the same name. You compile designs that contain `uselib
directive statements using the -compile_uselibs argument (described below) to vlog (CR-

345).

The syntax for the `uselib directive is:

`uselib <library_reference>...

where <library_reference> is:

dir=<library_directory> | file=<library_file> | libext=<file_extension> |
lib=<library_name>

The library references are equivalent to command line arguments as follows:

dir=<library_directory> -y <library_directory>
file=<library_file> -v <library_file>
libext=<file_extension> +libext+<file_extension>

For example, the following directive

`uselib dir=/h/vendorA libext=.v

is equivalent to the following command line arguments:

-y /h/vendorA +libext+.v

Since the `uselib directives are embedded in the Verilog source code, there is more
flexibility in defining the source libraries for the instantiations in the design. The
appearance of a `uselib directive in the source code explicitly defines how instantiations
that follow it are resolved, completely overriding any previous `uselib directives.

-compile_uselibs argument

Use the -compile_uselibs argument to vlog (CR-345) to reference `uselib directives. The
argument finds the source files referenced in the directive, compiles them into
automatically created object libraries, and updates the modelsim.ini file with the logical
mappings to the libraries.

When using -compile_uselibs, ModelSim determines into which directory to compile the
object libraries by choosing, in order, from the following three values:

• The directory name specified by the -compile_uselibs argument. For example,
-compile_uselibs=./mydir

• The directory specified by the MTI_USELIB_DIR environment variable (see
"Environment variables" (UM-613))

• A directory named mti_uselibs that is created in the current working directory

Note: In ModelSim versions prior to 5.5, the library files referenced by the `uselib
directive were not automatically compiled by ModelSim Verilog. To maintain
backwards compatibility, this is still the default behavior when -compile_uselibs is not
used. See www.model.com/support/documentation/BOOK/pre55_uselib.pdf for a
description of the pre-5.5 implementation.
Sim SE User’s Manual

http://www.model.com/support/documentation/BOOK/pre55_uselib.pdf

Compilation UM-115
The following code fragment and compiler invocation show how two different modules
that have the same name can be instantiated within the same design:

module top;
`uselib dir=/h/vendorA libext=.v
NAND2 u1(n1, n2, n3);
`uselib dir=/h/vendorB libext=.v
NAND2 u2(n4, n5, n6);

endmodule

This allows the NAND2 module to have different definitions in the vendorA and vendorB
libraries.

`uselib is persistent

As mentioned above, the appearance of a `uselib directive in the source code explicitly
defines how instantiations that follow it are resolved. This may result in unexpected
consequences. For example, consider the following compile command:

vlog -compile_uselibs dut.v srtr.v

Assume that dut.v contains a `uselib directive. Since srtr.v is compiled after dut.v, the
`uselib directive is still in effect. When srtr is loaded it is using the `uselib directive from
dut.v to decide where to locate modules. If this is not what you intend, then you need to put
an empty `uselib at the end of dut.v to "close" the previous `uselib statement.

Verilog configurations

The Verilog 2001 spec added configurations. Configurations specify how a design is
"assembled" during the elaboration phase of simulation. Configurations actually consist of
two pieces: the library mapping and the configuration itself. The library mapping is used at
compile time to determine into which libraries the source files are to be compiled. Here is
an example of a simple library map file:

library work ../top.v;
library rtlLib lrm_ex_top.v;
library gateLib lrm_ex_adder.vg;
library aLib lrm_ex_adder.v;

Here is an example of a library map file that uses -incdir:

library lib1 src_dir/*.v -incdir ../include_dir2, ../, my_incdir;

The name of the library map file is arbitrary. You specify the library map file using the
-libmap argument to the vlog command (CR-345). Alternatively, you can specify the file
name as the first item on the vlog command line, and the compiler will read it as a library
map file.

The library map file must be compiled along with the Verilog source files. Multiple map
files are allowed but each must be preceded by the -libmap argument.

The library map file and the configuration can exist in the same or different files. If they
are separate, only the map file needs the -libmap argument. The configuration is treated as
any other Verilog source file.
ModelSim SE User’s Manual

UM-116 5 - Verilog simulation

Model
Simulation

The ModelSim simulator can load and simulate both Verilog and VHDL designs, providing
a uniform graphic interface and simulation control commands for debugging and analyzing
your designs. The graphic interface and simulator commands are described elsewhere in
this manual, while this section focuses specifically on Verilog simulation.

Invoking the simulator

A Verilog design is ready for simulation after it has been compiled into one or more
libraries. The simulator may then be invoked with the names of the top-level modules
(many designs contain only one top level module). For example, if your top level modules
are "testbench" and "globals", then invoke the simulator as follows:

vsim testbench globals

After the simulator loads the top-level modules, it iteratively loads the instantiated modules
and UDPs in the design hierarchy, linking the design together by connecting the ports and
resolving hierarchical references. By default all modules and UDPs are loaded from the
library named work. Modules and UDPs from other libraries can be specified using the -L
or -Lf arguments to vsim (see "Library usage" (UM-111) for details).

On successful loading of the design, the simulation time is set to zero, and you must enter
a run command to begin simulation. Commonly, you enter run -all to run until there are
no more simulation events or until $finish is executed in the Verilog code. You can also
run for specific time periods (e.g., run 100 ns). Enter the quit command to exit the
simulator.
Sim SE User’s Manual

Simulation UM-117
Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. The
resolution limit defaults to the smallest time precision found among all of the `timescale
compiler directives in the design. Here is an example of a `timescale directive:

`timescale 1 ns / 100 ps

The first number is the time units and the second number is the time precision. The directive
above causes time values to be read as ns and to be rounded to the nearest 100 ps.

Modules without timescale directives

You may encounter unexpected behavior if your design contains some modules with
timescale directives and others without. The time units for modules without a timescale
directive default to the simulator resolution. For example, say you have the two modules
shown in the table below:

If you invoke vsim as vsim mod2 mod1 then Module 1 sets the simulator resolution to 10 ps.
Module 2 has no timescale directive, so the time units default to the simulator resolution,
in this case 10 ps. If you watched /mod1/set and /mod2/set in the Wave window, you’d see
that in Module 1 it transitions every 1.55 ns as expected (because of the 1 ns time unit in
the timescale directive). However, in Module 2, set transitions every 20 ps. That’s because
the delay of 1.55 in Module 2 is read as 15.5 ps and is rounded up to 20 ps.

In such cases ModelSim will issue the following warning message during elaboration:

** Warning: (vsim-3010) [TSCALE] - Module 'mod1' has a `timescale directive
in effect, but previous modules do not.

Module 1 Module 2

`timescale 1 ns / 10 ps

module mod1 (set);

output set;
reg set;
parameter d = 1.55;

initial
begin

set = 1'bz;
#d set = 1'b0;
#d set = 1'b1;

end

endmodule

module mod2 (set);

output set;
reg set;
parameter d = 1.55;

initial
begin

set = 1'bz;
#d set = 1'b0;
#d set = 1'b1;

end

endmodule
ModelSim SE User’s Manual

UM-118 5 - Verilog simulation

Model
If you invoke vsim as vsim mod1 mod2, the simulation results would be the same but
ModelSim would produce a different warning message:

** Warning: (vsim-3009) [TSCALE] - Module 'mod2' does not have a `timescale
directive in effect, but previous modules do.

These warnings should ALWAYS be investigated.

If the design contains no `timescale directives, then the resolution limit and time units
default to the value specified by the Resolution (UM-624) variable in the modelsim.ini file.
(The variable is set to 1 ns by default.)

Multiple timescale directives

As alluded to above, your design can have multiple timescale directives. The timescale
directive takes effect where it appears in a source file and applies to all source files which
follow in the same vlog (CR-345) command. Separately compiled modules can also have
different timescales. The simulator determines the smallest timescale of all the modules in
a design and uses that as the simulator resolution.

`timescale, -t, and rounding

The optional vsim argument -t sets the simulator resolution limit for the overall simulation.
If the resolution set by -t is larger than the precision set in a module, the time values in that
module are rounded up. If the resolution set by -t is smaller than the precision of the
module, the precision of that module remains whatever is specified by the `timescale
directive. Consider the following code:

`timescale 1 ns / 100 ps

module foo;

initial
#12.536 $display

The list below shows three possibilities for -t and how the delays in the module would be
handled in each case:

• -t not set

The delay will be rounded to 12.5 as directed by the module’s ‘timescale directive.

• -t is set to 1 fs

The delay will be rounded to 12.5. Again, the module’s precision is determined by the
‘timescale directive. ModelSim does not override the module’s precision.

• -t is set to 1 ns

The delay will be rounded to 12. The module’s precision is determined by the -t setting.
ModelSim has no choice but to round the module’s time values because the entire
simulation is operating at 1 ns.

Choosing the resolution

You should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it
will limit the maximum simulation time limit, and it will degrade performance in some
cases.
Sim SE User’s Manual

Simulation UM-119
Event ordering in Verilog designs

Event-based simulators such as ModelSim may process multiple events at a given
simulation time. The Verilog language is defined such that you cannot explicitly control the
order in which simultaneous events are processed. Unfortunately, some designs rely on a
particular event order, and these designs may behave differently than you expect.

Event queues

Section 5 of the IEEE Std 1364-1995 LRM defines several event queues that determine the
order in which events are evaluated. At the current simulation time, the simulator has the
following pending events:

• active events

• inactive events

• non-blocking assignment update events

• monitor events

• future events

- inactive events

- non-blocking assignment update events

The LRM dictates that events are processed as follows – 1) all active events are processed;
2) the inactive events are moved to the active event queue and then processed; 3) the
non-blocking events are moved to the active event queue and then processed; 4) the monitor
events are moved to the active queue and then processed; 5) simulation advances to the next
time where there is an inactive event or a non-blocking assignment update event.

Within the active event queue, the events can be processed in any order, and new active
events can be added to the queue in any order. In other words, you cannot control event
order within the active queue. The example below illustrates potential ramifications of this
situation.

Say you have these four statements:

1 always@(q) p = q;

2 always @(q) p2 = not q;

3 always @(p or p2) clk = p and p2;

4 always @(posedge clk)

and current values as follows: q = 0, p = 0, p2=1
ModelSim SE User’s Manual

UM-120 5 - Verilog simulation

Model
The tables below show two of the many valid evaluations of these statements. Evaluation
events are denoted by a number where the number is the statement to be evaluated. Update
events are denoted <name>(old->new) where <name> indicates the reg being updated and
new is the updated value.

Again, both evaluations are valid. However, in Evaluation 1, clk has a glitch on it; in
Evaluation 2, clk doesn’t. This indicates that the design has a zero-delay race condition on
clk.

Table 1: Evaluation 1

Event being processed Active event queue

q(0 → 1)

q(0 → 1) 1, 2

1 p(0 → 1), 2

p(0 → 1) 3, 2

3 clk(0 → 1), 2

clk(0 → 1) 4, 2

4 2

2 p2(1 → 0)

p2(1 → 0) 3

3 clk(1 → 0)

clk(1 → 0) <empty>

Table 2: Evaluation 2

Event being processed Active event queue

q(0 → 1)

q(0 → 1) 1, 2

1 p(0 → 1), 2

2 p2(1 → 0), p(0 → 1)

p(0 → 1) 3, p2(1 → 0)

p2(1 → 0) 3

3 <empty> (clk doesn’t change)
Sim SE User’s Manual

Simulation UM-121
’Controlling’ event queues with blocking/non-blocking assignments

The only control you have over event order is to assign an event to a particular queue. You
do this via blocking or non-blocking assignments.

Blocking assignments

Blocking assignments place an event in the active, inactive, or future queues depending on
what type of delay they have:

• a blocking assignment without a delay goes in the active queue

• a blocking assignment with an explicit delay of 0 goes in the inactive queue

• a blocking assignment with a non-zero delay goes in the future queue

Non-blocking assignments

A non-blocking assignment goes into either the non-blocking assignment update event
queue or the future non-blocking assignment update event queue. (Non-blocking
assignments with no delays and those with explicit zero delays are treated the same.)

Non-blocking assignments should be used only for outputs of flip-flops. This insures that
all outputs of flip-flops do not change until after all flip-flops have been evaluated.
Attempting to use non-blocking assignments in combinational logic paths to remove race
conditions may only cause more problems. (In the preceding example, changing all
statements to non-blocking assignments would not remove the race condition.) This
includes using non-blocking assignments in the generation of gated clocks.

The following is an example of how to properly use non-blocking assignments.

gen1: always @(master)
clk1 = master;

gen2: always @(clk1)
clk2 = clk1;

f1 : always @(posedge clk1)
begin

q1 <= d1;
end

f2: always @(posedge clk2)
begin

q2 <= q1;
end

If written this way, a value on d1 always takes two clock cycles to get from d1 to q2.
If you change clk1 = master and clk2 = clk1 to non-blocking assignments or q2 <= q1 and
q1 <= d1 to blocking assignments, then d1 may get to q2 is less than two clock cycles.

Debugging event order issues

Since many models have been developed on Verilog-XL, ModelSim tries to duplicate
Verilog-XL event ordering to ease the porting of those models to ModelSim. However,
ModelSim does not match Verilog-XL event ordering in all cases, and if a model ported to
ModelSim does not behave as expected, then you should suspect that there are event order
dependencies.
ModelSim SE User’s Manual

UM-122 5 - Verilog simulation

Model
ModelSim helps you track down event order dependencies with the following compiler
arguments: -compat, -hazards, and -keep_delta.

See the vlog command (CR-345) for descriptions of -compat and -keep_delta.

Hazard detection

The -hazard argument to vsim (CR-357) detects event order hazards involving simultaneous
reading and writing of the same register in concurrently executing processes. vsim detects
the following kinds of hazards:

• WRITE/WRITE:
Two processes writing to the same variable at the same time.

• READ/WRITE:
One process reading a variable at the same time it is being written to by another process.
ModelSim calls this a READ/WRITE hazard if it executed the read first.

• WRITE/READ:
Same as a READ/WRITE hazard except that ModelSim executed the write first.

vsim issues an error message when it detects a hazard. The message pinpoints the variable
and the two processes involved. You can have the simulator break on the statement where
the hazard is detected by setting the break on assertion level to Error.

To enable hazard detection you must invoke vlog (CR-345) with the -hazards argument
when you compile your source code and you must also invoke vsim with the -hazards
argument when you simulate.

Limitations of hazard detection

• Reads and writes involving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selects is too
high.

• A WRITE/WRITE hazard is flagged even if the same value is written by both processes.

• A WRITE/READ or READ/WRITE hazard is flagged even if the write does not modify
the variable's value.

• Glitches on nets caused by non-guaranteed event ordering are not detected.

Important: Enabling -hazards implicitly enables the -compat argument. As a result,
using this argument may affect your simulation results.
Sim SE User’s Manual

Simulation UM-123
Negative timing check limits

Verilog supports negative limit values in the $setuphold and $recrem system tasks. These
tasks have optional delayed versions of input signals to insure proper evaluation of models
with negative timing check limits. Delay values for these delayed nets are determined by
the simulator so that valid data is available for evaluation before a clocking signal.

Example

$setuphold(posedge clk, negedge d, 5, -3, Notifier,,, clk_dly, d_dly);

ModelSim calculates the delay for signal d_dly as 4 time units instead of 3. It does this to
prevent d_dly and clk_dly from occurring simultaneously when a violation isn’t reported.

ModelSim accepts negative limit checks by default, unlike current versions of Verilog-XL.
To match Verilog-XL default behavior (i.e., zeroing all negative timing check limits), use
the +no_neg_tcheck argument to vsim (CR-357).

Negative timing constraint algorithm

The algorithm ModelSim uses to calculate delays for delayed nets isn’t described in IEEE
Std 1364. Rather, ModelSim matches Verilog-XL behavior. The algorithm attempts to find
a set of delays so the data net is valid when the clock net transitions and the timing checks
are satisfied. The algorithm is iterative because a set of delays can be selected that satisfies
all timing checks for a pair of inputs but then causes mis-ordering of another pair (where
both pairs of inputs share a common input). When a set of delays that satisfies all timing
checks is found, the delays are said to converge.

When none of the delay sets cause convergence, the algorithm pessimistically changes the
timing check limits to force convergence. Basically the algorithm zeroes the smallest
negative $setup/$recovery limit. If a negative $setup/$recovery doesn't exist, then the
algorithm zeros the smallest negative $hold/$removal limit. After zeroing a negative limit,
the delay calculation procedure is repeated. If the delays don’t converge, the algorithm
zeros another negative limit, repeating the process until convergence is found.

3

clk

d violation 5
region

0

ModelSim SE User’s Manual

UM-124 5 - Verilog simulation

Model
A simple example will help clarify the algorithm. Assume you have the following timing
checks:

$setuphold(posedge clk, posedge d, 3, -2 , NOTIFIER,,, clk_dly, d_dly);
$setuphold(posedge clk, negedge d, 6, -5 , NOTIFIER,,, clk_dly, d_dly);
$setuphold(posedge clk, posedge t, 20, -12 , NOTIFIER,,, clk_dly, t_dly);
$setuphold(posedge clk, negedge t, 18, -11 , NOTIFIER,,, clk_dly, t_dly);

The violation regions for t and d in this example are:

Note that the delays between clk/clk_dly, t/t_dly, and d/d_dly are not edge sensitive, and
they must be the same for both rising and falling transitions of clk, t, and d. A d => d_dly
delay of 5 will satisfy the negedge case (transitions of d from 5 to 0 before clk won't be
latched), but valid transitions of posedge d, in the region of 5 to 3 before clk, won't latch
correctly. Therefore, to find convergence, the algorithm starts zeroing negative $hold
limits (-12, then -11, and then -5). The check limits on t are zeroed first because of their
magnitude.

ModelSim will display messages when limits are zeroed if you use the +ntc_warn
argument. Even if you don’t set +ntc_warn, ModelSim displays a summary of any zeroed
limits.

Extending check limits without zeroing

If zeroing limits is too pessimistic for your design, you can use the vsim (CR-357) arguments
-extend_tcheck_data_limit and -extend_tcheck_ref_limit instead. These arguments
cause a one-time extension of qualifying data or reference limits in an attempt to provide a
solution prior to any limit zeroing. A limit qualifies if it bounds a violation region which
does not overlap a related violation region.

An example will help illustrate. Assume you have the following timing checks:

$setuphold(posedge clk, posedge d, 45, 70, notifier,,,dclk,dd);
$setuphold(posedge clk, negedge d, 216, -68, notifier,,,dclk,dd);

The violation regions for d in this example are:

6 5

3 2

clk

t violation
region

d violation
regions

20 12

18 11

0

216 -68

45 70

clk

d violation
regions

0

Sim SE User’s Manual

Simulation UM-125
The delay net delay analysis in this case does not provide a solution. The required negative
hold delay of 68 between d and dd could cause a non-violating posedge d transition to be
delayed on dd so that it could arrive after dclk for functional evaluation. By default the -68
hold limit is set pessimistically to 0 to insure the correct functional evaluation.

Alternatively, you could use -extend_tcheck_data_limit to overlap the regions. In this
example we must specify the percentage by which to "decrease" the negative hold limit in
order to overlap the positive setup limit. In other words, you must extend the 216, -68
region to 216, -44. You would calculate the percentage as follows:

1 Calculate the size of the negative edge violation region:

216 - 68 = 148

2 Calculate the gap between the negative hold limit and the positive setup limit and add
one timing unit to allow for overlap:

68 - 45 = 23 + 1 = 24

3 Divide the gap size by the violation region size:

24 / 148 = .16

Hence, you would set -extend_tcheck_data_limit to 16.

Using delayed inputs for timing checks

By default ModelSim performs timing checks on inputs specified in the timing check. If
you want timing checks performed on the delayed inputs, use the
+delayed_timing_checks argument to vsim.

Consider and example. This timing check:

$setuphold(posedge clk, posedge t, 20, -12, NOTIFIER,,, clk_dly, t_dly);

reports a timing violation when posedge t occurs in the violation region:

With the +delayed_timing_checks argument, the violation region between the delayed
inputs is:

Note: ModelSim will extend the limit only as far as is needed to derive a solution. So if
you used 100 in the previous example, it would still only extend the limit 16 percent.
Indeed, in some cases it may be easiest to select a large percentage number and not worry
about an exact calculation.

-12

clk

 20
t

0

1

clk_dly

 7
t_dly

0

ModelSim SE User’s Manual

UM-126 5 - Verilog simulation

Model
Although the check is performed on the delayed inputs, the timing check violation message
is adjusted to reference the undelayed inputs. Only the report time of the violation message
is noticeably different between the delayed and undelayed timing checks.

By far the greatest difference between these modes is evident when there are conditions on
a delayed check event because the condition is not implicitly delayed. Also, timing checks
specified without explicit delayed signals are delayed, if necessary, when they reference an
input that is delayed for a negative timing check limit.

Verilog-XL compatible simulator arguments

The simulator arguments listed below are equivalent to Verilog-XL arguments and may
ease the porting of a design to ModelSim. See the vsim command (CR-357) for a description
of each argument.

+alt_path_delays
-l <filename>
+maxdelays
+mindelays
+multisource_int_delays
+no_cancelled_e_msg
+no_neg_tchk
+no_notifier
+no_path_edge
+no_pulse_msg
+no_show_cancelled_e
+nosdfwarn
+nowarn<mnemonic>
+ntc_warn
+pulse_e/<percent>
+pulse_e_style_ondetect
+pulse_e_style_onevent
+pulse_int_e/<percent>
+pulse_int_r/<percent>
+pulse_r/<percent>
+sdf_nocheck_celltype
+sdf_verbose
+show_cancelled_e
+transport_int_delays
+transport_path_delays
+typdelays
Sim SE User’s Manual

Compiling for faster performance UM-127
Compiling for faster performance

This section describes how to use the -fast compiler argument to analyze and optimize an
entire design for improved simulation performance. This argument improves performance
for RTL, behavioral, and gate-level designs (See below for important information specific
to gate-level designs.).

ModelSim's default mode of compilation defers module instantiations, parameter
propagation, and hierarchical reference resolution until the time that a design is loaded by
the simulator (see "Incremental compilation" (UM-109)). This has the advantage that a
design does not have to be compiled all at once, allowing independent compilation of
modules without requiring knowledge of the context in which they are used.

Compiling modules independently provides flexibility to the user, but results in less
efficient simulation performance in many cases. For example, the compiler must generate
code for a module containing parameters as though the parameters are variables that will
receive their final values when the design is loaded by the simulator. If the compiler is
allowed to analyze the entire design at once, then it can determine the final values of
parameters and treat them as constants in expressions, thus generating more efficient code.
This is just one example of many other optimizations that require analysis of the entire
design.

Compiling with -fast

The -fast compiler argument allows the compiler to propagate parameters and perform
global optimizations. A requirement of using the -fast argument is that you must compile
the source code for your entire design in a single invocation of the compiler. The following
is an example invocation of the compiler and its resulting messages:

% vlog -fast cpu_rtl.v

-- Compiling module fp_unit

-- Compiling module mult_56

-- Compiling module testbench

-- Compiling module cpu

-- Compiling module i_unit

-- Compiling module mem_mux

-- Compiling module memory32

-- Compiling module op_unit

Top level modules:

testbench

Analyzing design...

Optimizing 8 modules of which 6 are inlined:

-- Inlining module i_unit(fast)

-- Inlining module mem_mux(fast)

-- Inlining module op_unit(fast)
ModelSim SE User’s Manual

UM-128 5 - Verilog simulation

Model
-- Inlining module memory32(fast)

-- Inlining module mult_56(fast)

-- Inlining module fp_unit(fast)

-- Optimizing module cpu(fast)

-- Optimizing module testbench(fast)

The "Analyzing design..." message indicates that the compiler is building the design
hierarchy, propagating parameters, and analyzing design object usage. This information is
then used in the final step of generating module code optimized for the specific design.
Note that some modules are inlined into their parent modules.

Once the design is compiled, it can be simulated in the usual way:

% vsim -c testbench

Loading work.testbench(fast)

Loading work.cpu(fast)

VSIM 1> run -all

VSIM 2> quit

As the simulator loads the design, it issues messages indicating that the optimized modules
are being loaded. There are no messages for loading the inlined modules because their code
is inlined into their parent modules.

Incremental compiles with -fast

You can compile a design incrementally by using the -incr argument in tandem with -fast.
By using -incr, only changed modules are recompiled. This may decrease compilation time
significantly for large designs. Note, however, that if you change any other compiler
options, all modules are recompiled regardless if you use -incr.

Compiling with +opt

The +opt compiler argument may be used instead of -fast when it is undesirable to compile
the entire design in a single invocation of the compiler (when using a Makefile, for
example, that only compiles files that have been modified). After compiling the design
without -fast, the design may then be optimized using +opt.

The optimizations performed by +opt are identical to those performed by -fast. The only
difference between the two arguments is that +opt does not need to compile the source
code; +opt loads the design units from the libraries and regenerates optimized code for
them. If the design units reside in multiple libraries, then it may be necessary to use the -L
and -Lf arguments to specify the search libraries.

Any options that are appropriate for -fast are appropriate for +opt. Specifically, you can
also use the +acc option to enable PLI access.

See the vlog command (CR-345) for syntax.
Sim SE User’s Manual

Compiling for faster performance UM-129
Compiling mixed designs with -fast

A Verilog design compiled with -fast or optimized with +opt allows instantiation of VHDL
components underneath the Verilog. The VHDL design units must be compiled into a
library before optimizing the Verilog design that references them. The Verilog compiler
issues a warning message to emphasize that the VHDL instantiations are not optimized. For
best performance with -fast and +opt, instantiate Verilog modules when possible.

A Verilog module compiled with -fast can be instantiated from VHDL as long as the
VHDL does not need to modify the parameters of the module.

Compiling gate-level designs with -fast

Gate-level designs often have large netlists that are slow to compile with -fast. In most
cases we recommend the following flow for optimizing gate-level designs:

• Compile the cell library using -fast and the -forcecode argument. The -forcecode
argument ensures that code is generated for inlined modules.

• Compile the device under test and testbench without -fast.

One case where you wouldn’t follow this flow is when the testbench has hierarchical
references into the cell library. Optimizing the library alone would result in unresolved
references. In such a case, you’ll have to compile the library, design, and testbench with
-fast in one invocation of the compiler. The hierarchical reference cells are then not
optimized.

Note too that as of ModelSim version 5.5b, several new switches to vlog can be used to
further increase optimizations on gate-level designs. The +nocheck arguments are
described in the Command Reference under the vlog command (CR-345).

You can use the write cell_report command (CR-388) and the -debugCellOpt argument to
the vlog command (CR-345) to obtain information about which cells have and have not been
optimized. write cell_report produces a text file that lists all modules. Modules with
"(cell)" following their names are optimized cells. For example,

Module: top
Architecture: fast

Module: bottom (cell)
Architecture: fast

In this case, both top and bottom were compiled with -fast, but top was not optimized and
bottom was.

The -debugCellOpt argument is used with -fast when compiling the cell library. Using this
argument results in Main window transcript output that identifies why certain cells were
not optimized.

Note: ModelSim versions 5.6 and later recognize a module as a gate if the module
contains a non-empty specify block. Earlier versions identified gate cells using the
`celldefine directive.
ModelSim SE User’s Manual

UM-130 5 - Verilog simulation

Model
Referencing the optimized design

The compiler automatically assigns a secondary name to distinguish the design-specific
optimized code from the unoptimized code that may coexist in the same library. The default
secondary name for optimized code is "fast", and the default secondary name for
unoptimized code is "verilog". You may specify an alternate name (other than "fast") for
optimized code using the -fast=<name> option. For example, to assign the secondary name
"opt1" to your optimized code, you would enter the following:

% vlog -fast=opt1 cpu_rtl.v

If you have multiple designs that use common modules compiled into the same library, then
you need to assign a different secondary name for each design so that the optimized code
for a module used in one design context is not overwritten with the optimized code for the
same module used in another context. This is true even if the designs are small variations
of each other, such as different testbenches. For example, suppose you have two
testbenches that instantiate and test the same design. You might assign different secondary
names as follows:

% vlog -fast=t1 testbench1.v design.v

-- Compiling module testbench1

-- Compiling module design

Top level modules:

testbench1

Analyzing design...

Optimizing 2 modules of which 0 are inlined:

-- Optimizing module design(t1)

-- Optimizing module testbench1(t1)

% vlog -fast=t2 testbed2.v design.v

-- Compiling module testbench2

-- Compiling module design

Top level modules:

testbench2

Analyzing design...

Optimizing 2 modules of which 0 are inlined:

-- Optimizing module design(t2)

-- Optimizing module testbench2(t2)

All of the modules within design.v compiled for testbench1 are identified by t1 within the
library, whereas for testbench2 they are identified by t2. When the simulator loads
testbench1, the instantiations from testbench1 reference the t1 versions of the code.
Sim SE User’s Manual

Compiling for faster performance UM-131
Likewise, the instantiations from testbench2 reference the t2 versions. Therefore, you only
need to invoke the simulator on the desired top-level module and the correct versions of
code for the lower level instances are automatically loaded.

The only time that you need to specify a secondary name to the simulator is when you have
multiple secondary names associated with a top-level module. If you omit the secondary
name, then, by default, the simulator loads the most recently generated code (optimized or
unoptimized) for the top-level module. You may explicitly specify a secondary name to
load specific optimized code (specify "verilog" to load the unoptimized code). For
example, suppose you have a top-level testbench that works in conjunction with each of
several other top-level modules that only contain defparams that configure the design. In
this case, you need to compile the entire design for each combination, using a different
secondary name for each. For example,

% vlog -fast=c1 testbench.v design.v config1.v

-- Compiling module testbench

-- Compiling module design

-- Compiling module config1

Top level modules:

testbench

config1

Analyzing design...

Optimizing 3 modules of which 0 are inlined:

-- Optimizing module design(c1)

-- Optimizing module testbench(c1)

-- Optimizing module config1(c1)

% vlog -fast=c2 testbench.v design.v config2.v

-- Compiling module testbench

-- Compiling module design

-- Compiling module config2

Top level modules:

testbench

config2

Analyzing design...

Optimizing 3 modules of which 0 are inlined:

-- Optimizing module design(c2)

-- Optimizing module testbench(c2)

-- Optimizing module config2(c2)
ModelSim SE User’s Manual

UM-132 5 - Verilog simulation

Model
Since the module "testbench" has two secondary names, you must specify which one you
want when you invoke the simulator. For example,

% vsim 'testbench(c1)' config1

Note that it is not necessary to specify the secondary name for config1, because it has only
one secondary name. If you omit the secondary name, the simulator defaults to loading the
secondary name specified in the most recent compilation of the module.

If you prefer to use the Simulate dialog box to select top-level modules, then those modules
compiled with -fast can be expanded to view their secondary names. Click on the one you
wish to simulate.

To view the library contents via the GUI, expand the library in the Library tab (Main
window) to see the modules and their associated secondary names. From the command line,
execute the vdir command (CR-316) on a specific module. For example,

VSIM 1> vdir design

MODULE design

Optimized Module t1

Optimized Module t2

Note: In some cases, an optimized module will have "__<n>" appended to its secondary
name. This happens when multiple instantiations of a module require different versions
of optimized code (for example, when the parameters of each instance are set to different
values).
Sim SE User’s Manual

Compiling for faster performance UM-133
Enabling design object visibility with the +acc option

Some of the optimizations performed by the -fast argument impact design visibility to both
the user interface and the PLI routines. Many of the nets, ports, and registers are unavailable
by name in user interface commands and in the various graphic interface windows. In
addition, many of these objects do not have PLI Access handles, potentially affecting the
operation of PLI applications. However, a handle is guaranteed to exist for any object that
is an argument to a system task or function.

In the early stages of design, you may choose to compile without the -fast argument so as
to retain full debug capabilities. Alternatively, you may use one or more +acc options in
conjunction with -fast to enable access to specific design objects. However, keep in mind
that enabling design object access may reduce simulation performance.

The syntax for the +acc option is as follows:

+acc[=<spec>][+<module>[.]]

<spec> is one or more of the following characters:

If <spec> is omitted, then access is enabled for all objects.

<module> is a module name, optionally followed by "." to indicate all children of the
module. Multiple modules are allowed, each separated by a "+". If no modules are
specified, then all modules are affected. We strongly recommend specifying modules when
using +acc. Doing so will lessen the impact on performance.

If your design uses PLI applications that look for object handles in the design hierarchy,
then it is likely that you will need to use the +acc option. For example, the built-in

<spec> Meaning

b Enable access to individual bits of vector nets. This is necessary
for PLI applications that require handles to individual bits of
vector nets. Also, some user interface commands require this
access if you need to operate on net bits.

c Enable access to library cells. By default any Verilog module
that contains a non-empty specify block may be optimized, and
debug and PLI access may be limited. This option keeps module
cell visibility.

l Enable line number directives and process names for line
debugging, profiling, and code coverage.

n Enable access to nets.

p Enable access to ports. This disables the module inlining
optimization, and should be used for PLI applications that
require access to port handles, or for debugging (see below).

r Enable access to registers (including memories, integer,
time, and real types).

s Enable system tasks.

t Enable access to tasks and functions.
ModelSim SE User’s Manual

UM-134 5 - Verilog simulation

Model
$dumpvars system task is an internal PLI application that requires handles to nets and
registers so that it can call the PLI routine acc_vcl_add() to monitor changes and dump the
values to a VCD file. This requires that access is enabled for the nets and registers on which
it operates. Suppose you want to dump all nets and registers in the entire design, and that
you have the following $dumpvars call in your testbench (no arguments to $dumpvars
means to dump everything in the entire design):

initial $dumpvars;

Then you need to compile your design as follows to enable net and register access for all
modules in the design:

% vlog -fast +acc=rn testbench.v design.v

As another example, suppose you only need to dump nets and registers of a particular
instance in the design (the first argument of 1 means to dump just the variables in the
instance specified by the second argument):

initial $dumpvars(1, testbench.u1);

Then you need to compile your design as follows (assuming testbench.u1 refers to the
module design):

% vlog -fast +acc=rn+design testbench.v design.v

Finally, suppose you need to dump everything in the children instances of testbench.u1 (the
first argument of 0 means to also include all children of the instance):

initial $dumpvars(0, testbench.u1);

Then you need to compile your design as follows:

% vlog -fast +acc=rn+design. testbench.v design.v

To gain maximum performance, it may be necessary to enable the minimum required
access within the design.

Using pre-compiled libraries

When using the -fast argument, if the source code is unavailable for any of the modules
referenced in a design, then you must search libraries for the precompiled modules using
the -L or -Lf argument to vlog (CR-345). The compiler optimizes pre-compiled modules the
same as if the source code is available. The optimized code for a pre-compiled module is
written to the same library in which the module is found.

The compiler automatically searches libraries specified in the `uselib directive (see
Verilog-XL `uselib compiler directive (UM-114)). If your design exclusively uses `uselib
directives to reference modules in other libraries, then you don't need to specify library
search arguments to the compiler.

Note: If you use -L or -Lf with the compiler, you must also you use them with
vsim (CR-357) when you simulate the design.
Sim SE User’s Manual

Compiling for faster performance UM-135
Event order and optimized designs

As mentioned earlier in the chapter, the Verilog language does not require that the
simulator execute simultaneous events in any particular order. Optimizations performed by
-fast may expose event order dependencies that cause a design to behave differently than
when compiled without -fast. Event order dependencies are considered errors and should
be corrected (see "Event ordering in Verilog designs" (UM-119) for details). Alternatively,
you may use the -keep_delta argument (see vlog (CR-345)) to disable most -fast
optimizations that potentially reorder events. Keep in mind this may reduce performance.

Timing checks in optimized designs

Timing checks are performed whether you compile the design with or without -fast. In
general you'll see the same results in either case. However, in a cell where there are both
interconnect delays and conditional timing checks, you might see different timing check
results.

Without -fast the conditional checks are evaluated with non-delayed values, complying
with the original IEEE Std 1364-1995 specification. With -fast the conditional checks will
be evaluated with delayed values, complying with the new IEEE Std 1364-2001
specification.

Using -fast on cells with internal delay

Cells with internal delays normally are not optimized by -fast. However, if you compile
with the +delay_mode_path switch (which is what we usually suggest), all internal delays
are set to zero automatically and only path delays are used. This allows ModelSim to
optimize the cell.

If a cell relies on internal delays to function correctly, you cannot optimize that cell.
ModelSim SE User’s Manual

UM-136 5 - Verilog simulation

Model
Simulating with an elaboration file

Overview

The ModelSim compiler generates a library format that is compatible across platforms.
This means the simulator can load your design on any supported platform without having
to recompile first. Though this architecture offers a benefit, it also comes with a possible
detriment: the simulator has to generate platform-specific code every time you load your
design. This impacts the speed with which the design is loaded.

Starting with ModelSim version 5.6, you can generate a loadable image (elaboration file)
which can be simulated repeatedly. On subsequent simulations, you load the elaboration
file rather than loading the design "from scratch." Elaboration files load quickly.

Why an elaboration file?

In many cases design loading time is not that important. For example, if you’re doing
"iterative design," where you simulate the design, modify the source, recompile and
resimulate, the load time is just a small part of the overall flow. However, if your design is
locked down and only the test vectors are modified between runs, loading time may
materially impact overall simulation time, particularly for large designs loading SDF files.

Another reason to use elaboration files is for benchmarking purposes. Other simulator
vendors use elaboration files, and they distinguish between elaboration and run times. If
you are benchmarking ModelSim against another simulator that uses elaboration, make
sure you use an elaboration file with ModelSim as well so you’re comparing like to like.

One caveat with elaboration files is that they must be created and used in the same
environment. The same environment means the same hardware platform, the same OS and
patch version, and the same version of any PLI/FLI code loaded in the simulation.

Elaboration file flow

We recommend the following flow to maximize the benefit of simulating elaboration files.

1 If timing for your design is fixed, include all timing data when you create the elaboration
file (using the -sdf<type> instance=<filename> argument). If your timing is not fixed
in a Verilog design, you’ll have to use $sdf_annotate system tasks. Note that use of
$sdf_annotate causes timing to be applied after elaboration.

2 Apply all normal vsim arguments when you create the elaboration file. Some arguments
(primarily related to stimulus) may be superseded later during loading of the elaboration
file (see "Modifying stimulus" (UM-138) below).

3 Load the elaboration file along with any arguments that modify the stimulus (see below).
Sim SE User’s Manual

Simulating with an elaboration file UM-137
Creating an elaboration file

Elaboration file creation is performed with the same vsim settings or switches as a normal
simulation plus an elaboration specific argument. The simulation settings are stored in the
elaboration file and dictate subsequent simulation behavior. Some of these simulation
settings can be modified at elaboration file load time, as detailed below.

To create an elaboration file, use the -elab <filename> or -elab_cont <filename>
argument to vsim (CR-357).

The -elab_cont argument is used to create the elaboration file then continue with the
simulation after the elaboration file is created. You can use the -c switch with -elab_cont
to continue the simulation in command-line mode.

Loading an elaboration file

To load an elaboration file, use the -load_elab <filename> argument to vsim (CR-357). By
default the elaboration file will load in command-line mode or interactive mode depending
on the argument (-c or -i) used during elaboration file creation. If no argument was used
during creation, the -load_elab argument will default to the interactive mode.

The vsim arguments listed below can be used with -load_elab to affect the simulation.

+<plus_args>
-c or -i
-do <do_file>
-vcdread <filename>
-vcdstim <filename>
-filemap_elab <HDLfilename>=<NEWfilename>
-l <log_file>
-trace_foreign <level>
-quiet
-wlf <filename>

Modification of an argument that was specified at elaboration file creation, in most cases,
causes the previous value to be replaced with the new value. Usage of the -quiet argument
at elaboration load causes the mode to be toggled from its elaboration creation setting.

All other vsim arguments must be specified when you create the elaboration file, and they
cannot be used when you load the elaboration file.

Important: Elaboration files can be created in command-line mode only. You cannot
create an elaboration file while running the ModelSim GUI.

Important: The elaboration file must be loaded under the same environment in which it
was created. The same environment means the same hardware platform, the same OS
and patch version, and the same version of any PLI/FLI code loaded in the simulation.
ModelSim SE User’s Manual

UM-138 5 - Verilog simulation

Model
Modifying stimulus

A primary use of elaboration files is repeatedly simulating the same design with different
stimulus. The following mechanisms allow you to modify stimulus for each run.

• Use of the change command to modify parameters or generic values. This affects values
only; it has no effect on triggers, compiler directives, or generate statements that
reference either a generic or parameter.

• Use of the -filemap_elab <HDLfilename>=<NEWfilename> argument to establish a
map between files named in the elaboration file. The <HDLfilename> file name, if it
appears in the design as a file name (for example, a VHDL FILE object as well as some
Verilog sysfuncs that take file names), is substituted with the <NEWfilename> file
name. This mapping occurs before environment variable expansion and can’t be used to
redirect stdin/stdout.

• VCD stimulus files can be specified when you load the elaboration file. Both vcdread and
vcdstim are supported. Specifying a different VCD file when you load the elaboration file
supersedes a stimulus file you specify when you create the elaboration file.

• In Verilog, the use of +args which are readable by the PLI routine mc_scan_plusargs().
+args values specified when you create the elaboration file are superseded by +args
values specified when you load the elaboration file.

Using with the PLI or FLI

PLI models do not require special code to function with an elaboration file as long as the
model doesn't create simulation objects in its standard tf routines. The sizetf, misctf and
checktf calls that occur during elaboration are played back at -load_elab to ensure the PLI
model is in the correct simulation state. Registered user tf routines called from the Verilog
HDL will not occur until -load_elab is complete and PLI model's state is restored.

By default, FLI models are activated for checkpoint during elaboration file creation and are
activated for restore during elaboration file load. (See the "Using checkpoint/restore with
the FLI" section of the FLI Reference manual for more information.) FLI models that
support checkpoint/restore will function correctly with elaboration files.

FLI models that don't support checkpoint/restore may work if simulated with the
-elab_defer_fli argument. When used in tandem with -elab, -elab_defer_fli defers calls to
the FLI model's initialization function until elaboration file load time. Deferring FLI
initialization skips the FLI checkpoint/restore activity (callbacks, mti_IsRestore(), ...) and
may allow these models to simulate correctly. However, deferring FLI initialization also
causes FLI models in the design to be initialized in order with the entire design loaded. FLI
models that are sensitive to this ordering may still not work correctly even if you use
-elab_defer_fli.

Syntax

See the vsim command (CR-357) for details on -elab, -elab_cont, -elab_defer_fli,
-compress_elab, -filemap_elab, and -load_elab.
Sim SE User’s Manual

Simulating with an elaboration file UM-139
Example

Upon first simulating the design, use vsim -elab <filename>
<library_name.design_unit> to create an elaboration file that will be used in subsequent
simulations.

In subsequent simulations you simply load the elaboration file (rather than the design) with
vsim -load_elab <filename>.

To change the stimulus without recoding, recompiling, and reloading the entire design,
Modelsim allows you to map the stimulus file (or files) of the original design unit to an
alternate file (or files) with the -filemap_elab switch. For example, the VHDL code for
initiating stimulus might be:

FILE vector_file : text IS IN "vectors";

where vectors is the stimulus file.

If the alternate stimulus file is named, say, alt_vectors, then the correct syntax for changing
the stimulus without recoding, recompiling, and reloading the entire design is as follows:

vsim -load_elab <filename> -filemap_elab vectors=alt_vectors
ModelSim SE User’s Manual

UM-140 5 - Verilog simulation

Model
Checkpointing and restoring simulations

The checkpoint (CR-99) and restore (CR-242) commands allow you to save and restore the
simulation state within the same invocation of vsim or between vsim sessions.

Checkpoint file contents

The following things are saved with checkpoint and restored with the restore command:

• simulation kernel state

• vsim.wlf file

• signals listed in the list and wave windows

• file pointer positions for files opened under VHDL

• file pointer positions for files opened by the Verilog $fopen system task

• state of foreign architectures

• state of PLI/VPI code

Checkpoint exclusions

You cannot checkpoint/restore the following:

• state of macros

• changes made with the command-line interface (such as user-defined Tcl commands)

• state of graphical user interface windows

• toggle statistics

If you use the foreign interface, you will need to add additional function calls in order to
use checkpoint/restore. See the FLI Reference Manual or Chapter 6 - Verilog PLI / VPI
for more information.

Action Definition Command used

checkpoint saves the simulation state checkpoint <filename>

"warm" restore restores a checkpoint file saved in a
current vsim session

restore <filename>

"cold" restore restores a checkpoint file saved in a
previous vsim session (i.e., after
quitting ModelSim)

vsim -restore <filename>
Sim SE User’s Manual

Checkpointing and restoring simulations UM-141
Controlling checkpoint file compression

The checkpoint file is normally compressed. To turn off the compression, use the following
command:

set CheckpointCompressMode 0

To turn compression back on, use this command:

set CheckpointCompressMode 1

You can also control checkpoint compression using the modelsim.ini file in the [vsim]
section (use the same 0 or 1 switch):

[vsim]
CheckpointCompressMode = <switch>

The difference between checkpoint/restore and restart

The restart (CR-240) command resets the simulator to time zero, clears out any logged
waveforms, and closes any files opened under VHDL and the Verilog $fopen system task.
You can get the same effect by first doing a checkpoint at time zero and later doing a
restore. Using restart, however, is likely to be faster and you don't have to save the
checkpoint. To set the simulation state to anything other than time zero, you need to use
checkpoint/restore.

Using macros with restart and checkpoint/restore

The restart (CR-240) command resets and restarts the simulation kernel, and zeros out any
user-defined commands, but it does not touch the state of the macro interpreter. This lets
you do restart commands within macros.

The pause mode indicates that a macro has been interrupted. That condition will not be
affected by a restart, and if the restart is done with an interrupted macro, the macro will still
be interrupted after the restart.

The situation is similar for using checkpoint/restore without quitting ModelSim; that is,
doing a checkpoint (CR-99) and later in the same session doing a restore (CR-242) of the
earlier checkpoint. The restore does not touch the state of the macro interpreter so you may
also do checkpoint and restore commands within macros.
ModelSim SE User’s Manual

UM-142 5 - Verilog simulation

Model
Cell libraries

Model Technology passed the ASIC Council’s Verilog test suite and achieved the "Library
Tested and Approved" designation from Si2 Labs. This test suite is designed to ensure
Verilog timing accuracy and functionality and is the first significant hurdle to complete on
the way to achieving full ASIC vendor support. As a consequence, many ASIC and FPGA
vendors’ Verilog cell libraries are compatible with ModelSim Verilog.

The cell models generally contain Verilog "specify blocks" that describe the path delays
and timing constraints for the cells. See section 13 in the IEEE Std 1364-1995 for details
on specify blocks, and section 14.5 for details on timing constraints. ModelSim Verilog
fully implements specify blocks and timing constraints as defined in IEEE Std 1364 along
with some Verilog-XL compatible extensions.

SDF timing annotation

ModelSim Verilog supports timing annotation from Standard Delay Format (SDF) files.
See Chapter 17 - Standard Delay Format (SDF) Timing Annotation for details.

Delay modes

Verilog models may contain both distributed delays and path delays. The delays on
primitives, UDPs, and continuous assignments are the distributed delays, whereas the port-
to-port delays specified in specify blocks are the path delays. These delays interact to
determine the actual delay observed. Most Verilog cells use path delays exclusively, with
the distributed delays set to zero. For example,

module and2(y, a, b);
input a, b;
output y;

and(y, a, b);

specify
(a => y) = 5;
(b => y) = 5;

endspecify
endmodule

In the above two-input "and" gate cell, the distributed delay for the "and" primitive is zero,
and the actual delays observed on the module ports are taken from the path delays. This is
typical for most cells, but a complex cell may require non-zero distributed delays to work
properly. Even so, these delays are usually small enough that the path delays take priority
over the distributed delays. The rule is that if a module contains both path delays and
distributed delays, then the larger of the two delays for each path shall be used (as defined
by the IEEE Std 1364). This is the default behavior, but you can specify alternate delay
modes with compiler directives and arguments. These arguments and directives are
compatible with Verilog-XL. Compiler delay mode arguments take precedence over delay
mode directives in the source code.
Sim SE User’s Manual

Cell libraries UM-143
Distributed delay mode

In distributed delay mode the specify path delays are ignored in favor of the distributed
delays. Select this delay mode with the +delay_mode_distributed compiler argument or
the `delay_mode_distributed compiler directive.

Path delay mode

In path delay mode the distributed delays are set to zero in any module that contains a path
delay. Select this delay mode with the +delay_mode_path compiler argument or the
`delay_mode_path compiler directive.

Note that this mode allows modules with non-zero delay to be optimized with -fast. See
"Using -fast on cells with internal delay" (UM-135) for further details.

Unit delay mode

In unit delay mode the distributed delays are set to one unit of simulation resolution
(determined by the minimum time_precision argument in all ‘timescale directives in your
design or the value specified with the -t argument to vsim), and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode_unit
compiler argument or the `delay_mode_unit compiler directive.

Zero delay mode

In zero delay mode the distributed delays are set to zero, and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode_zero
compiler argument or the `delay_mode_zero compiler directive.
ModelSim SE User’s Manual

UM-144 5 - Verilog simulation

Model
System tasks

The IEEE Std 1364 defines many system tasks as part of the Verilog language, and
ModelSim Verilog supports all of these along with several non-standard Verilog-XL
system tasks. The system tasks listed in this chapter are built into the simulator, although
some designs depend on user-defined system tasks implemented with the Programming
Language Interface (PLI) or Verilog Procedural Interface (VPI). If the simulator issues
warnings regarding undefined system tasks, then it is likely that these system tasks are
defined by a PLI/VPI application that must be loaded by the simulator.

IEEE Std 1364 system tasks

The following system tasks are described in detail in the IEEE Std 1364.

Timescale tasks Simulator
control tasks

Simulation time
functions

Command line
input

$printtimescale $finish $realtime $test$plusargs

$timeformat $stop $stime $value$plusargs

$time

Probabilistic
distribution
functions

Conversion
functions

Stochastic
analysis tasks

Timing check
tasks

$dist_chi_square $bitstoreal $q_add $hold

$dist_erlang $itor $q_exam $nochange

$dist_exponential $realtobits $q_full $period

$dist_normal $rtoi $q_initialize $recovery

$dist_poisson $signed $q_remove $setup

$dist_t $unsigned $setuphold

$dist_uniform $skew

$random $widtha

a.Verilog-XL ignores the threshold argument even though it is part of the Verilog
spec. ModelSim does not ignore this argument. Be careful that you don’t set the
threshhold argument greater-than-or-equal to the limit argument as that essentially dis-
ables the $width check. Note too that you cannot override the threshhold argument via
SDF annotation.

$removal

$recrem
Sim SE User’s Manual

System tasks UM-145
Display tasks PLA modeling tasks Value change dump (VCD)
file tasks

$display $async$and$array $dumpall

$displayb $async$nand$array $dumpfile

$displayh $async$or$array $dumpflush

$displayo $async$nor$array $dumplimit

$monitor $async$and$plane $dumpoff

$monitorb $async$nand$plane $dumpon

$monitorh $async$or$plane $dumpvars

$monitoro $async$nor$plane $dumpportson

$monitoroff $sync$and$array $dumpportsoff

$monitoron $sync$nand$array $dumpportsall

$strobe $sync$or$array $dumpportsflush

$strobeb $sync$nor$array $dumpports

$strobeh $sync$and$plane $dumpportslimit

$strobeo $sync$nand$plane

$write $sync$or$plane

$writeb $sync$nor$plane

$writeh

$writeo
ModelSim SE User’s Manual

UM-146 5 - Verilog simulation

Model
File I/O tasks

$fclose $fopen $fwriteh

$fdisplay $fread $fwriteo

$fdisplayb $fscanf $readmemb

$fdisplayh $fseek $readmemh

$fdisplayo $fstrobe $rewind

$ferror $fstrobeb $sdf_annotate

$fflush $fstrobeh $sformat

$fgetc $fstrobeo $sscanf

$fgets $ftell $swrite

$fmonitor $fwrite $swriteb

$fmonitorb $fwriteb $swriteh

$fmonitorh $swriteo

$fmonitoro $ungetc
Sim SE User’s Manual

System tasks UM-147
Verilog-XL compatible system tasks

The following system tasks are provided for compatibility with Verilog-XL. Although they
are not part of the IEEE standard, they are described in an annex of the IEEE Std 1364.

$countdrivers
$getpattern
$sreadmemb
$sreadmemh

The following system tasks are also provided for compatibility with Verilog-XL; they are
not described in the IEEE Std 1364.

$deposit(variable, value);

This system task sets a Verilog register or net to the specified value. variable is the
register or net to be changed; value is the new value for the register or net. The value
remains until there is a subsequent driver transaction or another $deposit task for the
same register or net. This system task operates identically to the ModelSim
force -deposit command.

$disable_warnings(“<keyword>”[,<module_instance>...]);

This system task instructs ModelSim to disable warnings about timing check violations
or triregs that acquire a value of ‘X’ due to charge decay. <keyword> may be decay or
timing. You can specify one or more module instance names. If you don’t specify a
module instance, ModelSim disables warnings for the entire simulation.

$enable_warnings(“<keyword>”[,<module_instance>...]);

This system task enables warnings about timing check violations or triregs that acquire a
value of ‘X’ due to charge decay. <keyword> may be decay or timing. You can specify
one or more module instance names. If you don’t specify a module_instance, ModelSim
enables warnings for the entire simulation.

$system("<operating system shell command>");

This system task executes the specified operating system shell command and displays the
result. For example, to list the contents of the working directory on Unix:

$system("ls");

The following system tasks are extended to provide additional functionality for negative
timing constraints and an alternate method of conditioning, as in Verilog-XL.

$recovery(reference event, data_event, removal_limit, recovery_limit,
[notifier], [tstamp_cond], [tcheck_cond], [delayed_reference],
[delayed_data])

The $recovery system task normally takes a recovery_limit as the third argument and an
optional notifier as the fourth argument. By specifying a limit for both the third and
fourth arguments, the $recovery timing check is transformed into a combination removal
and recovery timing check similar to the $recrem timing check. The only difference is
that the removal_limit and recovery_limit are swapped.

$setuphold(clk_event, data_event, setup_limit, hold_limit, [notifier],
[tstamp_cond], [tcheck_cond], [delayed_clk], [delayed_data])

The tstamp_cond argument conditions the data_event for the setup check and the
clk_event for the hold check. This alternate method of conditioning precludes specifying
conditions in the clk_event and data_event arguments.
ModelSim SE User’s Manual

UM-148 5 - Verilog simulation

Model
The tcheck_cond argument conditions the data_event for the hold check and the
clk_event for the setup check. This alternate method of conditioning precludes specifying
conditions in the clk_event and data_event arguments.

The delayed_clk argument is a net that is continuously assigned the value of the net
specified in the clk_event. The delay is non-zero if the setup_limit is negative, zero
otherwise.

The delayed_data argument is a net that is continuously assigned the value of the net
specified in the data_event. The delay is non-zero if the hold_limit is negative, zero
otherwise.

The delayed_clk and delayed_data arguments are provided to ease the modeling of
devices that may have negative timing constraints. The model's logic should reference
the delayed_clk and delayed_data nets in place of the normal clk and data nets. This
ensures that the correct data is latched in the presence of negative constraints. The
simulator automatically calculates the delays for delayed_clk and delayed_data such that
the correct data is latched as long as a timing constraint has not been violated. See
"Negative timing check limits" (UM-123) for more details.

The following system tasks are Verilog-XL system tasks that are not implemented in
ModelSim Verilog, but have equivalent simulator commands.

$input("filename")

This system task reads commands from the specified filename. The equivalent simulator
command is do <filename>.

$list[(hierarchical_name)]

This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the graphic interface Structure
window. The corresponding source code is displayed in the Source window.

$reset

This system task resets the simulation back to its time 0 state. The equivalent simulator
command is restart.

$restart("filename")

This system task sets the simulation to the state specified by filename, saved in a previous
call to $save. The equivalent simulator command is restore <filename>.

$save("filename")

This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hierarchical_name)

This system task sets the interactive scope to the scope specified by hierarchical_name.
The equivalent simulator command is environment <pathname>.

$showscopes

This system task displays a list of scopes defined in the current interactive scope. The
equivalent simulator command is show.

$showvars

This system task displays a list of registers and nets defined in the current interactive
scope. The equivalent simulator command is show.
Sim SE User’s Manual

System tasks UM-149
ModelSim Verilog system tasks

The following system tasks are specific to ModelSim. They are not included in the IEEE
Std 1364 nor are they likely supported in other simulators. Their use may limit the
portability of your code.

$coverage_save(<filename>, [<instancepath>], [<xml_output>])

The $coverage_save() system task saves Code Coverage information to a file during a
batch run that typically would terminate via the $finish call. If you don’t specify
<instancepath>, ModelSim saves all coverage data in the current design to the specified
file. If you do specify <instancepath>, ModelSim saves data on that instance, and all
instances below it (recursively), to the specified file.

If set to 1, the [<xml_output>] argument specifies that the output be saved in XML
format.

See Chapter 12 - Code Coverage for more information on Code Coverage.

$init_signal_driver

The $init_signal_driver() system task drives the value of a VHDL signal or Verilog net
onto an existing VHDL signal or Verilog net. This allows you to drive signals or nets at
any level of the design hierarchy from within a Verilog module (e.g., a testbench). See
$init_signal_driver (UM-534) in Chapter 16 - Signal Spy for complete details.

$init_signal_spy

The $init_signal_spy() system task mirrors the value of a VHDL signal or Verilog
register/net onto an existing Verilog register or VHDL signal. This system task allows
you to reference signals, registers, or nets at any level of hierarchy from within a Verilog
module (e.g., a testbench). See $init_signal_spy (UM-537) in Chapter 16 - Signal Spy for
complete details.

$signal_force

The $signal_force() system task forces the value specified onto an existing VHDL signal
or Verilog register or net. This allows you to force signals, registers, or nets at any level
of the design hierarchy from within a Verilog module (e.g., a testbench). A $signal_force
works the same as the force command (CR-176) with the exception that you cannot issue
a repeating force. See $signal_force (UM-539) in Chapter 16 - Signal Spy for complete
details.

$signal_release

The $signal_release() system task releases a value that had previously been forced onto
an existing VHDL signal or Verilog register or net. A $signal_release works the same as
the noforce command (CR-204). See $signal_release (UM-541) in Chapter 16 - Signal Spy.

$sdf_done

This task is a "cleanup" function that removes internal buffers, called MIPDs, that have
a delay value of zero. These MIPDs are inserted in response to the -v2k_int_delay
argument to the vsim command (CR-357). In general the simulator will automatically
remove all zero delay MIPDs. However, if you have $sdf_annotate() calls in your design
that are not getting executed, the zero-delay MIPDs are not removed. Adding the
$sdf_done task after your last $sdf_annotate() will remove any zero-delay MIPDs that
have been created.
ModelSim SE User’s Manual

UM-150 5 - Verilog simulation

Model
Compiler directives

ModelSim Verilog supports all of the compiler directives defined in the IEEE Std 1364,
some Verilog-XL compiler directives, and some that are proprietary.

Many of the compiler directives (such as `timescale) take effect at the point they are
defined in the source code and stay in effect until the directive is redefined or until it is reset
to its default by a `resetall directive. The effect of compiler directives spans source files,
so the order of source files on the compilation command line could be significant. For
example, if you have a file that defines some common macros for the entire design, then
you might need to place it first in the list of files to be compiled.

The `resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the IEEE Std 1364):

`celldefine
‘default_decay_time
`default_nettype
`delay_mode_distributed
`delay_mode_path
`delay_mode_unit
`delay_mode_zero
`protected
`timescale
`unconnected_drive
`uselib

ModelSim Verilog implicitly defines the following macro:

`define MODEL_TECH

IEEE Std 1364 compiler directives

The following compiler directives are described in detail in the IEEE Std 1364.

`celldefine
`default_nettype
`define
`else
`elsif
`endcelldefine
`endif
`ifdef
‘ifndef
`include
‘line
`nounconnected_drive
`resetall
`timescale
`unconnected_drive
`undef
Sim SE User’s Manual

Compiler directives UM-151
Verilog-XL compatible compiler directives

The following compiler directives are provided for compatibility with Verilog-XL.

‘default_decay_time <time>

This directive specifies the default decay time to be used in trireg net declarations that do
not explicitly declare a decay time. The decay time can be expressed as a real or integer
number, or as "infinite" to specify that the charge never decays.

`delay_mode_distributed

This directive disables path delays in favor of distributed delays. See "Delay modes" (UM-

142) for details.

`delay_mode_path

This directive sets distributed delays to zero in favor of path delays. See "Delay modes"
(UM-142) for details.

`delay_mode_unit

This directive sets path delays to zero and non-zero distributed delays to one time unit.
See "Delay modes" (UM-142) for details.

`delay_mode_zero

This directive sets path delays and distributed delays to zero. See "Delay modes" (UM-

142) for details.

`uselib

This directive is an alternative to the -v, -y, and +libext source library compiler
arguments. See "Verilog-XL `uselib compiler directive" (UM-114) for details.

The following Verilog-XL compiler directives are silently ignored by ModelSim Verilog.
Many of these directives are irrelevant to ModelSim Verilog, but may appear in code being
ported from Verilog-XL.

`accelerate
`autoexpand_vectornets
`disable_portfaults
`enable_portfaults
`expand_vectornets
`noaccelerate
`noexpand_vectornets
`noremove_gatenames
`noremove_netnames
`nosuppress_faults
`remove_gatenames
`remove_netnames
`suppress_faults

The following Verilog-XL compiler directives produce warning messages in ModelSim
Verilog. These are not implemented in ModelSim Verilog, and any code containing these
directives may behave differently in ModelSim Verilog than in Verilog-XL.

`default_trireg_strength
`signed
`unsigned
ModelSim SE User’s Manual

UM-152 5 - Verilog simulation

Model
ModelSim compiler directives

The following directives are specific to ModelSim and are not compatible with other
simulators (see note below).

‘protect ... ‘endprotect

This directive pair allows you to encrypt selected regions of your source code. The code
in `protect regions has all debug information stripped out. This behaves exactly as if
using the -nodebug argument except that it applies to selected regions of code rather than
the whole file. This enables usage scenarios such as making module ports, parameters,
and specify blocks publicly visible while keeping the implementation private.

The ̀ protect directive is ignored by default unless you use the +protect argument to vlog
(CR-345). Once compiled, the original source file is copied to a new file with a ".vp" suffix
in the current work directory. This new file can be delivered and used as a replacement
for the original source file.

The +protect argument is not required when compiling .vp files because the `protect
directives are converted to ̀ protected directives which are processed even if +protect is
omitted.

`protect and `protected directives cannot be nested.

If any ̀ include directives occur within a protected region, the compiler generates a copy
of the include file with a ".vp" suffix and protects the entire contents of the include file.

If errors are detected in a protected region, the error message always reports the first line
of the protected block.

The $sdf_annotate() system task cannot be used to SDF-annotate code bracketed by
`protect..`endprotect.

Though other simulators have a ̀ protect directive, the algorithm ModelSim uses to encrypt
source files is different. Hence, even though an uncompiled source file with `protect is
compatible with another simulator, once the source is compiled in ModelSim, you could
not simulate it elsewhere.
Sim SE User’s Manual

 UM-153
6 - Verilog PLI / VPI

Chapter contents
Introduction UM-154

Registering PLI applications UM-155

Registering VPI applications UM-157
Example UM-157

Compiling and linking PLI/VPI C applications UM-159

Compiling and linking PLI/VPI C++ applications. UM-164

Specifying the PLI/VPI file to load UM-168

PLI example UM-169

VPI example UM-170

The PLI callback reason argument. UM-171

The sizetf callback function UM-173

PLI object handles UM-174

Third party PLI applications UM-175

Support for VHDL objects UM-176

IEEE Std 1364 ACC routines UM-177

IEEE Std 1364 TF routines UM-179

Verilog-XL compatible routines UM-181

64-bit support in the PLI UM-182

Using 64-bit ModelSim with 32-bit PLI/VPI Applications . . . UM-182

PLI/VPI tracing UM-183
The purpose of tracing files UM-183
Invoking a trace UM-183
Syntax UM-183
Arguments. UM-183
Examples UM-184

Debugging PLI/VPI application code UM-185
ModelSim SE User’s Manual

UM-154 6 - Verilog PLI / VPI

Model
Introduction

This chapter describes the ModelSim implementation of the Verilog PLI (Programming
Language Interface) and VPI (Verilog Procedural Interface). Both interfaces provide a
mechanism for defining system tasks and functions that communicate with the simulator
through a C procedural interface. There are many third party applications available that
interface to Verilog simulators through the PLI (see "Third party PLI applications" (UM-

175)). In addition, you may write your own PLI/VPI applications.

ModelSim Verilog implements the PLI as defined in the IEEE Std 1364, with the exception
of the acc_handle_datapath() routine. We did not implement the acc_handle_datapath()
routine because the information it returns is more appropriate for a static timing analysis
tool.

The VPI is partially implemented as defined in the IEEE Std 1364-2001. The list of
currently supported functionality can be found in the following file:

<install_dir>/modeltech/docs/technotes/Verilog_VPI.note

The IEEE Std 1364 is the reference that defines the usage of the PLI/VPI routines. This
manual only describes details of using the PLI/VPI with ModelSim Verilog.
Sim SE User’s Manual

Registering PLI applications UM-155
Registering PLI applications

Each PLI application must register its system tasks and functions with the simulator,
providing the name of each system task and function and the associated callback routines.
Since many PLI applications already interface to Verilog-XL, ModelSim Verilog PLI
applications make use of the same mechanism to register information about each system
task and function in an array of s_tfcell structures. This structure is declared in the
veriuser.h include file as follows:

typedef int (*p_tffn)();

typedef struct t_tfcell {
short type;/* USERTASK, USERFUNCTION, or USERREALFUNCTION */
short data;/* passed as data argument of callback function */
p_tffn checktf; /* argument checking callback function */
p_tffn sizetf; /* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn misctf; /* miscellaneous reason callback function */
char *tfname;/* name of system task or function */

/* The following fields are ignored by ModelSim Verilog */
int forwref;
char *tfveritool;
char *tferrmessage;
int hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *namecell_p;
int warning_printed;

} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in
the IEEE Std 1364. The simulator calls these functions for various reasons. All callback
functions are optional, but most applications contain at least the calltf function, which is
called when the system task or function is executed in the Verilog code. The first argument
to the callback functions is the value supplied in the data field (many PLI applications don't
use this field). The type field defines the entry as either a system task (USERTASK) or a
system function that returns either a register (USERFUNCTION) or a real
(USERREALFUNCTION). The tfname field is the system task or function name (it must
begin with $). The remaining fields are not used by ModelSim Verilog.

On loading of a PLI application, the simulator first looks for an init_usertfs function, and
then a veriusertfs array. If init_usertfs is found, the simulator calls that function so that it
can call mti_RegisterUserTF() for each system task or function defined. The
mti_RegisterUserTF() function is declared in veriuser.h as follows:

void mti_RegisterUserTF(p_tfcell usertf);
ModelSim SE User’s Manual

UM-156 6 - Verilog PLI / VPI

Model
The storage for each usertf entry passed to the simulator must persist throughout the
simulation because the simulator de-references the usertf pointer to call the callback
functions. We recommend that you define your entries in an array, with the last entry set to
0. If the array is named veriusertfs (as is the case for linking to Verilog-XL), then you don't
have to provide an init_usertfs function, and the simulator will automatically register the
entries directly from the array (the last entry must be 0). For example,

s_tfcell veriusertfs[] = {
{usertask, 0, 0, 0, abc_calltf, 0, "$abc"},
{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},
{0} /* last entry must be 0 */

};

Alternatively, you can add an init_usertfs function to explicitly register each entry from the
array:

void init_usertfs()
{

p_tfcell usertf = veriusertfs;
while (usertf->type)

mti_RegisterUserTF(usertf++);
}

It is an error if a PLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be a dynamically loadable library, see
"Compiling and linking PLI/VPI C applications" (UM-159)). The PLI applications are
specified as follows (note that on a Windows platform the file extension would be .dll):

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the libraries in all cases.
Sim SE User’s Manual

Registering VPI applications UM-157
Registering VPI applications

Each VPI application must register its system tasks and functions and its callbacks with the
simulator. To accomplish this, one or more user-created registration routines must be called
at simulation startup. Each registration routine should make one or more calls to
vpi_register_systf() to register user-defined system tasks and functions and
vpi_register_cb() to register callbacks. The registration routines must be placed in a table
named vlog_startup_routines so that the simulator can find them. The table must be
terminated with a 0 entry.

Example
PLI_INT32 MyFuncCalltf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyFuncCompiletf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyFuncSizetf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyEndOfCompCB(p_cb_data cb_data_p)
{ ... }

PLI_INT32 MyStartOfSimCB(p_cb_data cb_data_p)
{ ... }

void RegisterMySystfs(void)
{

vpiHandle tmpH;
s_cb_data callback;

 s_vpi_systf_data systf_data;

 systf_data.type = vpiSysFunc;
 systf_data.sysfunctype = vpiSizedFunc;
 systf_data.tfname = "$myfunc";
 systf_data.calltf = MyFuncCalltf;
 systf_data.compiletf = MyFuncCompiletf;
 systf_data.sizetf = MyFuncSizetf;
 systf_data.user_data = 0;
 tmpH = vpi_register_systf(&systf_data);

vpi_free_object(tmpH);

 callback.reason = cbEndOfCompile;
 callback.cb_rtn = MyEndOfCompCB;
 callback.user_data = 0;
 tmpH = vpi_register_cb(&callback);

vpi_free_object(tmpH);

callback.reason = cbStartOfSimulation;
 callback.cb_rtn = MyStartOfSimCB;
 callback.user_data = 0;

tmpH = vpi_register_cb(&callback);
vpi_free_object(tmpH);

}

void (*vlog_startup_routines[]) () = {
RegisterMySystfs,

 0 /* last entry must be 0 */
};
ModelSim SE User’s Manual

UM-158 6 - Verilog PLI / VPI

Model
Loading VPI applications into the simulator is the same as described in "Registering PLI
applications" (UM-155).

PLI and VPI applications can co-exist in the same application object file. In such cases, the
applications are loaded at startup as follows:

• If an init_usertfs() function exists, then it is executed and only those system tasks and
functions registered by calls to mti_RegisterUserTF() will be defined.

• If an init_usertfs() function does not exist but a veriusertfs table does exist, then only
those system tasks and functions listed in the veriusertfs table will be defined.

• If an init_usertfs() function does not exist and a veriusertfs table does not exist, but a
vlog_startup_routines table does exist, then only those system tasks and functions and
callbacks registered by functions in the vlog_startup_routines table will be defined.

As a result, when PLI and VPI applications exist in the same application object file, they
must be registered in the same manner. VPI registration functions that would normally be
listed in a vlog_startup_routines table can be called from an init_usertfs() function instead.
Sim SE User’s Manual

Compiling and linking PLI/VPI C applications UM-159
Compiling and linking PLI/VPI C applications

The following platform-specific instructions show you how to compile and link your
PLI/VPI C applications so that they can be loaded by ModelSim. Microsoft Visual C/C++
is supported for creating Windows DLLs while Gcc and cc compilers are supported for
creating UNIX shared libraries.

The PLI/VPI routines are declared in the include files located in the ModelSim
<install_dir>/modeltech/include directory. The acc_user.h file declares the ACC routines,
the veriuser.h file declares the TF routines, and the vpi_user.h file declares the VPI
routines.

The following instructions assume that the PLI or VPI application is in a single source file.
For multiple source files, compile each file as specified in the instructions and link all of
the resulting object files together with the specified link instructions.

Although compilation and simulation switches are platform-specific, loading shared
libraries is the same for all platforms. For information on loading libraries, see "Specifying
the PLI/VPI file to load" (UM-168).

Windows platforms
cl -c -I<install_dir>\modeltech\include app.c
link -dll -export:<init_function> app.obj \

<install_dir>\modeltech\win32\mtipli.lib /out:app.dll

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there is
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs". For the Verilog VPI, the <init_function> should be "vlog_startup_routines".
These requirements ensure that the appropriate symbol is exported, and thus ModelSim can
find the symbol when it dynamically loads the DLL.

The PLI and VPI have been tested with DLLs built using Microsoft Visual C/C++ compiler
version 4.1 or greater.

The gcc compiler cannot be used to compile PLI/VPI applications under Windows. This is
because gcc does not support the Microsoft .lib/.dll format.

When executing cl commands in a DO file, use the /NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.

If you need to run the "Performance Analyzer" (UM-407) on a design that contains PLI/VPI
code, add these two switches to the link command shown above:

/DEBUG /DEBUGTYPE:COFF

These switches add symbols to the .dll that the profiler can use in its report.

32-bit Linux platform

If your PLI/VPI application uses anything from a system library, you will need to specify
that library when you link your PLI/VPI application. For example, to use the standard C
library, specify ‘-lc’ to the ‘ld’ command.

gcc compiler:
ModelSim SE User’s Manual

UM-160 6 - Verilog PLI / VPI

Model
gcc -c -I/<install_dir>/modeltech/include app.c
ld -shared -E -Bsymbolic -o app.so app.o -lc

When using -Bsymbolic with ld, all symbols are first resolved within the shared library at
link time. This will result in a list of undefined symbols. This is only a warning for shared
libraries and can be ignored. If you are using ModelSim on Redhat version 6.0 through 7.1,
you also need to add the -noinhibit-exec switch when you specify -Bsymbolic.

The compiler switch -freg-struct-return must be used when compiling any FLI application
code that contains foreign functions that return real or time values.

64-bit Linux for IA64 platform

64-bit Linux is supported on RedHat Linux Advanced Workstation 2.1 for Itanium 2.

gcc compiler (gcc 3.2 or later)

gcc -c -fPIC -I/<install_dir>/modeltech/include app.c
ld -shared -Bsymbolic -E --allow-shlib-undefined -o app.so app.o

If your PLI/VPI application requires a user or vendor-supplied C library, or an additional
system library, you will need to specify that library when you link your PLI/VPI
application. For example, to use the system math library libm, specify '-lm' to the 'ld'
command:

gcc -c -fPIC -I/<install_dir>/modeltech/include math_app.c
ld -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -lm
Sim SE User’s Manual

Compiling and linking PLI/VPI C applications UM-161
32-bit Solaris platform

If your PLI/VPI application uses anything from a system library, you will need to specify
that library when you link your PLI/VPI application. For example, to use the standard C
library, specify ‘-lc’ to the ‘ld’ command.

gcc compiler

gcc -c -I/<install_dir>/modeltech/include app.c
ld -G -B symbolic -o app.so app.o -lc

cc compiler

cc -c -I/<install_dir>/modeltech/include app.c
ld -G -B symbolic -o app.so app.o -lc

When using -B symbolic with ld, all symbols are first resolved within the shared library at
link time. This will result in a list of undefined symbols. This is only a warning for shared
libraries and can be ignored.

If app.so is not in your current directory you must tell Solaris where to search for the shared
object. You can do this one of two ways:

• Add a path before app.so in the foreign attribute specification. (The path may include
environment variables.)

• Put the path in a UNIX shell environment variable:
LD_LIBRARY_PATH= <library path without filename>

64-bit Solaris platform

gcc compiler

gcc -c -I<install_dir>/modeltech/include -m64 -fpic app.c
gcc -shared -o app.so -m64 app.o

This was tested with gcc 3.2.2. You may need to add the location of libgcc_s.so.1 to the
LD_LIBRARY_PATH environment variable.

cc compiler

cc -v -xarch=v9 -O -I<install_dir>/modeltech/include -c app.c
ld -G -B symbolic app.o -o app.so

When using -B symbolic with ld, all symbols are first resolved within the shared library at
link time. This will result in a list of undefined symbols. This is only a warning for shared
libraries and can be ignored.
ModelSim SE User’s Manual

UM-162 6 - Verilog PLI / VPI

Model
32-bit HP700 platform

A shared library is created by creating object files that contain position-independent code
(use the +z or -fpic compiler argument) and by linking as a shared library (use the -b linker
argument).

If your PLI/VPI application uses anything from a system library, you’ll need to specify that
library when you link your PLI/VPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command.

gcc compiler

gcc -c -fpic -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o -lc

cc compiler

cc -c +z +DD32 -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o -lc

Note that -fpic may not work with all versions of gcc.

64-bit HP platform

cc compiler

cc -v +DD64 -O -I<install_dir>/modeltech/include -c app.c
ld -b -o app.so app.o -lc

64-bit HP for IA64 platform

cc compiler (/opt/ansic/bin/cc, /usr/ccs/bin/ld)

cc -c +DD64 -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o

If your PLI/VPI application requires a user or vendor-supplied C library, or an additional
system library, you will need to specify that library when you link your PLI/VPI
application. For example, to use the system math library, specify '-lm' to the 'ld' command:

cc -c +DD64 -I/<install_dir>/modeltech/include math_app.c
ld -b -o math_app.sl math_app.o -lm
Sim SE User’s Manual

Compiling and linking PLI/VPI C applications UM-163
32-bit IBM RS/6000 platform

ModelSim loads shared libraries on the IBM RS/6000 workstation. The shared library must
import ModelSim's PLI/VPI symbols, and it must export the PLI or VPI application’s
initialization function or table. ModelSim's export file is located in the ModelSim
installation directory in rs6000/mti_exports.

If your PLI/VPI application uses anything from a system library, you’ll need to specify that
library when you link your PLI/VPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command. The resulting object must be marked as shared reentrant
using these gcc or cc compiler commands for AIX 4.x:

gcc compiler

gcc -c -I/<install_dir>/modeltech/include app.c
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

cc compiler

cc -c -I/<install_dir>/modeltech/include app.c
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

The app.exp file must export the PLI/VPI initialization function or table. For the PLI, the
exported symbol should be "init_usertfs". Alternatively, if there is no init_usertfs function,
then the exported symbol should be "veriusertfs". For the VPI, the exported symbol should
be "vlog_startup_routines". These requirements ensure that the appropriate symbol is
exported, and thus ModelSim can find the symbol when it dynamically loads the shared
object.

When using AIX 4.3 in 32-bit mode, you must add the -DUSE_INTTYPES switch to the
compile command lines. This switch prevents a name conflict that occurs between
inttypes.h and mti.h.

64-bit IBM RS/6000 platform

Only version 4.3 of AIX supports the 64-bit platform. A gcc 64-bit compiler is not available
at this time.

cc compiler

cc -c -q64 -I/<install_dir>/modeltech/include app.c
ld -o app.s1 app.o -b64 -bE:app.exports \

-bI:/<install_dir>/modeltech/rs64/mti_exports -bM:SRE -bnoentry -lc
ModelSim SE User’s Manual

UM-164 6 - Verilog PLI / VPI

Model
Compiling and linking PLI/VPI C++ applications

ModelSim does not have direct support for any language other than standard C; however,
C++ code can be loaded and executed under certain conditions.

Since ModelSim's PLI/VPI functions have a standard C prototype, you must prevent the
C++ compiler from mangling the PLI/VPI function names. This can be accomplished by
using the following type of extern:

extern "C"
{

<PLI/VPI application function prototypes>
}

The header files veriuser.h, acc_user.h, and vpi_user.h already include this type of extern.
You must also put the PLI/VPI shared library entry point (veriusertfs, init_usertfs, or
vlog_startup_routines) inside of this type of extern.

The following platform-specific instructions show you how to compile and link your
PLI/VPI C++ applications so that they can be loaded by ModelSim. Microsoft Visual C++
is supported for creating Windows DLLs while GNU C++ and native C++ compilers are
supported for creating UNIX shared libraries.

Although compilation and simulation switches are platform-specific, loading shared
libraries is the same for all platforms. For information on loading libraries, see "Specifying
the PLI/VPI file to load" (UM-168).

Windows platforms

Microsoft Visual C++:

cl -c [-GX] -I<install_dir>\modeltech\include app.cxx
link -dll -export:<init_function> app.obj \

<install_dir>\modeltech\win32\mtipli.lib /out:app.dll

The -GX argument enables exception handling.

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there is
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs". For the Verilog VPI, the <init_function> should be "vlog_startup_routines".
These requirements ensure that the appropriate symbol is exported, and thus ModelSim can
find the symbol when it dynamically loads the DLL.

The GNU C++ compiler cannot be used to compile PLI/VPI applications under Windows.
This is because GNU C++ does not support the Microsoft .lib/.dll format.

When executing cl commands in a DO file, use the /NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.

If you need to run the "Performance Analyzer" (UM-407) on a design that contains PLI/VPI
code, add these two switches to the link command shown above:

/DEBUG /DEBUGTYPE:COFF

These switches add symbols to the .dll that the profiler can use in its report.
Sim SE User’s Manual

Compiling and linking PLI/VPI C++ applications UM-165
32-bit Linux platform

GNU C++ version 2.95.3

c++ -c -fPIC -I<install_dir>/modeltech/include app.C
c++ -shared -fPIC -o app.so app.o

64-bit Linux for IA64 platform

64-bit Linux is supported on RedHat Linux Advanced Workstation 2.1 for Itanium 2.

gcc version 3.2 or later

c++ -c -fPIC -I/<install_dir>/include app.C
c++ -shared -fPIC -o app.sl app.o

If your PLI/VPI application requires a user or vendor-supplied C++ library, or an additional
system library, you will need to specify that library when you link your PLI/VPI
application.

32-bit Solaris platform

Sun WorkShop version 5.0

CC -c -Kpic -o app.o -I<install_dir>/modeltech/include app.C
CC -G -o app.so app.o -lCstd -lCrun

GNU C++ version 2.95.3

c++ -c -fPIC -I<install_dir>/modeltech/include app.C
c++ -shared -fPIC -o app.so app.o

LD_LIBRARY_PATH must be set to point to the directory containing libstdc++.so so that
the simulator can find this shared object.

64-bit Solaris platform

Sun WorkShop version 5.0

CC -c -v -xcode=pic32 -xarch=v9 -o app.o \
-I<install_dir>/modeltech/include app.C

CC -G -xarch=v9 -o app.so app.o -lCstd -lCrun
ModelSim SE User’s Manual

UM-166 6 - Verilog PLI / VPI

Model
32-bit HP-UX platform

C++ shared libraries are supported only on HP-UX 11.0 and later operating system
versions.

HP C++ version 3.25

aCC -c +DAportable +Z -o app.o -I<install_dir>/modeltech/include app.C
aCC -v -b -o app.so app.o -lstd -lstream -lCsup

HP C++ version 3.3 and above

For I/O streams such as cout to work correctly within shared objects, HP's new iostream
library must be used. Access the library by compiling all C++ source files with the -AA
option. When building the shared object, use -lstd_v2 instead of -lstd, and use -lCsup_v2
instead of -lCsup. See the release notes in /opt/aCC/newconfig for more details.

aCC -c +DAportable +Z -AA -o app.o -I<install_dir>/modeltech/include app.C
aCC -v -b -o app.so app.o -lstd_v2 -lstream -lCsup_v2

GNU C++ version 2.95.3

c++ -c -fPIC -I<install_dir>/modeltech/include app.C
c++ -shared -fPIC -o app.so app.o

Exceptions are not supported.

When ModelSim loads GNU C++ shared libraries on HP-UX, it calls the constructors and
destructors only for the shared libraries that it loads directly. Libraries loaded as a result of
ModelSim loading a shared library do not have their constructors and destructors called.

64-bit HP-UX platform

HP C++ version 3.25

aCC -c +DA2.0W +z -o app.o -I<install_dir>/modeltech/include app.C
aCC -v +DA2.0W -b -o app.so app.o -lstd -lstream -lCsup

64-bit HP for IA64 platform

HP C++ (/opt/aCC/bin/aCC)

aCC -c +DD64 -z -o app.o -I/<install_dir>/include app.C
aCC -b +DD64 -z -o app.sl app.o -lstd_v2 -lCsup

If your PLI/VPI application requires a user or vendor-supplied C++ library, or an additional
system library, you will need to specify that library when you link your PLI/VPI
application.
Sim SE User’s Manual

Compiling and linking PLI/VPI C++ applications UM-167
32-bit IBM RS/6000 platform

IBM C++ version 3.6

xlC -c -o app.o -I<install_dir>/modeltech/include app.C
makeC++SharedLib -o app.sl \

-bI:<install_dir>/modeltech/rs6000/mti_exports -p 10 app.o

64-bit IBM RS/6000 platform

IBM C++ version 3.6

xlC -q64 -c -o app.o -I<install_dir>/modeltech/include app.C
makeC++SharedLib -o app.sl -X64 \

-bI:<install_dir>/modeltech/rs64/mti_exports -p 10 app.o
ModelSim SE User’s Manual

UM-168 6 - Verilog PLI / VPI

Model
Specifying the PLI/VPI file to load

The PLI/VPI applications are specified as follows:

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI/VPI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the libraries in all cases.

See also Appendix A - ModelSim variables for more information on the modelsim.ini file.

Note: On Windows platforms, the file names shown above should end with .dll rather
than .so.
Sim SE User’s Manual

PLI example UM-169
PLI example

The following example is a trivial, but complete PLI application.

hello.c:

#include "veriuser.h"
static PLI_INT32 hello()
{

io_printf("Hi there\n");
return 0;

}
s_tfcell veriusertfs[] = {

{usertask, 0, 0, 0, hello, 0, "$hello"},
{0} /* last entry must be 0 */

};

hello.v:

module hello;
initial $hello;

endmodule

Compile the PLI code for the Solaris operating system:

% cc -c -I<install_dir>/modeltech/include hello.c
% ld -G -o hello.sl hello.o

Compile the Verilog code:

% vlib work
% vlog hello.v

Simulate the design:

% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hi there
VSIM 2> quit
ModelSim SE User’s Manual

UM-170 6 - Verilog PLI / VPI

Model
VPI example

The following example is a trivial, but complete VPI application. A general VPI example
can be found in <install_dir>/modeltech/examples/vpi.

hello.c:

#include "vpi_user.h"
static PLI_INT32 hello(PLI_BYTE8 * param)
{

vpi_printf("Hello world!\n");
return 0;

}

void RegisterMyTfs(void)
{

s_vpi_systf_data systf_data;
vpiHandle systf_handle;
systf_data.type = vpiSysTask;
systf_data.sysfunctype = vpiSysTask;
systf_data.tfname = "$hello";
systf_data.calltf = hello;
systf_data.compiletf = 0;
systf_data.sizetf = 0;
systf_data.user_data = 0;
systf_handle = vpi_register_systf(&systf_data);
vpi_free_object(systf_handle);

}

void (*vlog_startup_routines[])() = {
RegisterMyTfs,
0

};

hello.v:

module hello;
initial $hello;

endmodule

Compile the VPI code for the Solaris operating system:

% gcc -c -I<install_dir>/include hello.c
% ld -G -o hello.sl hello.o

Compile the Verilog code:

% vlib work
% vlog hello.v

Simulate the design:

% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hello world!
VSIM 2> quit
Sim SE User’s Manual

The PLI callback reason argument UM-171
The PLI callback reason argument

The second argument to a PLI callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See IEEE Std 1364 for a
description of the reason constants. The following details relate to ModelSim Verilog, and
may not be obvious in the IEEE Std 1364. Specifically, the simulator passes the reason
values to the misctf callback functions under the following circumstances:

reason_endofcompile

For the completion of loading the design.

reason_finish

For the execution of the $finish system task or the quit command.

reason_startofsave

For the start of execution of the checkpoint command, but before any of the simulation
state has been saved. This allows the PLI application to prepare for the save, but it
shouldn't save its data with calls to tf_write_save() until it is called with reason_save.

reason_save

For the execution of the checkpoint command. This is when the PLI application must
save its state with calls to tf_write_save().

reason_startofrestart

For the start of execution of the restore command, but before any of the simulation state
has been restored. This allows the PLI application to prepare for the restore, but it
shouldn't restore its state with calls to tf_read_restart() until it is called with
reason_restart. The reason_startofrestart value is passed only for a restore command, and
not in the case that the simulator is invoked with -restore.

reason_restart

For the execution of the restore command. This is when the PLI application must restore
its state with calls to tf_read_restart().

reason_reset

For the execution of the restart command. This is when the PLI application should free
its memory and reset its state. We recommend that all PLI applications reset their internal
state during a restart as the shared library containing the PLI code might not be reloaded.
(See the -keeploaded (CR-360) and -keeploadedrestart (CR-360) arguments to
vsim for related information.)

reason_endofreset

For the completion of the restart command, after the simulation state has been reset but
before the design has been reloaded.

reason_interactive

For the execution of the $stop system task or any other time the simulation is interrupted
and waiting for user input.

reason_scope

For the execution of the environment command or selecting a scope in the Structure
window. Also for the call to acc_set_interactive_scope() if the callback_flag argument is
non-zero.

reason_paramvc

For the change of value on the system task or function argument.
ModelSim SE User’s Manual

UM-172 6 - Verilog PLI / VPI

Model
reason_synch

For the end of time step event scheduled by tf_synchronize().

reason_rosynch

For the end of time step event scheduled by tf_rosynchronize().

reason_reactivate

For the simulation event scheduled by tf_setdelay().

reason_paramdrc

Not supported in ModelSim Verilog.

reason_force

Not supported in ModelSim Verilog.

reason_release

Not supported in ModelSim Verilog.

reason_disable

Not supported in ModelSim Verilog.
Sim SE User’s Manual

The sizetf callback function UM-173
The sizetf callback function

A user-defined system function specifies the width of its return value with the sizetf
callback function, and the simulator calls this function while loading the design. The
following details on the sizetf callback function are not found in the IEEE Std 1364:

• If you omit the sizetf function, then a return width of 32 is assumed.

• The sizetf function should return 0 if the system function return value is of Verilog type
"real".

• The sizetf function should return -32 if the system function return value is of Verilog type
"integer".
ModelSim SE User’s Manual

UM-174 6 - Verilog PLI / VPI

Model
PLI object handles

Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid
throughout the simulation, even after the acc_close() routine is called. However, some of
the objects are created on demand, and the handles to these objects become invalid after
acc_close() is called. The following object types are created on demand in ModelSim
Verilog:

accOperator (acc_handle_condition)
accWirePath (acc_handle_path)
accTerminal (acc_handle_terminal, acc_next_cell_load, acc_next_driver, and

acc_next_load)
accPathTerminal (acc_next_input and acc_next_output)
accTchkTerminal (acc_handle_tchkarg1 and acc_handle_tchkarg2)
accPartSelect (acc_handle_conn, acc_handle_pathin, and acc_handle_pathout)

If your PLI application uses these types of objects, then it is important to call acc_close()
to free the memory allocated for these objects when the application is done using them.

If your PLI application places value change callbacks on accRegBit or accTerminal objects,
do not call acc_close() while these callbacks are in effect.
Sim SE User’s Manual

Third party PLI applications UM-175
Third party PLI applications

Many third party PLI applications come with instructions on using them with ModelSim
Verilog. Even without the instructions, it is still likely that you can get it to work with
ModelSim Verilog as long as the application uses standard PLI routines. The following
guidelines are for preparing a Verilog-XL PLI application to work with ModelSim Verilog.

Generally, a Verilog-XL PLI application comes with a collection of object files and a
veriuser.c file. The veriuser.c file contains the registration information as described above
in "Registering PLI applications" (UM-155). To prepare the application for ModelSim
Verilog, you must compile the veriuser.c file and link it to the object files to create a
dynamically loadable object (see "Compiling and linking PLI/VPI C applications" (UM-

159)). For example, if you have a veriuser.c file and a library archive libapp.a file that
contains the application's object files, then the following commands should be used to
create a dynamically loadable object for the Solaris operating system:

% cc -c -I<install_dir>/modeltech/include veriuser.c
% ld -G -o app.sl veriuser.o libapp.a

The PLI application is now ready to be run with ModelSim Verilog. All that's left is to
specify the resulting object file to the simulator for loading using the Veriuser entry in the
modesim.ini file, the -pli simulator argument, or the PLIOBJS environment variable (see
"Registering PLI applications" (UM-155)).

Note: On the HP700 platform, the object files must be compiled as position-independent
code by using the +z compiler argument. Since, the object files supplied for Verilog-XL
may be compiled for static linking, you may not be able to use the object files to create
a dynamically loadable object for ModelSim Verilog. In this case, you must get the third
party application vendor to supply the object files compiled as position-independent
code.
ModelSim SE User’s Manual

UM-176 6 - Verilog PLI / VPI

Model
Support for VHDL objects

The PLI ACC routines also provide limited support for VHDL objects in either an all
VHDL design or a mixed VHDL/Verilog design. The following table lists the VHDL
objects for which handles may be obtained and their type and fulltype constants:

The type and fulltype constants for VHDL objects are defined in the acc_vhdl.h include
file. All of these objects (except signals) are scope objects that define levels of hierarchy in
the Structure window. Currently, the PLI ACC interface has no provision for obtaining
handles to generics, types, constants, variables, attributes, subprograms, and processes.
However, some of these objects can be manipulated through the ModelSim VHDL foreign
interface (mti_* routines). See the FLI Reference Manual for more information.

Type Fulltype Description

accArchitecture accArchitecture instantiation of an architecture

accArchitecture accEntityVitalLevel0 instantiation of an architecture whose entity is marked
with the attribute VITAL_Level0

accArchitecture accArchVitalLevel0 instantiation of an architecture which is marked with the
attribute VITAL_Level0

accArchitecture accArchVitalLevel1 instantiation of an architecture which is marked with the
attribute VITAL_Level1

accArchitecture accForeignArch instantiation of an architecture which is marked with the
attribute FOREIGN and which does not contain any
VHDL statements or objects other than ports and generics

accArchitecture accForeignArchMixed instantiation of an architecture which is marked with the
attribute FOREIGN and which contains some VHDL
statements or objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

accForeign accShadow foreign scope created by mti_CreateRegion()

accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSignal signal declaration
Sim SE User’s Manual

IEEE Std 1364 ACC routines UM-177
IEEE Std 1364 ACC routines

ModelSim Verilog supports the following ACC routines, described in detail in the IEEE
Std 1364.

acc_append_delays acc_append_pulsere acc_close

acc_collect acc_compare_handles acc_configure

acc_count acc_fetch_argc acc_fetch_argv

acc_fetch_attribute acc_fetch_attribute_int acc_fetch_attribute_str

acc_fetch_defname acc_fetch_delay_mode acc_fetch_delays

acc_fetch_direction acc_fetch_edge acc_fetch_fullname

acc_fetch_fulltype acc_fetch_index acc_fetch_location

acc_fetch_name acc_fetch_paramtype acc_fetch_paramval

acc_fetch_polarity acc_fetch_precision acc_fetch_pulsere

acc_fetch_range acc_fetch_size acc_fetch_tfarg

acc_fetch_itfarg acc_fetch_tfarg_int acc_fetch_itfarg_int

acc_fetch_tfarg_str acc_fetch_itfarg_str acc_fetch_timescale_info

acc_fetch_type acc_fetch_type_str acc_fetch_value

acc_free acc_handle_by_name acc_handle_calling_mod_m

acc_handle_condition acc_handle_conn acc_handle_hiconn

acc_handle_interactive_scope acc_handle_loconn acc_handle_modpath

acc_handle_notifier acc_handle_object acc_handle_parent

acc_handle_path acc_handle_pathin acc_handle_pathout

acc_handle_port acc_handle_scope acc_handle_simulated_net

acc_handle_tchk acc_handle_tchkarg1 acc_handle_tchkarg2

acc_handle_terminal acc_handle_tfarg acc_handle_itfarg

acc_handle_tfinst acc_initialize acc_next

acc_next_bit acc_next_cell acc_next_cell_load

acc_next_child acc_next_driver acc_next_hiconn

acc_next_input acc_next_load acc_next_loconn

acc_next_modpath acc_next_net acc_next_output

acc_next_parameter acc_next_port acc_next_portout
ModelSim SE User’s Manual

UM-178 6 - Verilog PLI / VPI

Model
acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string value of a
parameter. Because of this, the function acc_fetch_paramval_str() has been added to the
PLI for this use. acc_fetch_paramval_str() is declared in acc_user.h. It functions in a
manner similar to acc_fetch_paramval() except that it returns a char *.
acc_fetch_paramval_str() can be used on all platforms.

acc_next_primitive acc_next_scope acc_next_specparam

acc_next_tchk acc_next_terminal acc_next_topmod

acc_object_in_typelist acc_object_of_type acc_product_type

acc_product_version acc_release_object acc_replace_delays

acc_replace_pulsere acc_reset_buffer acc_set_interactive_scope

acc_set_pulsere acc_set_scope acc_set_value

acc_vcl_add acc_vcl_delete acc_version
Sim SE User’s Manual

IEEE Std 1364 TF routines UM-179
IEEE Std 1364 TF routines

ModelSim Verilog supports the following TF routines, described in detail in the IEEE Std
1364.

io_mcdprintf io_printf mc_scan_plusargs

tf_add_long tf_asynchoff tf_iasynchoff

tf_asynchon tf_iasynchon tf_clearalldelays

tf_iclearalldelays tf_compare_long tf_copypvc_flag

tf_icopypvc_flag tf_divide_long tf_dofinish

tf_dostop tf_error tf_evaluatep

tf_ievaluatep tf_exprinfo tf_iexprinfo

tf_getcstringp tf_igetcstringp tf_getinstance

tf_getlongp tf_igetlongp tf_getlongtime

tf_igetlongtime tf_getnextlongtime tf_getp

tf_igetp tf_getpchange tf_igetpchange

tf_getrealp tf_igetrealp tf_getrealtime

tf_igetrealtime tf_gettime tf_igettime

tf_gettimeprecision tf_igettimeprecision tf_gettimeunit

tf_igettimeunit tf_getworkarea tf_igetworkarea

tf_long_to_real tf_longtime_tostr tf_message

tf_mipname tf_imipname tf_movepvc_flag

tf_imovepvc_flag tf_multiply_long tf_nodeinfo

tf_inodeinfo tf_nump tf_inump

tf_propagatep tf_ipropagatep tf_putlongp

tf_iputlongp tf_putp tf_iputp

tf_putrealp tf_iputrealp tf_read_restart

tf_real_to_long tf_rosynchronize tf_irosynchronize

tf_scale_longdelay tf_scale_realdelay tf_setdelay

tf_isetdelay tf_setlongdelay tf_isetlongdelay

tf_setrealdelay tf_isetrealdelay tf_setworkarea

tf_isetworkarea tf_sizep tf_isizep
ModelSim SE User’s Manual

UM-180 6 - Verilog PLI / VPI

Model
tf_spname tf_ispname tf_strdelputp

tf_istrdelputp tf_strgetp tf_istrgetp

tf_strgettime tf_strlongdelputp tf_istrlongdelputp

tf_strrealdelputp tf_istrrealdelputp tf_subtract_long

tf_synchronize tf_isynchronize tf_testpvc_flag

tf_itestpvc_flag tf_text tf_typep

tf_itypep tf_unscale_longdelay tf_unscale_realdelay

tf_warning tf_write_save
Sim SE User’s Manual

Verilog-XL compatible routines UM-181
Verilog-XL compatible routines

The following PLI routines are not defined in IEEE Std 1364, but ModelSim Verilog
provides them for compatibility with Verilog-XL.

char *acc_decompile_exp(handle condition)

This routine provides similar functionality to the Verilog-XL acc_decompile_expr
routine. The condition argument must be a handle obtained from the acc_handle_condition
routine. The value returned by acc_decompile_exp is the string representation of the
condition expression.

char *tf_dumpfilename(void)

This routine returns the name of the VCD file.

void tf_dumpflush(void)

A call to this routine flushes the VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsimtime(int *aof_hightime)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are
returned by the routine, while the high-order bits are stored in the aof_hightime argument.
ModelSim SE User’s Manual

UM-182 6 - Verilog PLI / VPI

Model
Using 64-bit ModelSim with 32-bit PLI/VPI Applications

If you have 32-bit PLI/VPI applications and wish to use 64-bit ModelSim, you will need to
port your code to 64 bits by moving from the ILP32 data model to the LP64 data model.
We strongly recommend that you consult the 64-bit porting guides for Sun and HP.

64-bit support in the PLI

The PLI function acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string
value of a parameter. Because of this, the function acc_fetch_paramval_str() has been
added to the PLI for this use. acc_fetch_paramval_str() is declared in acc_user.h. It
functions in a manner similar to acc_fetch_paramval() except that it returns a char *.
acc_fetch_paramval_str() can be used on all platforms.
Sim SE User’s Manual

PLI/VPI tracing UM-183
PLI/VPI tracing

The foreign interface tracing feature is available for tracing PLI and VPI function calls.
Foreign interface tracing creates two kinds of traces: a human-readable log of what
functions were called, the value of the arguments, and the results returned; and a set of
C-language files that can be used to replay what the foreign interface code did.

The purpose of tracing files

The purpose of the logfile is to aid you in debugging PLI or VPI code. The primary purpose
of the replay facility is to send the replay files to MTI support for debugging co-simulation
problems, or debugging PLI/VPI problems for which it is impractical to send the PLI/VPI
code. We still need you to send the VHDL/Verilog part of the design to actually execute a
replay, but many problems can be resolved with the trace only.

Invoking a trace

To invoke the trace, call vsim (CR-357) with the -trace_foreign argument:

Syntax

vsim
-trace_foreign <action> [-tag <name>]

Arguments

<action>

Specifies one of the following actions:

-tag <name>

Used to give distinct file names for multiple traces. Optional.

Value Action Result

1 create log only writes a local file called
"mti_trace_<tag>"

2 create replay only writes local files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and replay
ModelSim SE User’s Manual

UM-184 6 - Verilog PLI / VPI

Model
Examples

vsim -trace_foreign 1 mydesign

Creates a logfile.

vsim -trace_foreign 3 mydesign

Creates both a logfile and a set of replay files.

vsim -trace_foreign 1 -tag 2 mydesign

Creates a logfile with a tag of "2".

The tracing operations will provide tracing during all user foreign code-calls, including
PLI/VPI user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog
VCL callbacks.
Sim SE User’s Manual

PLI/VPI tracing UM-185
Debugging PLI/VPI application code

ModelSim Versions 5.7 and later offer the optional C Debug feature. This tool allows you
to interactively debug SystemC/C/C++ source code with the open-source gdb debugger.
See Chapter 14 - C Debug for details. If you don’t have access to C Debug, continue
reading for instructions on how to attach to an external C debugger.

In order to debug your PLI/VPI application code in a debugger, your application code must
be compiled with debugging information (for example, by using the -g option) and without
optimizations (for example, don’t use the -O option). You must then load vsim into a
debugger. Even though vsim is stripped, most debuggers will still execute it. You can
invoke the debugger directly on vsimk, the simulation kernal where your application code
is loaded (for example, "ddd ̀ which vsimk`"), or you can attach the debugger to an already
running vsim process. In the second case, you must attach to the PID for vsimk, and you
must specify the full path to the vsimk executable (for example, "gdb $MTI_HOME/sunos5/
vsimk 1234").

On Solaris, AIX, and Linux systems you can use either gdb or ddd. On HP-UX systems
you can use the wdb debugger from HP. You will need version 1.2 or later.

Since initially the debugger recognizes only vsim's PLI/VPI function symbols, when
invoking the debugger directly on vsim you need to place a breakpoint in the first PLI/VPI
function that is called by your application code. An easy way to set an entry point is to put
a call to acc_product_version() as the first executable statement in your application code.
Then, after vsim has been loaded into the debugger, set a breakpoint in this function. Once
you have set the breakpoint, run vsim with the usual arguments (e.g., "run -c top").

On HP-UX you might see some warning messages that vsim does not have debugging
information available. This is normal. If you are using Exceed to access an HP machine
from Windows NT, it is recommended that you run vsim in command line or batch mode
because your NT machine may hang if you run vsim in GUI mode. Click on the "go"
button, or use F5 or the go command to execute vsim in wdb.

When the breakpoint is reached, the shared library containing your application code has
been loaded. In some debuggers you must use the share command to load the PLI/VPI
application's symbols.

On HP-UX you might see a warning about not finding "__dld_flags" in the object file. This
warning can be ignored. You should see a list of libraries loaded into the debugger. It
should include the library for your PLI/VPI application. Alternatively, you can use share
to load only a single library.

At this point all of the PLI/VPI application's symbols should be visible. You can now set
breakpoints in and single step through your PLI/VPI application code.
ModelSim SE User’s Manual

UM-186 6 - Verilog PLI / VPI

Model
Sim SE User’s Manual

 UM-187
7 - SystemC simulation

Chapter contents
Supported platforms and compiler versions UM-188

Building gcc with custom configuration options UM-188

Usage flow for SystemC-only designs UM-189

Compiling SystemC designs UM-190
Creating a design library UM-190
Modifying SystemC source code UM-190
Invoking the SystemC compiler UM-192
Compiling optimized and/or debug code UM-192
Specifying an alternate g++ installation UM-193
Maintaining portability between OSCI and ModelSim . . . UM-193
Restrictions on compiling with HP aCC UM-194
Switching platforms and compilation UM-194
Using sccom vs. raw C++ compiler UM-195

Linking the compiled source UM-190
sccom -link UM-197

Simulating SystemC designs UM-198
Simulator resolution limit UM-198

Debugging the design UM-201

Differences between ModelSim and the OSCI simulator UM-197
Name association (binding) UM-204
Fixed point types UM-205
OSCI 2.1 features supported UM-205

Troubleshooting SystemC UM-206
Errors during compilation UM-206
Errors during loading UM-206

This chapter describes how to compile and simulate SystemC designs with ModelSim.
Proper name-binding is critical for your success. Read "Name association (binding)" (UM-

204) for information on correctly naming signals, ports and modules in your SystemC
design. ModelSim implements the SystemC language based on the Open SystemC
Initiative (OSCI) SystemC 2.0.1 reference simulator. It is recommended that you obtain the
OSCI functional specification as a reference manual. Visit http://www.systemc.org for
details.

In addition to the functionality described in the OSCI specification, ModelSim for SystemC
includes the following features:

• Single common Graphic Interface for SystemC and HDL languages.

• Extensive support for mixing SystemC, VHDL, and Verilog in the same design (SDF
annotation for HDL only). For detailed information on mixing SystemC with HDL see
Chapter 8 - Mixed-language simulations.
ModelSim SE User’s Manual

UM-188 7 - SystemC simulation

Model
Supported platforms and compiler versions

SystemC runs on a subset of ModelSim supported platforms. The table below shows the
currently supported platforms and compiler versions:

Building gcc with custom configuration options

We only test with our default options. If you use advanced gcc configuration options, we
cannot guarantee that ModelSim will work with those options.

To use a custom gcc build, set the CppPath variable in the modelsim.ini file. This variable
specifies the pathname to the compiler binary you intend to use.

When using a custom gcc, ModelSim requires that the custom gcc be built with several
specific configuration options. These vary on a per-platform basis as shown in the
following table:

If you don't have a GNU binutils2.14 assembler and linker handy, you can use the as and
ld programs distributed with ModelSim. They are located inside the built-in gcc in directory
<install_dir>/modeltech/gcc-3.2-<mtiplatform>/lib/gcc-lib/<gnuplatform>/3.2.

By default ModelSim also uses the following options when configuring built-in gcc.

• --disable-nls

• --enable-languages=c,c++

These are not mandatory, but they do reduce the size of the gcc installation.

Platform Supported compiler versions

HP-UX 11.0 or later aCC 3.45 with associated patches

RedHat Linux 7.2
RedHat Linux Enterprise version 2.1

gcc 3.2.3

RedHat Linux 7.3 or later gcc 3.2 or gcc 3.2.3

SunOS 5.6 or later gcc 3.2

Important: ModelSim SystemC has been tested with the gcc versions available from
ftp.model.com/pub/gcc. Customized versions of gcc may cause problems. We strongly
encourage you to download and use the gcc versions available on our FTP site (login as
anonymous).

Platform Mandatory configuration options

Linux none

Solaris --with-gnu-ld --with-ld=/path/to/binutils-2.14/bin/ld --with-gnu-as
--with-as=/path/to/binutils-2.14/bin/as

HP-UX N/A
Sim SE User’s Manual

Usage flow for SystemC-only designs UM-189
Usage flow for SystemC-only designs

ModelSim allows users to simulate SystemC, either alone or in combination with other
VHDL/Verilog modules. The following is an overview of the usage flow for strictly
SystemC designs. More detailed instructions are presented in the sections that follow.

1 Create and map the working design library with the vlib and vmap statements, as
appropriate to your needs.

2 Modify the SystemC source code as follows:

• Replace sc_main() with an SC_MODULE, and potentially add a process to contain
any testbench code

• Replace sc_start() by using the run (CR-246) command in the GUI

• Remove calls to sc_initialize()

• Export the top level SystemC design unit(s) using the SC_MODULE_EXPORT
macro

• Verify that SystemC signal, ports and modules are explicitly named to avoid port
binding and debugging errors. See "Name association (binding)" (UM-204).

3 Analyze the SystemC source using sccom (CR-248). sccom invokes the native C++
compiler to create the C++ object files in the design library.

See "Using sccom vs. raw C++ compiler" (UM-195) for information on when you are
required to use sccom vs. another C++ compiler.

4 Perform a final link of the C++ source using sccom -link (UM-197). This process creates
a shared object file in the current work library which will be loaded by vsim at runtime.
sccom -link must be re-run before simulation if any new sccom compiles were
performed.

5 Simulate the design using the standard vsim command.

6 Simulate the design using the run command, entered at the vsim command prompt.

7 Debug the design using ModelSim GUI features, including the Source and Wave
windows.
ModelSim SE User’s Manual

UM-190 7 - SystemC simulation

Model
Compiling SystemC designs

To compile SystemC designs, you must

• create a design library

• make a few modifications to the SystemC source code

• run the sccom (CR-248) SystemC compiler.

• run the sccom (CR-248) SystemC linker (sccom -link)

Creating a design library

Before you can compile your design, you must create a library in which to store the
compilation results. Use vlib (CR-344) to create a new library. For example:

vlib work

This creates a library named work. By default, compilation results are stored in the work
library.

The work library is actually a subdirectory named work. This subdirectory contains a
special file named _info. Do not create libraries using UNIX commands – always use the
vlib command (CR-344).

See "Design libraries" (UM-53) for additional information on working with libraries.

Modifying SystemC source code

Several modifications are required to your original SystemC source code.

• Convert sc_main() to a module.
In order for ModelSim to run the SystemC/C++ source code, the control function of
sc_main() must be replaced by a constructor placed within a module at the top level of
the design. The example shown below uses a module called mytop. Any testbench code
inside sc_main() should be moved to a process, normally an SC_THREAD process.
Also, any sc_clock() functions must be moved into the constructor.

• Replace the sc_start() function with the run command and options.
ModelSim uses the run command and its options in place of the sc_start() function. If
sc_main() has multiple sc_start() mixed in with the testbench code, then use an
SC_THREAD() with wait statements to emulate the same behavior. An example of this
is shown below

• Remove calls to sc_initialize().
vsim calls sc_initialize() by default at the end of elaboration.

• Export all top SystemC modules.
For SystemC designs, you must export all top level modules in your design to ModelSim.
You do this with the SC_MODULE_EXPORT(<sc_module_name>) macro. SystemC
templates are not supported as top level or boundary modules. See "Templatized
SystemC modules" (UM-196). The sc_module_name is the name of the top level module
to be simulated in ModelSim. You must specify this macro in any C++ source (.cpp) file.
If the macro is contained in a header file instead of a C++ source file, an error may result.
See "sccom -link errors" (UM-197) for more information.

• Replace any VCD dump file generation functions with appropriate GUI commands.
Sim SE User’s Manual

Compiling SystemC designs UM-191
Examples

The following is a simple example of how to convert sc_main to a module and elaborate it
with vsim.

The run command equivalent to the sc_start(100, SC_NS) statement is:

run 100 ns

Original code (partial) Modified code (partial)

int sc_main(int argc, char* argv[])

{

 sc_signal<bool> mysig;

 mymod mod("mod");

 mod.outp(mysig);

 sc_start(100, SC_NS);

}

SC_MODULE(mytop)

{

 sc_signal<bool> mysig;

 mymod mod;

 SC_CTOR(mytop)

 : mysig("mysig"),

 mod("mod")

 {

 mod.outp(mysig);

 }

};

SC_MODULE_EXPORT(mytop);
ModelSim SE User’s Manual

UM-192 7 - SystemC simulation

Model
This next example is slightly more complex, illustrating the use of sc_main() and signal
assignments, and how you would get the same behavior using ModelSim.

Invoking the SystemC compiler

ModelSim compiles one or more SystemC design units with a single invocation of sccom
(CR-248), the SystemC compiler. The design units are compiled in the order that they appear
on the command line. For SystemC designs, all design units must be compiled just as they
would be for any C++ compilation. An example of an sccom command might be:

sccom -I ../myincludes mytop.cpp mydut.cpp

Compiling optimized and/or debug code
By default, sccom invokes the C++ compiler (g++ or aCC) without any optimizations. If
desired, you can enter any g++/aCC optimization arguments at the sccom command line.

Also, source level debug of SystemC code is not available by default in ModelSim. To
compile your SystemC code for debug, use the g++/aCC -g argument on the sccom
command line.

Original OSCI code (partial) Modified ModelSim code (partial)

int sc_main(int, char**)

{

sc_signal<bool> reset;

counter_top top("top");

sc_clock CLK("CLK", 10, SC_NS, 0.5,

0.0, SC_NS, false);

top.reset(reset);

reset.write(1);

sc_start(5, SC_NS);

reset.write(0);

sc_start(100, SC_NS);

reset.write(1);

sc_start(5, SC_NS);

reset.write(0);

sc_start(100, SC_NS);

}

SC_MODULE(new_top)

{

sc_signal<bool> reset;

counter_top top;

sc_clock CLK;

void sc_main_body();

SC_CTOR(new_top)

: reset("reset"),

 top("top")

{ CLK("CLK", 10, SC_NS, 0.5, 0.0, SC_NS,

false)

top.reset(reset);

SC_THREAD(sc_main_body);

}

};

void

new_top::sc_main_body()

{

reset.write(1);

wait(5, SC_NS);

reset.write(0);

wait(100, SC_NS);

reset.write(1);

wait(5, SC_NS);

reset.write(0);

wait(100, SC_NS);

}

SC_MODULE_EXPORT(new_top);
Sim SE User’s Manual

Compiling SystemC designs UM-193
Specifying an alternate g++ installation

We recommend using the version of g++ that is shipped with ModelSim on its various
supported platforms. However, if you want to use your own installation, you can do so by
setting the CppPath variable in the modelsim.ini file to the g++ executable location.

For example, if your g++ executable is installed in /u/abc/gcc-3.2/bin, then you would set
the variable as follows:

CppPath /u/abc/gcc-3.2/bin

Maintaining portability between OSCI and ModelSim

If you intend to simulate on both ModelSim and the OSCI reference simulator, you can use
the MTI_SYSTEMC macro to execute the ModelSim specific code in your design only
when running ModelSim. The MTI_SYSTEMC macro is defined in the systemc.h header
file, read automatically upon compile. By including #ifdef/else statements in the code, you
can avoid having two copies of the design.

Using the original and modified code shown in the example shown on page 191, you might
write the code as follows:

#ifdef MTI_SYSTEMC //If using the ModelSim simulator, sccom compiles this

SC_MODULE(mytop)

{

 sc_signal<bool> mysig;

 mymod mod;

 SC_CTOR(mytop)

 : mysig("mysig"),

 mod("mod")

 {

 mod.outp(mysig);

 }

};

SC_MODULE_EXPORT(top);

#else //Otherwise, it compiles this

int sc_main(int argc, char* argv[])

{

 sc_signal<bool> mysig;

 mymod mod("mod");

 mod.outp(mysig);

 sc_start(100, SC_NS);

}

#endif
ModelSim SE User’s Manual

UM-194 7 - SystemC simulation

Model
Restrictions on compiling with HP aCC

ModelSim uses the aCC -AA option by default when compiling C++ files on HP-UX. It
does this so cout will function correctly in the systemc.so file. The -AA option tells aCC to
use ANSI-compliant <iostream> rather than cfront-style <iostream.h>. Thus, all C++-
based objects in a program must be compiled with -AA. This means you must use
<iostream> and "using" clauses in your code. Also, you cannot use the -AP option, which
is incompatible with -AA.

Switching platforms and compilation

Compiled SystemC libraries are platform dependent. If you move between platforms, you
must remove all SystemC files from the working library and then recompile your SystemC
source files. To remove SystemC files from the working directory, use the vdel (CR-315)
command with the -allsystemc argument.

If you attempt to load a design that was compiled on a different platform, an error such as
the following occurs:

vsim work.test_ringbuf
Loading work/systemc.so

** Error: (vsim-3197) Load of "work/systemc.so" failed:
work/systemc.so: ELF file data encoding not little-endian.

** Error: (vsim-3676) Could not load shared library
work/systemc.so for SystemC module 'test_ringbuf'.

Error loading design

You can type verror 3197 at the vsim command prompt and get details about what caused
the error and how to fix it.
Sim SE User’s Manual

Compiling SystemC designs UM-195
Using sccom vs. raw C++ compiler

When compiling complex C/C++ testbench environments, it is common to compile code
with many separate runs of the compiler. Often users compile code into archives (.a files),
and then link the archives at the last minute using the -L and -l link options.

When using ModelSim's SystemC, you may wish to compile a portion of your C design
using raw g++ or aCC instead of sccom. Perhaps you have some legacy code or some non-
SystemC utility code that you want to avoid compiling with sccom. You can do this,
however, some caveats and rules apply.

Rules for sccom use

The rules governing when and how you must use sccom are as follows:

1 You must compile all code that references SystemC types or objects using sccom (CR-

248).

2 When using sccom, you should not use the -I compiler option to point the compiler at
any search directories containing OSCI SystemC header files. sccom does this for you
accurately and automatically.

3 If you do use the raw C++ compiler to compile C/C++ functionality into archives or
shared objects, you must then link your design using the -L and -l options with the sccom
-link command. These options effectively pull the non-SystemC C/C++ code into a
simulation image that is used at runtime.

Failure to follow the above rules can result in link-time or elaboration-time errors due to
mismatches between the OSCI SystemC header files and the ModelSim SystemC header
files.

Rules for using raw g++ to compile non-SystemC C/C++ code

If you use raw g++ to compile your non-systemC C/C++ code, the following rules apply:

1 The -fPIC option to g++ should be used during compilation at the sccom command line.

2 For C++ code, you must use the built-in g++ delivered with ModelSim, or (if using a
custom g++) use the one you built and specified with the CppPath .ini variable.

Otherwise binary incompatibilities may arise between code compiled by sccom and code
compiled by raw g++.

Rules for using raw HP aCC to compile non-SystemC C/C++ code

If you use HP’s aCC compiler to compile your non-systemC C/C++ code, the following
rules apply:

1 For C++ code, you should use the +Z and -AA options during compilation

2 You must use HP aCC version 3.45 or higher.
ModelSim SE User’s Manual

UM-196 7 - SystemC simulation

Model
Issues with C++ templates

Templatized SystemC modules

Templatized SystemC modules are not supported for use at:

• the top level of the design

• the boundary between SystemC and higher level HDL modules (i.e. the top level of the
SystemC branch)

To convert a top level templatized SystemC module, you can either specialize the module
to remove the template, or you can create a wrapper module that you can use as the top
module.

For example, let’s say you have a templatized SystemC module as shown below:

template <class T>
class top : public sc_module
{

sc_signal<T> sig1;
.
.
.

};

You can specialize the module by setting T = int, thereby removing the template, as
follows:

class top : public sc_module
{

sc_signal<int> sig 1;
.
.
.

};

Or, alternatively, you could write a wrapper to be used over the template module:

class modelsim_top : public sc_module
{

top<int> actual_top;
.
.
.

};

SC_MODULE_EXPORT(modelsim_top);

Organizing templatized code

Suppose you have a class template, and it contains a certain number of member functions.
All those member functions must be visible to the compiler when it compiles any instance
of the class. For class templates, the C++ compiler generates code for each unique instance
of the class template. Unless it can see the full implementation of the class template, it
cannot generate code for it thus leaving the invisible parts as undefined. Since it is legal to
have undefined symbols in a .so, sccom -link will not produce any errors or warnings.

To make functions visible to the compiler, you should move them to the .h file. ModelSim
requires all functions defined in a .h file to be inlined. For relevant information on inlining
functions, see "Multiple symbol definition errors" (UM-208).
Sim SE User’s Manual

Linking the compiled source UM-197
Linking the compiled source

Once the design has been compiled, it must be linked using the sccom (CR-248) command
with the -link argument.

sccom -link

The sccom -link command argument collects the object files created in the different
design libraries, and uses them to build a shared library (.so) in the current work library. If
you have changed your SystemC source code and recompiled it using sccom, then you must
relink the design by running sccom -link before invoking vsim. Otherwise, your changes
to the code are not recognized by the simulator. Remember that any dependent .a or .o files
should be listed on the sccom -link command line before the .a or .o on which it depends.
For more details on dependencies and other syntax issues, see sccom (CR-248).

sccom -link errors

Most errors occurring during sccom -link are due to multiple symbol definitions caused by
incorrect symbol definitions in header files or by ModelSim’s name association. For
information on fixing errors encountered during linking, see "Errors during loading" (UM-

206)
ModelSim SE User’s Manual

UM-198 7 - SystemC simulation

Model
Simulating SystemC designs

After compiling the SystemC source code, you can simulate your design with vsim (CR-

357). This section discusses simulation from the operating system command prompt.

For SystemC, invoke vsim (CR-357) with the top-level module of the design. This example
invokes vsim (CR-357) on a design:

vsim top_level_module

When the GUI comes up, you can expand the hierarchy of the design to view the SystemC
modules. SystemC objects are denoted by a green diamond.

Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. The default
resolution limit is set to the value specified by the Resolution (UM-624) variable in the
modelsim.ini file. You can view the current resolution by invoking the report command
(CR-238) with the simulator state option.

Overriding the resolution

You can override ModelSim’s default resolution by specifying the -t option on the
command line or by selecting a different Simulator Resolution in the Simulate dialog box.
Available resolutions are: 1x, 10x, or 100x of fs, ps, ns, us, ms, or sec.

For example this command chooses 10 ps resolution:

vsim -t 10ps topmod

You need to be careful when doing this type of operation. If the resolution set by -t is larger
than a delay value in your design (i.e. sc_wait (4,SC_PS);), the delay values in that design
unit are rounded to the closest multiple of the resolution. In the example above, a delay of
4 ps would be rounded to 0 ps.
Sim SE User’s Manual

Simulating SystemC designs UM-199
In addition, you must keep in mind the relationship between the simulator’s resolution and
the SystemC time units specified in the source code. For example, with a time unit usage of:

sc_wait(10, SC_PS);

a simulator resolution of 10ps would be fine. No rounding off of the ones digits in the time
units would occur. However, a specification of:

sc_wait(9, SC_PS);

requires setting the resolution limit to 1ps in order to avoid inaccuracies caused by
rounding.

SystemC defaults to 1ps resolution.That means it is possible for the source code to contain
calls which don’t explicitly specify units. In such cases the SystemC resolution is 1ps. For
example:

sc_clock("clk", 9);

In SystemC, the sc_set_time_resolution() function is used to change the default units
during or after elaboration. This function is not supported in ModelSim, since by the time
it could be called from an executing SystemC model, it would be too late to change the
simulator resolution.

Choosing the resolution

You should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be set unnecessarily small because
in some cases performance will be degraded.
ModelSim SE User’s Manual

UM-200 7 - SystemC simulation

Model
Initialization and cleanup of SystemC state-based code

Constructors and Destructors should be reserved for creating and destroying SystemC
design objects, such as sc_modules or sc_signals. The following 2.1 virtual functions
should be used to initialize and clean up state-based code, such as logfiles or the VCD trace
functionality of SystemC:

• end_of_construction ()
Called after all constructors are called, but before port binding.

• end_of_elaboration ()
Called at the end of elaboration after port binding. This function is available in the
SystemC 2.0.1 reference simulator.

• start_of_simulation ()
Called before simulation starts. Simulation specific initialization code can be placed in
this function.

• end_of_simulation ()
Called before ending the current simulation session.

The call sequence for these functions with respect to the SystemC object construction and
destruction is as follows:

1 Constructors

2 end_of_construction ()

3 end_of_elaboration ()

4 start_of_simulation ()

5 end_of_simulation ()

6 Destructors
Sim SE User’s Manual

Debugging the design UM-201
Debugging the design

All ModelSim’s GUI debugging features within all windows, with the exception of
Dataflow, are fully available for use with SystemC.

Source-level debug

In order to debug your SystemC source code, you must compile the design for debug using
the -g C++ compiler option. You can add this option directly to the sccom (CR-248)
command line on a per run basis, with a command such as:

sccom mytop -g

Or, if you plan to use it every time you run the compiler, you can specify it in the
modelsim.ini file with the SccomCppOptions variable. See "[sccom] SystemC compiler
control variables" (UM-620) for more information.

The source code debugger, C Debug, is automatically invoked when the design is compiled
for debug in this way.
ModelSim SE User’s Manual

UM-202 7 - SystemC simulation

Model
You can set breakpoints in the Source window, and single-step through your SystemC/C++
source code. .

The gdb debugger has a known bug that makes it impossible to set breakpoints reliably in
constructors or destructors. Try to avoid setting breakpoints in constructors of SystemC
objects; it may crash the debugger.
Sim SE User’s Manual

Debugging the design UM-203
You can view and expand SystemC items in the Signals window.

You can also view the processes in the Process window.
ModelSim SE User’s Manual

UM-204 7 - SystemC simulation

Model
Differences between ModelSim and the OSCI simulator

ModelSim is based upon the 2.0.1 reference simulator provided by OSCI. However, there
are some minor but key differences to understand:

• vsim calls sc_initialize() by default at the end of elaboration. The user has to explicitly
call sc_initialize() in the reference simulator. You should remove calls to sc_initialize()
from your code.

• The default time resolution of the reference simulator is 1ps. For vsim it is 1ns. The user
can set the time resolution by using vsim command with the -t option or by modifying
the value of the resolution variable in the modelsim.ini file.

• All SystemC processes without a dont_initialize() modifier are executed once at the end
of elaboration. This can cause print messages to appear from user models before the first
VSIM> prompt occurs. This behavior is normal and necessary in order to achieve
compliance with both the SystemC and HDL LRM’s.

• The run command in ModelSim is equivalent to sc_start(). In the reference simulator,
sc_start() runs the simulation for the duration of time specified by its argument. In
ModelSim the run command (CR-246) runs the simulation for the amount of time
specified by its argument.

• The delta_count() function in the reference simulator returns the cumulative delta count.
In vsim, it returns the delta count since the last time advance. The delta count in vsim is
reset after every time advance.

• The sc_cycle(), sc_start(), sc_main() & sc_set_time_resolution() functions are not
supported in ModelSim.

Name association (binding)

SystemC simulation objects such as modules, primitive channels and ports can be explicitly
named by passing a name to the constructors of said objects. If an object is not constructed
with an explicit name, then the OSCI reference simulator generates an internal name for it,
using names such as "s0", "s1", etc..

ModelSim has implemented its own name association technology for SystemC, attempting
to give reasonable names to the child objects of SC_MODULES, i.e. names that match the
C++ source code names. ModelSim’s name association automatically binds the C++ object
name to any unnamed object.

For example, if the design has a primitive channel sc_signal<bool> foo; that is
constructed without an explicit name, it is named foo in the simulator's database.
Automatic name binding is enabled for each sc_module which makes use of the SC_CTOR
constructor macro. If a module in the design doesn't use the SC_CTOR constructor macro,
name binding can be enabled by adding the SC_MTI_BIND_NAME macro anywhere
inside a public: access area of the module's declaration. See the following sample code:

SC_MODULE(mod_b)
{
public:

sc_in<int> in;
sc_out<int> out;

SC_MTI_BIND_NAME;
Sim SE User’s Manual

Differences between ModelSim and the OSCI simulator UM-205
private:
int a;

public:
mod_b(sc_module_name name);

};

Automatic name binding is supported only for modules declared in header (.h, .hxx) files.
It is not supported when modules are declared in C++ source files (.cpp, .cxx, .cc, etc.).

Disabling automatic name binding

If a C++ source file contains a module that uses an SC_CTOR (or the
SC_MTI_BIND_NAME) macro, you must disable automatic name binding. Otherwise, an
sccom error results. You can disable automatic name binding when you compile your C++
source code using the -nonamebind argument to the sccom (CR-248) command. Disabling
the name binding can also be useful as a workaround to symbol collisions at the time of
linking the compiled source (see "sccom -link errors" (UM-197).

Fixed point types

Contrary to OSCI, ModelSim compiles the SystemC kernel with support for fixed point
types. If you want to compile your own SystemC code to enable that support, you’ll need
to define the compile time macro SC_INCLUDE_FX. You can do this in one of two ways:

• enter the g++/aCC argument -DSC_INCLUDE_FX on the sccom (CR-248) command
line, such as:

sccom -DSC_INCLUDE_FX top.cpp

• add a define statement to the C++ source code before the inclusion of the systemc.h, as
shown below:

#define SC_INCLUDE_FX
#include "systemc.h"

OSCI 2.1 features supported

ModelSim is fully compliant with the OSCI version 2.0.1. In addition, the following 2.1
features are supported:

• end_of_construction()

• start_of_simulation()

• end_of_simulation()

For more information regarding these functions, see "Initialization and cleanup of SystemC
state-based code" (UM-200).
ModelSim SE User’s Manual

UM-206 7 - SystemC simulation

Model
Troubleshooting SystemC

In the process of modifying your SystemC design to run on ModelSim, you may encounter
several common errors. This section highlights some actions you can take to correct such
errors.

Errors during compilation

ModelSim’s name association feature (gensrc) runs primarily at sccom -link time. A key
element of the feature is that C++ source files are generated in the work library. The C++
source files include user header files that define user sc_module classes. These files are
compiled by the C++ compiler during sccom -link operation. Occasionally, this
compilation phase generates errors, such as the following:

/_sc/gensrc_obj/gensrc_0.cpp:4:\
gates.h:8: redefinition of `struct my_gate'
gates.h:8: previous definition of `struct my_gate'
** Error: (sccom-6142) Compilation failed.

All known gensrc compilation errors occur due to lack of include guards in user header
files. An include guard is a construct used to guard against redundant text inclusion in a .cpp
file during compilation.

A typical include guard for a header file named filename.h would look like this:

#ifndef INCLUDED_FILENAME_H
#define INCLUDED_FILENAME_H
<main body of filename.h goes here>
typedef unsigned long u_long; // Example contents
#endif

When this construct is used, it makes it OK for users to "#include" in their header file more
than once during the same compilation, e.g.:

#include "filename.h"
#include "filename.h"

However, this typically doesn't happen. More often something like this happens:

#include "foo.h"
#include "bar.h"

in which both foo.h and bar.h have a #include filename.h directive.

Errors during loading

When simulating your SystemC design, you might get a "failed to load sc lib" message
because of an undefined symbol, looking something like this:

Loading /home/cmg/newport2_systemc/chip/vhdl/work/systemc.so

** Error: (vsim-3197) Load of "/home/cmg/newport2_systemc/chip/vhdl/work/
systemc.so" failed: ld.so.1:

/home/icds_nut/modelsim/5.8a/sunos5/vsimk: fatal: relocation error: file

/home/cmg/newport2_systemc/chip/vhdl/work/systemc.so: symbol
_Z28host_respond_to_vhdl_requestPm:
Sim SE User’s Manual

Troubleshooting SystemC UM-207
referenced symbol not found.

** Error: (vsim-3676) Could not load shared library /home/cmg/
newport2_systemc/chip/vhdl/work/systemc.so for SystemC module 'host_xtor'.

Source of undefined symbol message

The causes for such an error could be:

• missing definition

• bad link order specified in sccom -link

• multiply defined symbols

Missing definition

If the undefined symbol is a C function in your code or a library you are linking with, be
sure that you declared it as an extern "C" function:

extern "C" void myFunc();

This should appear in any header files include in your C++ sources compiled by sccom. It
tells the compiler to expect a regular C function; otherwise the compiler decorates the name
for C++ and then the symbol can't be found.

Also, be sure that you actually linked with an object file that fully defines the symbol. You
can use the "nm" utility on Unix platforms to test your SystemC object files and any
libraries you link with your SystemC sources. For example, assume you ran the following
commands:

sccom test.cpp
sccom -link libSupport.a

If there is an unresolved symbol and it is not defined in your sources, it should be correctly
defined in any linked libraries:

nm libSupport.a | grep "mySymbol"

Misplaced "-link" option

The order in which you place the -link option within the sccom -link command is critical.
There is a big difference between the following two commands:

sccom -link liblocal.a

and

sccom libmystuff.a -link

The first command ensures that your SystemC object files are seen by the linker before the
library "liblocal.a" and the second command ensures that "liblocal.a" is seen first. Some
linkers can look for undefined symbols in libraries that follow the undefined reference
while others can look both ways. For more information on command syntax and
dependencies, see sccom (CR-248).
ModelSim SE User’s Manual

UM-208 7 - SystemC simulation

Model
Multiple symbol definition errors

The most common type of error found during sccom -link operation is the multiple symbol
definition error. This typically arises when the same global symbol is present in more than
one .o file. The error message looks something like this:

work/sc/gensrc/test_ringbuf.o: In function
`test_ringbuf::clock_generator(void)':

work/sc/gensrc/test_ringbuf.o(.text+0x4): multiple definition of
`test_ringbuf::clock_generator(void)'

work/sc/test_ringbuf.o(.text+0x4): first defined here

A common cause of multiple symbol definitions involves incorrect definition of symbols
in header files. If you have an out-of-line function (one that isn’t preceded by the "inline"
keyword) or a variable defined (i.e. not just referenced or prototyped, but truly defined) in
a .h file, you can't include that .h file in more than one .cpp file.

Text in .h files is included into .cpp files by the C++ preprocessor. By the time the compiler
sees the text, it's just as if you had typed the entire text from the .h file into the .cpp file. So
a .h file included into two .cpp files results in lots of duplicate text being processed by the
C++ compiler when it starts up. Include guards are a common technique to avoid duplicate
text problems. See "Errors during compilation" (UM-206) for more information on include
guards.

If an .h file has an out-of-line function defined, and that .h file is included into two .c files,
then the out-of-line function symbol will be defined in the two corresponding. o files. This
leads to a multiple symbol definition error during sccom -link.

To solve this problem, add the "inline" keyword to give the function "internal linkage".
This makes the function internal to the .o file, and prevents the function's symbol from
colliding with a symbol in another .o file.

For free functions or variables, you could modify the function definition by adding the
"static" keyword instead of "inline", although "inline" is better for efficiency.

Sometimes compilers do not honor the "inline" keyword. In such cases, you should move
your function(s) from a header file into an out-of-line implementation in a .cpp file.

Multiple symbol definitions caused by ModelSim’s name association

Another cause of errors is due to ModelSim’s name association feature. It is important to
realize that the name association feature automatically generates .cpp files in the work
library. These files "include" your header files. Thus, while it might appear as though you
have included your header file in only one .cpp file, from the linker’s point of view, it is
included in multiple .cpp files.

If name association is causing multiple symbol definition errors, you should eliminate the
errors by using the techniques mentioned above (i.e. adding the "inline" or "static"
keywords, as appropriate). Another solution is to use the sccom -nonamebind argument to
turn off name association. However, this is not recommended, since design debug will be
heavily compromised without name association.

For related information, see "Name association (binding)" (UM-204).
Sim SE User’s Manual

 UM-209
8 - Mixed-language simulations

Chapter contents
Usage flow for mixed-language simulations UM-210

Separate compilers, common design libraries UM-211
Access limitations in mixed-language designs UM-211
Simulator resolution limit UM-211
Runtime modeling semantics UM-212

Mapping data types UM-213
Verilog to VHDL mappings UM-213
VHDL to Verilog mappings UM-216
Verilog and SystemC signal interaction and mappings . . . UM-217
VHDL and SystemC signal interaction and mappings . . . UM-221

VHDL: instantiating Verilog UM-225
Verilog instantiation criteria UM-225
Component declaration UM-225
vgencomp component declaration UM-226
Modules with unnamed ports UM-228

Verilog: instantiating VHDL UM-229
VHDL instantiation criteria UM-229
SDF annotation UM-230

SystemC: instantiating Verilog UM-231
Verilog instantiation criteria UM-231
SystemC foreign module declaration UM-231

Verilog: instantiating SystemC UM-234
SystemC instantiation criteria UM-234
Exporting SystemC modules UM-234
sccom -link UM-234

SystemC: instantiating VHDL UM-235
VHDL instantiation criteria UM-235
SystemC foreign module declaration UM-235

VHDL: instantiating SystemC UM-237
SystemC instantiation criteria UM-237
Component declaration UM-237
vgencomp component declaration UM-238
Exporting SystemC modules UM-238
sccom -link UM-238

ModelSim single-kernel simulation allows you to simulate designs that are written in
VHDL, Verilog, and/or SystemC. The boundaries between languages are enforced at the
level of a design unit. This means that although a design unit itself must be entirely of one
language type, it may instantiate design units from another language. Any instance in the
design hierarchy may be a design unit from another language without restriction.
ModelSim SE User’s Manual

UM-210 8 - Mixed-language simulations

Model
Usage flow for mixed-language simulations

The usage flow for mixed-language designs is as follows:

1 Analyze HDL source code using vcom or vlog and C++ source code using sccom.
Analyze all modules in the design following order-of-analysis rules.

• For SystemC designs with HDL instances:
You must create a SystemC foreign module declaration for all Verilog and VHDL
instances (UM-234).

• For Verilog/VHDL designs with SystemC instances:
You must export any SystemC instances that will be directly instantiated by Verilog/
VHDL using the SC_EXPORT_MODULE macro. Exported SystemC modules can be
instantianted just as you would instantiate any Verilog/VHDL module or design unit.

2 Simulate the design by invoking vsim.

• For designs containing SystemC code:
You must first prepare the design by running sccom -link (UM-234) prior to running
simulation.

3 Issue run commands from the ModelSim GUI.

4 Debug your design using ModelSim GUI features. Note that objects inside SystemC
modules are unavailable for viewing in the Dataflow window.
Sim SE User’s Manual

Separate compilers, common design libraries UM-211
Separate compilers, common design libraries

VHDL source code is compiled by vcom (CR-303) and the resulting compiled design units
(entities, architectures, configurations, and packages) are stored in the working library.
Likewise, Verilog source code is compiled by vlog (CR-345) and the resulting design units
(modules and UDPs) are stored in the working library.

SystemC/C++ source code is compiled with the sccom command (CR-248). The resulting
object code is compiled into the working library.

Design libraries can store any combination of design units from any of the supported
languages, provided the design unit names do not overlap (VHDL design unit names are
changed to lower case). See "Design libraries" (UM-53) for more information about library
management.

Access limitations in mixed-language designs

The Verilog language allows hierarchical access to objects throughout the design. This is
not the case with VHDL or SystemC. You cannot directly read or change a VHDL or
SystemC object (signal, variable, generic, etc.) with a hierarchical reference within a
mixed-language design. Furthermore, you cannot directly access a Verilog object up or
down the hierarchy if there is an interceding VHDL or SystemC block.

You have two options for accessing VHDL objects or Verilog objects "obstructed" by an
interceding block: 1) propagate the value through the ports of all design units in the
hierarchy; 2) use the Signal Spy procedures or system tasks (see Chapter 16 - Signal Spy
for details).

To access obstructed SystemC objects, propagate the value through the ports of all design
units in the hierarchy.

Simulator resolution limit

If the root of the mixed design is VHDL, then VHDL simulator resolution rules are used
(see "Simulator resolution limit" (UM-211) for VHDL details). If the root of the mixed
design is Verilog, Verilog rules are used (see "Simulator resolution limit" (UM-117) for
Verilog details), but no Verilog modules that are instantiated under VHDL models are
considered when looking for the minimum simulation precision.

Note that the OSCI SystemC simulator allows users to dynamically change the simulator’s
resolution by using the sc_set_time_resolution() API. This is not permitted in ModelSim.
You must be aware of your required SystemC resolution in advance, and then make sure
ModelSim is running with a resolution at least as fine as the SystemC resolution.

If a design contains SystemC modules and Verilog modules, the default resolution
(specified in modelsim.ini or by using the vsim -t command line option) must be at least as
fine as the finest Verilog ‘timescale setting in the design. Otherwise an elaboration error
occurs.
ModelSim SE User’s Manual

UM-212 8 - Mixed-language simulations

Model
Runtime modeling semantics

The ModelSim simulator is compliant with all pertinent Language Reference Manuals. To
achieve this compliance, the sequence of operations in one simulation iteration (i.e. delta
cycle) is as follows:

• SystemC processes are run

• Signal updates are made

• HDL processes are run
Sim SE User’s Manual

Mapping data types UM-213
Mapping data types

Cross-language (HDL) instantiation does not require any extra effort on your part. As
ModelSim loads a design it detects cross-language instantiations – made possible because
a design unit's language type can be determined as it is loaded from a library – and the
necessary adaptations and data type conversions are performed automatically. SystemC
and HDL cross-language instantiation requires minor modification of SystemC source code
(addition of SC_EXPORT_MODULE, sc_foreign_module, etc.).

A VHDL instantiation of Verilog may associate VHDL signals and values with Verilog
ports and parameters. Likewise, a Verilog instantiation of VHDL may associate Verilog
nets and values with VHDL ports and generics. The same holds true for SystemC and
VHDL/Verilog ports. However, SystemC does not support cross-language generic/
parameter propagation at this time.

ModelSim automatically maps between the language data types as shown in the sections
below.

Verilog to VHDL mappings

VHDL generics

When a scalar type receives a real value, the real is converted to an integer by truncating
the decimal portion.

Type time is treated specially: the Verilog number is converted to a time value according
to the ‘timescale directive of the module.

Physical and enumeration types receive a value that corresponds to the position number
indicated by the Verilog number. In VHDL this is equivalent to T'VAL(P), where T is the
type, VAL is the predefined function attribute that returns a value given a position number,
and P is the position number.

Verilog parameters

VHDL type Verilog type

integer integer or real

real integer or real

time integer or real

physical integer or real

enumeration integer or real

string string literal

VHDL type Verilog type

integer integer

real real
ModelSim SE User’s Manual

UM-214 8 - Mixed-language simulations

Model
The type of a Verilog parameter is determined by its initial value.

Verilog ports

The allowed VHDL types for ports connected to Verilog nets and for signals connected to
Verilog ports are:

The vl_logic type is an enumeration that defines the full state set for Verilog nets, including
ambiguous strengths. The bit and std_logic types are convenient for most applications, but
the vl_logic type is provided in case you need access to the full Verilog state set. For
example, you may wish to convert between vl_logic and your own user-defined type. The
vl_logic type is defined in the vl_types package in the pre-compiled verilog library. This
library is provided in the installation directory along with the other pre-compiled libraries
(std and ieee). The source code for the vl_types package can be found in the files installed
with ModelSim. (See <install_dir>\modeltech\vhdl_src\verilog\vltypes.vhd.)

Verilog states

Verilog states are mapped to std_logic and bit as follows:

string string

Allowed VHDL types

bit

bit_vector

std_logic

std_logic_vector

vl_logic

vl_logic_vector

Verilog std_logic bit

HiZ 'Z' '0'

Sm0 'L' '0'

Sm1 'H' '1'

SmX 'W' '0'

Me0 'L' '0'

Me1 'H' '1'

MeX 'W' '0'

We0 'L' '0'

VHDL type Verilog type
Sim SE User’s Manual

Mapping data types UM-215
For Verilog states with ambiguous strength:

• bit receives '0'

• std_logic receives 'X' if either the 0 or 1 strength component is greater than or equal to
strong strength

• std_logic receives 'W' if both the 0 and 1 strength components are less than strong
strength

We1 'H' '1'

WeX 'W' '0'

La0 'L' '0'

La1 'H' '1'

LaX 'W' '0'

Pu0 'L' '0'

Pu1 'H' '1'

PuX 'W' '0'

St0 '0' '0'

St1 '1' '1'

StX 'X' '0'

Su0 '0' '0'

Su1 '1' '1'

SuX 'X' '0'

Verilog std_logic bit
ModelSim SE User’s Manual

UM-216 8 - Mixed-language simulations

Model
VHDL to Verilog mappings

VHDL type bit is mapped to Verilog states as follows:

VHDL type std_logic is mapped to Verilog states as follows:

bit Verilog

'0' St0

'1' St1

std_logic Verilog

'U' StX

'X' StX

'0' St0

'1' St1

'Z' HiZ

'W' PuX

'L' Pu0

'H' Pu1

'–' StX
Sim SE User’s Manual

Mapping data types UM-217
Verilog and SystemC signal interaction and mappings

SystemC has a more complex signal-level interconnect scheme than Verilog. Design units
are interconnected via hierarchical and primitive channels. An sc_signal<> is one type of
primitive channel. The following section discusses how various SystemC channel types
map to Verilog wires when connected to each other across the language boundary.

Channel and Port type mapping

The following port type mapping table lists all channels. Three types of primitive channels
and 1 hierarchical channel are supported on the language boundary (SystemC modules
connected to Verilog modules).

Channels Ports Verilog mapping

sc_signal<type> sc_in<type>
sc_out<type>
sc_inout<type>

Depends on type. See table
entitled "Data type mapping" (UM-

218).

sc_signal_rv<width> sc_in_rv<width>
sc_out_rv<width>
sc_inout_rv<width>

wire [width-1:0]

sc_signal_resolved sc_in_resolved
sc_out_resolved
sc_inout_resolved

wire [width-1:0]

sc_clock sc_in_clk
sc_out_clk
sc_inout_clk

wire

sc_mutex N/A Not supported on language
boundary

sc_fifo sc_fifo_in
sc_fifo_out
sc_fifo_inout

Not supported on language
boundary

sc_semaphore N/A Not supported on language
boundary

sc_buffer N/A Not supported on language
boundary

user-defined user-defined Not supported on language
boundary
ModelSim SE User’s Manual

UM-218 8 - Mixed-language simulations

Model
Data type mapping

SystemC’s sc_signal<> types are mapped to Verilog types as follows:

SystemC Verilog

bool, sc_bit wire

sc_logic wire

sc_bv<width> wire [width-1:0]

sc_lv<width> wire [width-1:0]

sc_int<width>, sc_uint<width> wire [width-1:0]

char, unsigned char wire [7:0]

int, unsigned int wire [31:0]

long, unsigned long wire [31:0]

sc_bigint<width>,
sc_biguint<width>

Not supported on language boundary

sc_fixed<W,I,Q,O,N>,
sc_ufixed<W,I,Q,O,N>

Not supported on language boundary

short, unsigned short Not supported on language boundary

long long, unsigned long long Not supported on language boundary

float Not supported on language boundary

double Not supported on language boundary

enum Not supported on language boundary

pointers Not supported on language boundary

class Not supported on language boundary

struct Not supported onlanguage boundary

union Not supported on language boundary

bit_fields Not supported on language boundary
Sim SE User’s Manual

Mapping data types UM-219
Port direction

Verilog port directions are mapped to SystemC as follows:

Verilog to SystemC state mappings

Verilog states are mapped to sc_logic, sc_bit, and bool as follows:

Verilog SystemC

input sc_in<type>, sc_in_resolved, sc_in_rv<width>

output sc_out<type>, sc_out_resolved, sc_out_rv<width>

inout sc_inout<type>, sc_inout_resolved, sc_inout_rv<width>

Verilog sc_logic sc_bit bool

HiZ 'Z' '0' false

Sm0 '0' '0' false

Sm1 '1' '1' true

SmX 'X' '0' false

Me0 '0' '0' false

Me1 '1' '1' true

MeX 'X' '0' false

We0 '0' '0' false

We1 '1' '1' true

WeX 'X' '0' false

La0 '0' '0' false

La1 '1' '1' true

LaX 'X' '0' false

Pu0 '0' '0' false

Pu1 '1' '1' true

PuX 'X' '0' false

St0 '0' '0' false

St1 '1' '1' true

StX 'X' '0' false

Su0 '0' '0' false

Su1 '1' '1' true
ModelSim SE User’s Manual

UM-220 8 - Mixed-language simulations

Model
For Verilog states with ambiguous strength:

• sc_bit receives '1' if the value component is 1, else it receives ’0’

• bool receives true if the value component is 1, else it receives false

• sc_logic receives 'X' if the value component is X, H, or L

• sc_logic receives '0' if the value component is 0

• sc_logic receives ’1’ if the value component is 1

SystemC to Verilog state mappings

SystemC type bool is mapped to Verilog states as follows:

SystemC type sc_bit is mapped to Verilog states as follows:

SystemC type sc_logic is mapped to Verilog states as follows:

SuX 'X' '0' false

bool Verilog

false St0

true St1

sc_bit Verilog

'0' St0

'1' St1

sc_logic Verilog

'0' St0

'1' St1

'Z' HiZ

'X' StX

Verilog sc_logic sc_bit bool
Sim SE User’s Manual

Mapping data types UM-221
VHDL and SystemC signal interaction and mappings

SystemC has a more complex signal-level interconnect scheme than VHDL. Design units
are interconnected via hierarchical and primitive channels. An sc_signal<> is one type of
primitive channel. The following section discusses how various SystemC channel types
map to VHDL types when connected to each other across the language boundary.

Port type mapping

The following port type mapping table lists all channels. Three types of primitive channels
and 1 hierarchical channel are supported on the language boundary (SystemC modules
connected to VHDL modules)..

Data type mapping

SystemC’s sc_signal types are mapped to VHDL types as follows

Channels Ports VHDL mapping

sc_signal<type> sc_in<type>
sc_out<type>
sc_inout<type>

Depends on type. See table entitled
"Data type mapping" (UM-221)
below.

sc_signal_rv<width> sc_in_rv<width>
sc_out_rv<width>
sc_inout_rv<width>

std_logic_vector(width-1 downto 0)

sc_signal_resolved sc_in_resolved
sc_out_resolved
sc_inout_resolved

std_logic

sc_clock sc_in_clk
sc_out_clk
sc_inout_clk

bit/std_logic/boolean

sc_mutex N/A Not supported on language boundary

sc_fifo sc_fifo_in
sc_fifo_out
sc_fifo_inout

Not supported on language boundary

sc_semaphore N/A Not supported on language boundary

sc_buffer N/A Not supported on language boundary

user-defined user-defined Not supported on language boundary

SystemC VHDL

bool, sc_bit bit/std_logic/boolean

sc_logic std_logic

sc_bv<width> bit_vector(width-1 downto 0)
ModelSim SE User’s Manual

UM-222 8 - Mixed-language simulations

Model
Port direction mapping

VHDL port directions are mapped to SystemC as follows:

sc_lv<width> std_logic_vector(width-1 downto 0)

sc_int<W>, sc_uint<width> bit_vector(width-1 downto 0)

char, unsigned char bit_vector(7 downto 0)

int, unsigned int bit_vector(31 downto 0)

long, unsigned long bit_vector(31 downto 0)

sc_bigint<width>,
sc_biguint<width>

Not supported on language boundary

sc_fixed<W,I,Q,O,N>,
sc_ufixed<W,I,Q,O,N>

Not supported on language boundary

short, unsigned short Not supported on language boundary

long long, unsigned long Not supported on language boundary

float Not supported on language boundary

double Not supported on language boundary

enum Not supported on language boundary

pointers Not supported on language boundary

class Not supported on language boundary

structure Not supported onlanguage boundary

union Not supported on language boundary

bit_fields Not supported on language boundary

VHDL SystemC

in sc_in<type>, sc_in_resolved, sc_in_rv<w>

out sc_out<type>, sc_out_resolved, sc_out_rv<w>

inout sc_inout<type>, sc_inout_resolved,
sc_inout_rv<w>

buffer sc_out<type>, sc_out_resolved, sc_out_rv<w>

SystemC VHDL
Sim SE User’s Manual

Mapping data types UM-223
VHDL to SystemC state mapping

VHDL states are mapped to sc_logic, sc_bit, and bool as follows:

std_logic sc_logic sc_bit bool

'U' 'X' '0' false

'X' 'X' '0' false

'0' '0' '0' false

'1' '1' '1' true

'Z' 'Z' '0' false

'W' 'X' '0' false

'L' '0' '0' false

'H' '1' '1' true

'-' 'X' '0' false
ModelSim SE User’s Manual

UM-224 8 - Mixed-language simulations

Model
SystemC to VHDL state mapping

SystemC type bool is mapped to VHDL boolean as follows:

SystemC type sc_bit is mapped to VHDL bit as follows:

SystemC type sc_logic is mapped to VHDL std_logic states as follows:

bool VHDL

false false

true true

sc_bit VHDL

'0' '0'

'1' '1'

sc_logic std_logic

'0' '0'

'1' '1'

'Z' 'Z'

'X' 'X'
Sim SE User’s Manual

VHDL: instantiating Verilog UM-225
VHDL: instantiating Verilog

Once you have generated a component declaration for a Verilog module, you can
instantiate the component just like any other VHDL component. You can reference a
Verilog module in the entity aspect of a component configuration – all you need to do is
specify a module name instead of an entity name. You can also specify an optional
secondary name for an optimized sub-module. Further, you can reference a Verilog
configuration in the configuration aspect of a VHDL component configuration - just
specify a Verilog configuration name instead of a VHDL configuration name.

Verilog instantiation criteria

A Verilog design unit may be instantiated within VHDL if it meets the following criteria:

• The design unit is a module or configuration. UDPs are not allowed.

• The ports are named ports (see "Modules with unnamed ports" (UM-228) below).

• The ports are not connected to bidirectional pass switches (it is not possible to handle pass
switches in VHDL).

Component declaration

A Verilog module that is compiled into a library can be referenced from a VHDL design as
though the module is a VHDL entity. Likewise, a Verilog configuration can be referenced
as though it were a VHDL configuration.

The interface to the module can be extracted from the library in the form of a component
declaration by running vgencomp (CR-318). Given a library and module name, vgencomp
(CR-318) writes a component declaration to standard output.

The default component port types are:

• std_logic

• std_logic_vector

Optionally, you can choose:

• bit and bit_vector

• vl_logic and vl_logic_vector

VHDL and Verilog identifiers

The VHDL identifiers for the component name, port names, and generic names are the
same as the Verilog identifiers for the module name, port names, and parameter names. If
a Verilog identifier is not a valid VHDL 1076-1987 identifier, it is converted to a VHDL
1076-1993 extended identifier (in which case you must compile the VHDL with the -93 or
higher switch). Any uppercase letters in Verilog identifiers are converted to lowercase in
the VHDL identifier, except in the following cases:

• The Verilog module was compiled with the -93 switch. This means vgencomp (CR-318)
should use VHDL 1076-1993 extended identifiers in the component declaration to
preserve case in the Verilog identifiers that contain uppercase letters.
ModelSim SE User’s Manual

UM-226 8 - Mixed-language simulations

Model
• The Verilog module, port, or parameter names are not unique unless case is preserved. In
this event, vgencomp (CR-318) behaves as if the module was compiled with the -93
switch for those names only.

If you use Verilog identifiers where the names are unique by case only, use the -93
argument when compiling mixed-language designs.

Examples

If the Verilog module is compiled with -93:

vgencomp component declaration

vgencomp (CR-318) generates a component declaration according to these rules:

Generic clause

A generic clause is generated if the module has parameters. A corresponding generic is
defined for each parameter that has an initial value that does not depend on any other
parameters.

Verilog identifier VHDL identifier

topmod topmod

TOPMOD topmod

TopMod topmod

top_mod top_mod

_topmod _topmod\

\topmod topmod

\\topmod\ \topmod\

Verilog identifier VHDL identifier

topmod topmod

TOPMOD \TOPMOD\

TopMod \TopMod\

top_mod top_mod

_topmod _topmod\

\topmod topmod

\\topmod\ \topmod\
Sim SE User’s Manual

VHDL: instantiating Verilog UM-227
The generic type is determined by the parameter's initial value as follows:

The default value of the generic is the same as the parameter's initial value.

Examples

Port clause

A port clause is generated if the module has ports. A corresponding VHDL port is defined
for each named Verilog port.

You can set the VHDL port type to bit, std_logic, or vl_logic. If the Verilog port has a
range, then the VHDL port type is bit_vector, std_logic_vector, or vl_logic_vector. If the
range does not depend on parameters, then the vector type will be constrained accordingly,
otherwise it will be unconstrained.

Examples

Configuration declarations are allowed to reference Verilog modules in the entity aspects
of component configurations. However, the configuration declaration cannot extend into a
Verilog instance to configure the instantiations within the Verilog module.

Parameter value Generic type

integer integer

real real

string literal string

Verilog parameter VHDL generic

parameter p1 = 1 - 3; p1 : integer := -2;

parameter p2 = 3.0; p2 : real := 3.000000;

parameter p3 = "Hello"; p3 : string := "Hello";

Verilog port VHDL port

input p1; p1 : in std_logic;

output [7:0] p2; p2 : out std_logic_vector(7 downto 0);

output [4:7] p3; p3 : out std_logic_vector(4 to 7);

inout [width-1:0] p4; p4 : inout std_logic_vector;
ModelSim SE User’s Manual

UM-228 8 - Mixed-language simulations

Model
Modules with unnamed ports

Verilog allows modules to have unnamed ports, whereas VHDL requires that all ports have
names. If any of the Verilog ports are unnamed, then all are considered to be unnamed, and
it is not possible to create a matching VHDL component. In such cases, the module may
not be instantiated from VHDL.

Unnamed ports occur when the module port list contains bit-selects, part-selects, or
concatenations, as in the following example:

module m(a[3:0], b[1], b[0], {c,d});
input [3:0] a;
input [1:0] b;
input c, d;

endmodule

Note that a[3:0] is considered to be unnamed even though it is a full part-select. A common
mistake is to include the vector bounds in the port list, which has the undesired side effect
of making the ports unnamed (which prevents the user from connecting by name even in
an all Verilog design).

Most modules having unnamed ports can be easily rewritten to explicitly name the ports,
thus allowing the module to be instantiated from VHDL. Consider the following example:

module m(y[1], y[0], a[1], a[0]);
output [1:0] y;
input [1:0] a;

endmodule

Here is the same module rewritten with explicit port names added:

module m(.y1(y[1]), .y0(y[0]), .a1(a[1]), .a0(a[0]));
output [1:0] y;
input [1:0] a;

endmodule

"Empty" ports

Verilog modules may have "empty" ports, which are also unnamed, but they are treated
differently from other unnamed ports. If the only unnamed ports are "empty", then the other
ports may still be connected to by name, as in the following example:

module m(a, , b);
input a, b;

endmodule

Although this module has an empty port between ports "a" and "b", the named ports in the
module can still be connected to from VHDL.
Sim SE User’s Manual

Verilog: instantiating VHDL UM-229
Verilog: instantiating VHDL

You can reference a VHDL entity or configuration from Verilog as though the design unit
is a module or a configuration of the same name.

VHDL instantiation criteria

A VHDL design unit may be instantiated within Verilog if it meets the following criteria:

• The design unit is an entity/architecture pair or a configuration.

• The entity ports are of type bit, bit_vector, std_ulogic, std_ulogic_vector, vl_ulogic,
vl_ulogic_vector, or their subtypes. The port clause may have any mix of these types.

• The generics are of type integer, real, time, physical, enumeration, or string. String is the
only composite type allowed.

Entity/architecture names and escaped identifiers

An entity name is not case sensitive in Verilog instantiations. The entity default architecture
is selected from the work library unless specified otherwise. Since instantiation bindings
are not determined at compile time in Verilog, you must instruct the simulator to search
your libraries when loading the design. See "Library usage" (UM-111) for more information.

Alternatively, you can employ the escaped identifier to provide an extended form of
instantiation:

\mylib.entity(arch) u1 (a, b, c);
\mylib.entity u1 (a, b, c);
\entity(arch) u1 (a, b, c);

If the escaped identifier takes the form of one of the above and is not the name of a design
unit in the work library, then the instantiation is broken down as follows:

• library = mylib

• design unit = entity

• architecture = arch

Named port associations

Port associations may be named or positional. Use the same port names and port positions
that appear in the entity.

Named port associations are not case sensitive unless a VHDL port name is an extended
identifier (1076-1993). If the VHDL port name is an extended identifier, the association is
case sensitive and the VHDL identifier’s leading and trailing backslashes are removed
before comparison.

Generic associations

Generic associations are provided via the module instance parameter value list. List the
values in the same order that the generics appear in the entity. Parameter assignment to
generics is not case sensitive.

The defparam statement is not allowed for setting generic values.
ModelSim SE User’s Manual

UM-230 8 - Mixed-language simulations

Model
SDF annotation

A mixed VHDL/Verilog design can also be annotated with SDF. See "SDF for mixed
VHDL and Verilog designs" (UM-554) for more information.
Sim SE User’s Manual

SystemC: instantiating Verilog UM-231
SystemC: instantiating Verilog

To instantiate Verilog modules into a SystemC design, you must first create a "SystemC
foreign module declaration" (UM-231) for each Verilog module. Once you have created the
foreign module declaration, you can instantiate the foreign module just like any other
SystemC module.

Verilog instantiation criteria

A Verilog design unit may be instantiated within SystemC if it meets the following criteria:

• The design unit is a module (UDPs and Verilog primitives are not allowed).

• The ports are named ports (Verilog allows unnamed ports).

• The Verilog module name must be a valid C++ identifier.

• The ports are not connected to bidirectional pass switches (it is not possible to handle pass
switches in SystemC).

The current release does not allow users to perform parameter overrides when instantiating
Verilog from SystemC.

A Verilog module that is compiled into a library can be instantiated in a SystemC design as
though the module were a SystemC module by passing the Verilog module name to the
foreign module constructor. For an illustration of this, see "Example #1" (UM-232).

SystemC and Verilog identifiers

The SystemC identifiers for the module name and port names are the same as the Verilog
identifiers for the module name and port names. Verilog identifiers must be valid C++
identifiers. SystemC and Verilog are both case sensitive.

SystemC foreign module declaration

In cases where you want to run a mixed simulation with SystemC and Verilog, you must
generate and declare a foreign module that stands in for each Verilog module instantiated
under SystemC. The foreign modules can be created in one of two ways:

• running scgenmod, a utility that automatically generates your foreign module declaration
(much like vgencomp generates a component declaration)

• modifying your SystemC source code manually

Using scgenmod

After you have analyzed the design, you can generate a foreign module declaration with an
scgenmod command (CR-251) similar to the following:

scgenmod mod1

where mod1 is a Verilog module. A foreign module declaration for the specified module is
written to stdout.
ModelSim SE User’s Manual

UM-232 8 - Mixed-language simulations

Model
Guidelines for manual creation

Apply the following guidelines to the creation of foreign modules. A foreign module:

• contains ports corresponding to VHDL or Verilog ports. These ports must be explicitly
named in the foreign module’s constructor initializer list.

• must not contain any internal design elements such as child instances, primitive channels,
or processes.

• must pass a secondary constructor argument denoting the module’s HDL name to the
sc_foreign_module base class constructor. For VHDL, the HDL name can be in the
format [<lib>.]<primary>[(<secondary>)] or [<lib>.]<conf>. For Verilog, the HDL
name is simply the Verilog module name corresponding to the foreign module, or
[<lib>].<module>.

Example #1

A sample Verilog module to be instantiated in a SystemC design is:

module vcounter (clock, topcount, count);

input clock;
input topcount;
output count;

reg count;
...

endmodule

The SystemC foreign module declaration for the above Verilog module is:

class counter : public sc_foreign_module {
public:

sc_in<bool> clock;
sc_in<sc_logic> topcount;
sc_out<sc_logic> count;

counter(sc_module_name nm)
: sc_foreign_module(nm, "lib.vcounter"),
clock("clock"),
topcount("topcount"),
count("count")
{}

};

The Verilog module is then instantiated in the SystemC source as follows:

counter dut("dut");

where the constructor argument (dut) is the SystemC instance name.
Sim SE User’s Manual

SystemC: instantiating Verilog UM-233
Example #2

Another variation of the SystemC foreign module declaration for the same Verilog module
might be:

class counter : public sc_foreign_module {
public:

...

...

...

counter(sc_module_name nm, char* hdl_name)
: sc_foreign_module(nm, hdl_name),
clock("clock"),

...

...

...

{}
};

The instantiation of this module would be:

counter dut("dut", "lib.counter");
ModelSim SE User’s Manual

UM-234 8 - Mixed-language simulations

Model
Verilog: instantiating SystemC

You can reference a SystemC module from Verilog as though the design unit is a module
of the same name.

SystemC instantiation criteria

A SystemC module can be instantiated in Verilog if it meets the following criteria:

• SystemC module names are case sensitive. The module name at the SystemC
instantiation site must match exactly with the actual SystemC module name.

• SystemC modules are exported using the SC_MODULE_EXPORT macro. See
"Exporting SystemC modules" (UM-234).

• The module ports are as listed in the table shown in "Channel and Port type mapping"
(UM-217).

• Port data type mapping must match exactly. See the table in "Data type mapping" (UM-

218).

Port associations may be named or positional. Use the same port names and port positions
that appear in the SystemC module declaration. Named port associations are case sensitive.

Since there is no concept of "parameters" in SystemC, it is illegal to place parameter
overrides on instantiations of sc_modules.

Exporting SystemC modules

To be able to instantiate a SystemC module from Verilog (or use a SystemC module as a
top level module), the module must be exported.

Assume a SystemC module named transceiver exists, and that it is declared in header file
transceiver.h. Then the module is exported by placing the following code in a .cpp file:

#include "transceiver.h"

SC_MODULE_EXPORT(transceiver);

sccom -link

The sccom -link command collects the object files created in the work library, and uses
them to build a shared library (.so) in the current work library. If you have changed your
SystemC source code and recompiled it using sccom, then you must run sccom -link before
invoking vsim. Otherwise your changes to the code are not recognized by the simulator.
Sim SE User’s Manual

SystemC: instantiating VHDL UM-235
SystemC: instantiating VHDL

To instantiate VHDL design units into a SystemC design, you must first generate a
SystemC foreign module declaration (UM-231) for each VHDL design unit you want to
instantiate. Once you have generated the foreign module declaration, you can instantiate
the foreign module just like any other SystemC module.

VHDL instantiation criteria

A VHDL design unit may be instantiated from SystemC if it meets the following criteria:

• The design unit is an entity/architecture pair or a configuration.

• The entity ports are of type bit, bit_vector, std_ulogic, std_ulogic_vector, or their
subtypes. The port clause may have any mix of these types.

Port associations may be named or positional. Use the same port names and port positions
that appear in the entity.

SystemC foreign module declaration

In cases where you want to run a mixed simulation with SystemC and VHDL, you must
create and declare a foreign module that stands in for each VHDL design unit instantiated
under SystemC. The foreign modules can be created in one of two ways:

• running scgenmod, a utility that automatically generates your foreign module declaration
(much like vgencomp generates a component declaration)

• modifying your SystemC source code manually

Using scgenmod

After you have analyzed the design, you can generate a foreign module declaration with an
scgenmod command similar to the following:

scgenmod mod1

Where mod1 is either a Verilog module or a VHDL entity. A foreign module declaration
for the specified module is written to stdout.

Guidelines for manual creation

Apply the following guidelines to the creation of foreign modules. A foreign module:

• contains ports corresponding to VHDL or Verilog ports. These ports must be explicitly
named in the foreign module’s constructor initializer list.

• must not contain any internal design elements such as child instances, primitive channels,
or processes.

• must pass a secondary constructor argument denoting the module’s HDL name to the
sc_foreign_module base class constructor. For VHDL, the HDL name can be in the
format [<lib>.]<primary>[(<secondary>)] or [<lib>.]<conf>. For Verilog, the HDL
name is simply the Verilog module name corresponding to the foreign module, or
[<lib>].<module>.
ModelSim SE User’s Manual

UM-236 8 - Mixed-language simulations

Model
Example

A sample VHDL design unit to be instantiated in a SystemC design is:

entity counter is
port (count : buffer bit_vector(8 downto 1);

clk : in bit;
reset : in bit);

end;

architecture only of counter is
...
...

end only;

The SystemC foreign module declaration for the above VHDL module is:

class counter : public sc_foreign_module {
public:

sc_in<bool> clk;
sc_in<bool> reset;
sc_out<sc_logic> count;

counter(sc_module_name nm)
: sc_foreign_module(nm, "work.counter(only)"),
clk("clk"),
reset("reset"),
count("count")
{}

};

The VHDL module is then instantiated in the SystemC source as follows:

counter dut("dut");

where the constructor argument (dut) is the SystemC instance name.
Sim SE User’s Manual

VHDL: instantiating SystemC UM-237
VHDL: instantiating SystemC

To instantiate SystemC in a VHDL design, you must create a component declaration for the
SystemC module. Once you have generated the component declaration, you can instantiate
the SystemC component just like any other VHDL component.

SystemC instantiation criteria

A SystemC design unit may be instantiated within VHDL if it meets the following criteria:

• SystemC module names are case sensitive. The module name at the SystemC
instantiation site must match exactly with the actual SystemC module name.

• The SystemC design unit is exported using the SC_MODULE_EXPORT macro.

• The module ports are as listed in the table in "Data type mapping" (UM-221)

• Port data type mapping must match exactly. See the table in "Port type mapping" (UM-

221).

Port associations may be named or positional. Use the same port names and port positions
that appear in the SystemC module. Named port associations are case sensitive.

ModelSim does not support generic overrides across SystemC language boundaries.

Component declaration

A SystemC design unit can be referenced from a VHDL design as though it is a VHDL
entity. The interface to the design unit can be extracted from the library in the form of a
component declaration by running vgencomp. Given a library and a SystemC module
name, vgencomp writes a component declaration to standard output.

The default component port types are:

• std_logic

• std_logic_vector

Optionally, you can choose:

• bit and bit_vector

VHDL and SystemC identifiers

The VHDL identifiers for the component name and port names are the same as the SystemC
identifiers for the module name and port names. If a SystemC identifier is not a valid
VHDL 1076-1987 identifier, it is converted to a VHDL 1076-1993 extended identifier (in
which case you must compile the VHDL with the -93 or later switch).

Examples

SystemC identifier VHDL identifier

topmod topmod

TOPMOD topmod

TopMod topmod
ModelSim SE User’s Manual

UM-238 8 - Mixed-language simulations

Model
vgencomp component declaration

vgencomp (CR-318) generates a component declaration according to these rules:

Port clause

A port clause is generated if the module has ports. A corresponding VHDL port is defined
for each named SystemC port.

You can set the VHDL port type to bit or std_logic. If the SystemC port has a range, then
the VHDL port type is bit_vector or std_logic_vector.

Examples

Configuration declarations are allowed to reference SystemC modules in the entity aspects
of component configurations. However, the configuration declaration cannot extend into a
SystemC instance to configure the instantiations within the SystemC module.

Exporting SystemC modules

To be able to instantiate a SystemC module within VHDL (or use a SystemC module as a
top level module), the module must be exported.

Assume a SystemC module named transceiver exists, and that it is declared in header file
transceiver.h. Then the module is exported by placing the following code in a .cpp file:

#include "transceiver.h"

SC_MODULE_EXPORT(transceiver);

sccom -link

The sccom -link command collects the object files created in the work library, and uses
them to build a shared library (.so) in the current work library. If you have changed your
SystemC source code and recompiled it using sccom, then you must run sccom -link before
invoking vsim. Otherwise your changes to the code are not recognized by the simulator.

top_mod top_mod

_topmod _topmod\

SystemC identifier VHDL identifier

SystemC port VHDL port

sc_in<sc_logic>p1; p1 : in std_logic;

sc_out<sc_lv<8>>p2; p2 : out std_logic_vector(7 downto 0);

sc_inout<sc_lv<8>>p3; p3 : inout std_logic_vector(7 downto 0)
Sim SE User’s Manual

 UM-239
9 - WLF files (datasets) and virtuals

Chapter contents
WLF files (datasets) UM-240

Saving a simulation to a WLF file UM-241
Hiding library cell signals when saving a waveform file . . . UM-241
Opening datasets UM-242
Viewing dataset structure UM-243
Managing multiple datasets UM-244
Saving at intervals with Dataset Snapshot UM-246

Virtual Objects (User-defined buses, and more) UM-248
Virtual signals UM-248
Virtual functions UM-249
Virtual regions UM-250
Virtual types UM-250

Dataset, WLF file, and virtual commands UM-251

A ModelSim simulation can be saved to a wave log format (WLF) file for future viewing
or comparison to a current simulation. We use the term "dataset" to refer to a WLF file that
has been reopened for viewing.

You can open more than one WLF file for simultaneous viewing. You can also create
virtual signals that are simple logical combinations of, or logical functions of, signals from
different datasets.
ModelSim SE User’s Manual

UM-240 9 - WLF files (datasets) and virtuals

Model
WLF files (datasets)

Wave Log Format (WLF) files are recordings of simulation runs. The files contain data
from logged items (e.g., signals and variables) and the design hierarchy in which the logged
items are found. You can record the entire design or choose specific items.

The WLF file provides you with precise in-simulation and post-simulation debugging
capability. Any number of WLF files can be reloaded for viewing or comparing to the
active simulation.

A dataset is a previously recorded simulation that has been loaded into ModelSim. Each
dataset has a logical name to let you indicate the dataset to which any command applies.
This logical name is displayed as a prefix. The current, active simulation is prefixed by
"sim:", while any other datasets are prefixed by the name of the WLF file by default.

Two datasets are displayed in the Wave window below. The current simulation is shown in
the top pane and is indicated by the "sim" prefix. A dataset from a previous simulation is
shown in the bottom pane and is indicated by the "gold" prefix.

The simulator resolution (see "Simulator resolution limit" (UM-67)) must be the same for
all datasets you’re comparing, including the current simulation. If you have a WLF file that
is in a different resolution, you can use the wlfman command (CR-370) to change it.
Sim SE User’s Manual

WLF files (datasets) UM-241
Saving a simulation to a WLF file

If you add items to the Dataflow, List, or Wave windows, or log items with the log
command, the results of each simulation run are automatically saved to a WLF file called
vsim.wlf in the current directory. If you run a new simulation in the same directory, the
vsim.wlf file is overwritten with the new results.

If you want to save the WLF file and not have it overwritten, select File > Save> sim
dataset (Main window) or File > Save Dataset > sim (Wave window). Or, you can use the
-wlf <filename> argument to the vsim command (CR-357) or the dataset save command
(CR-148).

Hiding library cell signals when saving a waveform file

Gate-level simulations may result in large waveform files because the internal signals of
your library cells are saved. The following method will prevent these signals from being
saved in a Verilog design.

If your cells are enclosed in Verilog ̀ celldefine and ̀ endcelldefine preprocessor directives,
you can specify -fast on the vlog command line when compiling the cell library. This will
basically hide the internal signals so they will not be saved. A further benefit of this
methodology is that the cells compiled with -fast will consume less memory.

See "Compiling with -fast" (UM-127) for further details on using -fast.

Important: If you do not use dataset save or dataset snapshot, you must end a
simulation session with a quit or quit -sim command in order to produce a valid WLF
file. If you don’t end the simulation in this manner, the WLF file will not close properly,
and ModelSim may issue the error message "bad magic number" when you try to open
an incomplete dataset in subsequent sessions. If you end up with a "damaged" WLF file,
you can try to "repair" it using the wlfrecover command (CR-387).
ModelSim SE User’s Manual

UM-242 9 - WLF files (datasets) and virtuals

Model
Opening datasets

To open a dataset, select either File > Open > Dataset (Main window) or use the dataset
open command (CR-146).

The Open Dataset dialog includes the following options.
• Dataset Pathname

Identifies the path and filename of the WLF file you want to open.

• Logical Name for Dataset
This is the name by which the dataset will be referred. By default this is the name of the
WLF file.
Sim SE User’s Manual

WLF files (datasets) UM-243
Viewing dataset structure

Each dataset you open creates a Structure tab in the Main window workspace. The tab is
labeled with the name of the dataset and displays the same data as the "Structure window"
(UM-331).

The graphic below shows three Structure tabs: one for the active simulation (sim) and one
each for two datasets (gold and test).

If you have too many tabs to display in the available space, you can scroll the tabs left or
right by clicking and dragging them.

Each Structure tab has a context menu that you access by clicking the right mouse button
anywhere within the Structure tab. See "Structure window context menu" (UM-333) for
details.
ModelSim SE User’s Manual

UM-244 9 - WLF files (datasets) and virtuals

Model
Managing multiple datasets

GUI

When you have one or more datasets open, you can manage them using the Dataset
Browser. To open the browser, select View > Datasets (Main window).

The Dataset Browser dialog box includes the following options.

• Open
Opens the Open Dataset dialog box (see "Opening datasets" (UM-242)) so you can open
additional datasets.

• Close
Closes the selected dataset. This will also remove the dataset’s Structure tab in the Main
window workspace.

• Make Active
Makes the selected dataset "active." You can also effect this change by double-clicking
the dataset name. Active dataset means that if you type a region path as part of a
command and omit the dataset prefix, the active dataset will be assumed. It is equivalent
to typing env <dataset>: at the VSIM prompt. The active dataset is displayed at the
bottom of the Main window.

• Rename
Allows you to assign a new logical name for the selected dataset.

Command line

You can open multiple datasets when the simulator is invoked by specifying more than one
vsim -view <filename> option. By default the dataset prefix will be the filename of the
WLF file. You can specify a different dataset name as an optional qualifier to the
vsim -view switch on the command line using the following syntax:

-view <dataset>=<filename>
Sim SE User’s Manual

WLF files (datasets) UM-245
For example: vsim -view foo=vsim.wlf

ModelSim designates one of the datasets to be the "active" dataset, and refers all names
without dataset prefixes to that dataset. The active dataset is displayed in the context path
at the bottom of the Main window. When you select a design unit in a dataset’s Structure
tab, that dataset becomes active automatically. Alternatively, you can use the Dataset
Browser or the environment command (CR-166) to change the active dataset.

Design regions and signal names can be fully specified over multiple WLF files by using
the dataset name as a prefix in the path. For example:

sim:/top/alu/out

view:/top/alu/out

golden:.top.alu.out

Dataset prefixes are not required unless more than one dataset is open, and you want to refer
to something outside the active dataset. When more than one dataset is open, ModelSim
will automatically prefix names in the Wave and List windows with the dataset name. You
can change this default by selecting Tools > Window Preferences (Wave and List
windows).

ModelSim also remembers a "current context" within each open dataset. You can toggle
between the current context of each dataset using the environment command (CR-166),
specifying the dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo.
The context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to as just "current context") is
used for finding objects specified without a path.

The Signals window can be locked to a specific context of a dataset. Being locked to a
dataset means that the window will update only when the content of that dataset changes.
If locked to both a dataset and a context (e.g., test: /top/foo), the window will update only
when that specific context changes. You specify the dataset to which the window is locked
by selecting File > Environment (Signals window).

Restricting the dataset prefix display

The default for dataset prefix viewing is set with a variable in pref.tcl,
PrefMain(DisplayDatasetPrefix). Setting the variable to 1 will display the prefix, setting
it to 0 will not. It is set to 1 by default. Either edit the pref.tcl file directly or use the Tools
> Edit Preferences (Main window) command to change the variable value.

Additionally, you can restrict display of the dataset prefix if you use the environment
-nodataset command to view a dataset. To display the prefix use the environment
command (CR-166) with the -dataset option (you won’t need to specify this option if the
variable noted above is set to 1). The environment command line switches override the
pref.tcl variable.
ModelSim SE User’s Manual

UM-246 9 - WLF files (datasets) and virtuals

Model
Saving at intervals with Dataset Snapshot

Dataset Snapshot lets you periodically copy data from the current simulation WLF file to
another file. This is useful for taking periodic "snapshots" of your simulation or for clearing
the current simulation WLF file based on size or elapsed time.

Once you have logged the appropriate items, select Tools > Dataset Snapshot (Wave
window).

The Dataset Snapshot dialog includes these options:

Dataset Snapshot State

• Enabled/Disabled
Enable or disable Dataset Snapshot. All other dialog options are unavailable if Disabled
is selected.
Sim SE User’s Manual

WLF files (datasets) UM-247
Snapshot Type

• Simulation Time
Specifies that data is copied to the specified snapshot file every <x> time units. Default
is 1000000 time units.

• WLF File Size
Specifies that data is copied to the specified snapshot file whenever the current
simulation WLF file reaches <x> megabytes. Default is 100 MB.

Snapshot Contents

• Snapshot contains only data since previous snapshot
Specifies that each snapshot contains only data since the last snapshot. This option causes
ModelSim to clear the current simulation WLF file each time a snapshot is taken.

• Snapshot contains all previous data
Specifies that each snapshot contains all data from the time signals were first logged. The
entire contents of the current simulation WLF file are saved each time a snapshot is taken.

Snapshot Directory and File

• Directory
The directory in which ModelSim saves the snapshot files.

• File Prefix
The name of the snapshot files. ModelSim adds .wlf to the snapshot files.

Overwrite / Increment

• Always replace snapshot file
Specifies that a single file is created for all snapshots. Each new snapshot overwrites the
previous.

• Use incrementing suffix on snapshot files
Specifies that a new file is created for each snapshot. Each new snapshot creates a
separate file (e.g., vsim_snapshot_1.wlf, vsim_snapshot_2.wlf, etc.).
ModelSim SE User’s Manual

UM-248 9 - WLF files (datasets) and virtuals

Model
Virtual Objects (User-defined buses, and more)

Virtual objects are signal-like or region-like objects created in the GUI that do not exist in
the ModelSim simulation kernel. ModelSim supports the following kinds of virtual objects:

• Virtual signals (UM-248)

• Virtual functions (UM-249)

• Virtual regions (UM-250)

• Virtual types (UM-250)

Virtual objects are indicated by an orange diamond as illustrated by bus below:

Virtual signals

Virtual signals are aliases for combinations or subelements of signals written to the WLF
file by the simulation kernel. They can be displayed in the Signals, List, and Wave
windows, accessed by the examine command, and set using the force command. You can
create virtual signals using the Tools > Combine Signals (Wave and List windows)
command or use the virtual signal command (CR-339). Once created, virtual signals can be
dragged and dropped from the Signals window to the Wave and List windows.

Virtual signals are automatically attached to the design region in the hierarchy that
corresponds to the nearest common ancestor of all the elements of the virtual signal. The
virtual signal command has an -install <region> option to specify where the virtual signal
should be installed. This can be used to install the virtual signal in a user-defined region in
Sim SE User’s Manual

Virtual Objects (User-defined buses, and more) UM-249
order to reconstruct the original RTL hierarchy when simulating and driving a
post-synthesis, gate-level implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. The virtual hide command (CR-330) can be used to hide the display of the
broken-down bits if you don't want them cluttering up the Signals window.

If the virtual signal has elements from more than one WLF file, it will be automatically
installed in the virtual region virtuals:/Signals.

Virtual signals are not hierarchical – if two virtual signals are concatenated to become a
third virtual signal, the resulting virtual signal will be a concatenation of all the scalar
elements of the first two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command
(CR-337). By default, when quitting, ModelSim will append any newly-created virtuals (that
have not been saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave
or List format, you will need to execute the virtuals.do file (or some other equivalent) to
restore the virtual signal definitions before you re-load the Wave or List format during a
later run. There is one exception: "implicit virtuals" are automatically saved with the Wave
or List format.

Implicit and explicit virtuals

An implicit virtual is a virtual signal that was automatically created by ModelSim without
your knowledge and without you providing a name for it. An example would be if you
expand a bus in the Wave window, then drag one bit out of the bus to display it separately.
That action creates a one-bit virtual signal whose definition is stored in a special location,
and is not visible in the Signals window or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals".

Virtual functions

Virtual functions behave in the GUI like signals but are not aliases of combinations or
elements of signals logged by the kernel. They consist of logical operations on logged
signals and can be dependent on simulation time. They can be displayed in the Signals,
Wave, and List windows and accessed by the examine command (CR-167), but cannot be
set by the force command (CR-176).

Examples of virtual functions include the following:

• a function defined as the inverse of a given signal

• a function defined as the exclusive-OR of two signals

• a function defined as a repetitive clock

• a function defined as "the rising edge of CLK delayed by 1.34 ns"

Virtual functions can also be used to convert signal types and map signal values.

The result type of a virtual signal can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these
types. Verilog types are converted to VHDL 9-state std_logic equivalents and Verilog net
strengths are ignored.
ModelSim SE User’s Manual

UM-250 9 - WLF files (datasets) and virtuals

Model
Virtual functions can be created using the virtual function command (CR-327).

Virtual functions are also implicitly created by ModelSim when referencing bit-selects or
part-selects of Verilog registers in the GUI, or when expanding Verilog registers in the
Signals, Wave, or List window. This is necessary because referencing Verilog register
elements requires an intermediate step of shifting and masking of the Verilog "vreg" data
structure.

Virtual regions

User-defined design hierarchy regions can be defined and attached to any existing design
region or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in
a gate-level design and to locate virtual signals. Thus, virtual signals and virtual regions can
be used in a gate-level design to allow you to use the RTL test bench.

Virtual regions are created and attached using the virtual region command (CR-336).

Virtual types

User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual type is then used in a type conversion
expression to convert a signal to values of the new type. When the converted signal is
displayed in any of the windows, the value will be displayed as the enumeration string
corresponding to the value of the original signal.

Virtual types are created using the virtual type command (CR-342).
Sim SE User’s Manual

Dataset, WLF file, and virtual commands UM-251
Dataset, WLF file, and virtual commands

The table below provides a brief description of the actions associated with datasets, WLF
files, and virtual commands. For complete details about syntax, arguments, and usage, refer
to the ModelSim Command Reference.

Command name Action

dataset alias (CR-141) assigns an additional name (alias) to a dataset

dataset clear (CR-142) removes all event data from the current simulation WLF file while keeping
all currently logged signals logged

dataset close (CR-143) closes the specified dataset

dataset info (CR-144) reports a variety of information about a dataset

dataset list (CR-145) lists all open datasets

dataset open (CR-146) opens a WLF file

dataset rename (CR-147) assigns a new logical name to the specified dataset

dataset save (CR-148) saves the current simulation to a WLF file

dataset snapshot (CR-149) saves the current simulation to a WLF file at regular intervals

log (CR-187) creates a WLF file for the current simulation

nolog (CR-205) suspends writing of data to the WLF file for the specified signals

searchlog (CR-255) searches one or more of the currently open WLF files for a specified condition

virtual function (CR-327) creates a new signal that consists of logical operations on existing signals and
simulation time

virtual region (CR-336) creates a new user-defined design hierarchy region

virtual signal (CR-339) creates a new signal that consists of concatenations of signals and
subelements

virtual type (CR-342) creates a new enumerated type

vsim (CR-357) -wlf <filename> creates a WLF file for the simulation which can be reopened as a dataset

wlf2log (CR-381) translates a ModelSim WLF file (vsim.wlf) to a QuickSim II logfile

wlfman (CR-384) allows you to get information about and manipulate WLF files

wlfrecover (CR-387) attempts to "repair" WLF files that are incomplete due to a crash or the file
being copied prior to completion of the simulation
ModelSim SE User’s Manual

UM-252 9 - WLF files (datasets) and virtuals

Model
Sim SE User’s Manual

 UM-253
10 - Graphic interface

Chapter contents
Window overview UM-254

Common window features UM-255

Main window UM-262

Dataflow window UM-270

List window UM-286

Memory window UM-302

Process window UM-314

Signals window UM-316

Source window. UM-325

Structure window UM-331

Variables window UM-334

Wave window UM-337

Compiling with the graphic interface UM-368

Simulating with the graphic interface UM-377

Creating and managing breakpoints UM-391

Miscellaneous tools and add-ons UM-395

The example graphics in this chapter illustrate ModelSim’s graphic interface within a
Windows environment; however, ModelSim’s interface remains consistent across all
supported platforms. Your operating system provides the basic window-management
frames, while ModelSim controls all internal window features such as menus, buttons, and
scroll bars.

Because ModelSim’s graphic interface is based on Tcl/Tk, you are able to customize your
simulation environment. Easily-accessible preference variables and configuration
commands give you control over the use and placement of windows, menus, menu options,
and buttons.
ModelSim SE User’s Manual

UM-254 10 - Graphic interface

Model
Window overview

The ModelSim simulation and debugging environment consists of many windows.
Multiple windows of each type can be used during simulation (with the exception of the
Main window). To make an additional window select File > New > Window. A brief
description of each window follows:

• Main window (UM-262)

The initial window that appears upon startup. All subsequent ModelSim windows are
opened from the Main window. This window contains the session transcript and the
Workspace, which can contain Project, Library, Structure, and Files tabs.

• Dataflow window (UM-270)

Displays the "physical" connectivity of your VHDL/Verilog design and lets you trace
events (causality).

• List window (UM-286)

Shows the simulation values of selected VHDL signals and variables; Verilog nets,
registers, and variables; and SystemC primitive channels (signals) in tabular format.

• Memory window (UM-302)

Displays memories in the current design context.

• Process window (UM-314)

Displays a list of processes and SystemC method and thread processes in the region
currently selected in the Structure window.

• Signals window (UM-316)

Shows the names and current values of VHDL signals, and Verilog nets, registers, and
variables in the region currently selected in the Structure window. For a selected
SystemC module, SystemC primitive channels are shown.

• Source window (UM-325)

Displays the HDL or C++ source code for the design. (Your source code can remain
hidden if you wish.

• Structure window (UM-331)

Displays the hierarchy of structural elements such as VHDL component instances,
packages, blocks, generate statements; Verilog module instances, named blocks, tasks
and functions; and SystemC modules. In versions 5.5 and later, this same information is
displayed in the Main window workspace.

• Variables window (UM-334)

Displays VHDL constants, generics, variables, and Verilog registers and variables in the
current process and their current values.

• Wave window (UM-337)

Displays waveforms, and current values for the VHDL signals and variables; Verilog
nets, registers, and variables; and SystemC primitive channels (signals) you have
selected. Current and past simulations can be compared side-by-side in one Wave
window.
Sim SE User’s Manual

Common window features UM-255
Common window features

ModelSim’s graphic interface provides many features that add to its usability; features
common to many of the windows are described below.

• Cut/Copy/Paste/Delete into any entry box by clicking the right
mouse button in the entry box.

• Standard cut/copy/paste shortcut keystrokes – ^X/^C/^V – will
work in all entry boxes.

• When the focus changes to an entry box, the contents of that box
are selected (highlighted). This allows you to replace the current
contents of the entry box with new contents with a simple paste
command, without having to delete the old value.

• Dialog boxes will appear on top of their parent window (instead of the upper left corner
of the screen).

• You can change the title of any window with the -title switch of the view command. See
view command (CR-320) for details.

Feature Feature applies to these windows

Quick access toolbars (UM-256) Dataflow, Main, Source, and Wave windows

Drag and drop (UM-258) Dataflow, List, Process, Signals, Source, Structure,
Variables, and Wave windows

Automatic window updating (UM-258) Dataflow, Memory Process, Signals, and Structure
windows

Finding names and searching for values (UM-259) various windows

Sorting items (UM-259) Process, Signals, Source, Structure, Variables and Wave
windows

Multiple window copies (UM-259) all windows except the Main window

Menu tear off (UM-259) all windows

Customizing menus and buttons (UM-260) all windows

Combining items in the List window (UM-292),
Combining items in the Wave window (UM-345)

List and Wave windows

Tree window hierarchical view (UM-261) Structure, Signals, Variables, and Wave windows
ModelSim SE User’s Manual

UM-256 10 - Graphic interface

Model
• The middle mouse button will allow you to paste the following into the transcript
window:

–text currently selected in the transcript window,

–a current primary X-Windows selection (can be from another application), or

–contents of the clipboard.

Selecting text in the transcript window makes it the current primary X-Windows
selection. This way you can copy transcript window selections to other X-Windows
windows (xterm, emacs, etc.).

• The Edit > Paste operation in the Transcript pane will ONLY paste from the clipboard.

• All menus highlight their accelerator keys.

Quick access toolbars

Toolbar buttons in several windows provide access to commonly used commands and
functions. These toolbars can be docked and undocked (moved to or from the main toolbar
area) by clicking and dragging on the vertical bar at the left-edge of a toolbar.

You can also hide/show the various toolbars. To hide or show a toolbar, right-click on a
blank spot of the main toolbar area and select a toolbar from the list.

To reset the toolbars to their original state, right-click on a blank spot of the main toolbar
area and select Reset.

Drag on the vertical bar
to dock/undock or
rearrange a toolbar

Right-click here to
hide/show toolbars
Sim SE User’s Manual

Common window features UM-257
Columnar information display

Many windows (e.g., Main, Signals, Structure) display information in a columnar format.
You can sort by any of the columns by clicking the column heading. Click once to sort in
ascending order; click again to sort in descending order.

Also, you can hide or show columns by either right-clicking a column heading and
selecting an item from the context menu or by clicking the column-list drop down arrow
and selecting an item.

Docking and undocking panes

Several windows are made up of multiple "panes." When you see a double bar at the top
edge of a window area, it means you can click and drag the pane to "undock" it from the
parent window. Once the pane is undocked, it becomes a free-floating window.

To redock a floating pane, click on the double bar at the top of the window and drag it back
into the parent window.

Click a column heading
to sort the list by that
field

Click the down arrow to
hide/show columns
ModelSim SE User’s Manual

UM-258 10 - Graphic interface

Model
Drag and drop

Drag and drop of items is possible between the following windows. Using the left mouse
button, click and release to select an item, then click and hold to drag it.

• Drag items from these windows:
Dataflow, List, Process, Signals, Source, Structure, Variables, and Wave windows

• Drop items into these windows:
Dataflow, List, Structure, and Wave windows

Drag and drop works to rearrange items within the List and Wave windows as well.

Automatic window updating

Selecting an item in the following windows automatically updates other related ModelSim
windows as indicated below:

Select an item in this window To update these windows

Dataflow window (UM-270) Memory window (UM-302)

Process window (UM-314)

Signals window (UM-316)

Source window (UM-325)

Structure window (UM-331)

Variables window (UM-334)

Process window (UM-314) Dataflow window (UM-270)

Signals window (UM-316)

Source window (UM-325)

Variables window (UM-334)

Signals window (UM-316) Dataflow window (UM-270)

Structure window (UM-331) or structure
pane in Main window Workspace

Memory window (UM-302)

Process window (UM-314)

Signals window (UM-316)

Source window (UM-325)

Variables window (UM-334)
Sim SE User’s Manual

Common window features UM-259
Finding names and searching for values

• Find item names with the Edit > Find menu selection in these windows:
Dataflow, List, Process, Signals, Source, Structure, Variables, and Wave windows.

A Find request that starts with a backslash (\) forces case sensitivity. Elsewhere in the
pattern backslashes are used to escape special interpretation of basic regular expression
characters. To search explicitly for a backslash character, it is necessary to escape the
character. For example, to match \Arch Signal 1\, the pattern \\Arch... is required.

• Search for item values with the Edit > Search menu selection in these windows: List
and Wave windows.

Sorting items

Use the View > Sort menu selection in the Process, Signals, Structure, Variables, and
Wave windows to sort items in ascending, descending or declaration order.

Names such as net_1, net_10, and net_2 will sort numerically in the Signals and Wave
windows.

Multiple window copies

Select File > New Window to create multiple copies of the same window type. The new
window will become the default window for that type.

Saving window layout

You can save the current positions and sizes of ModelSim windows as a default. Follow
these steps to save the layout as a default:

1 Position and size the windows the way you want them to display.

2 Select Tools > Save Preferences (Main window) and save the modelsim.tcl file into the
desired directory.

3 Modify the "Working Directory" of your ModelSim shortcut to point at the directory, or
set the MODELSIM_TCL environment variable to point at the modelsim.tcl file (see
"Creating environment variables in Windows" (UM-615) for more details).

Context menus

Context menus refer to menus that "pop-up" in the middle of the interface by clicking the
right mouse button. The commands on the menu change depending on where in the
interface you click. In other words, the menus change based on the context of their use.
These menus are available in the following windows: Dataflow, List, Main, Memory,
Signals, Source, Structure, and Wave.

Menu tear off

All window menus can be "torn off " to create a separate menu window. To tear off, click
on the menu, then select the dotted-line button at the top of the menu.
ModelSim SE User’s Manual

UM-260 10 - Graphic interface

Model
Customizing menus and buttons

Menus can be added, deleted, and modified in all windows. Custom buttons can also be
added to window toolbars. See

• "The Button Adder" (UM-400) for more information.

Controlling fonts in an X-session

When executed via an X-session (e.g., Exceed, VNC), ModelSim uses font definitions from
the .Xdefaults file. To ensure that the fonts look correct, create a .Xdefaults file with the
following lines:

vsim*Font: -adobe-courier-medium-r-normal--*-120-*-*-*-*-*
vsim*SystemFont: -adobe-courier-medium-r-normal--*-120-*-*-*-*-*
vsim*StandardFont: -adobe-courier-medium-r-normal--*-120-*-*-*-*-*
vsim*MenuFont: -adobe-courier-medium-r-normal--*-120-*-*-*-*-*

Alternatively, you can choose a different font. Use the program "xlsfonts" to identify which
fonts are available on your system.

Also, the following command can be used to update the X resources if you make changes
to the .Xdefaults and wish to use those changes on a Linux/UNIX machine:

xrdb -merge .Xdefaults
Sim SE User’s Manual

Common window features UM-261
Tree window hierarchical view

ModelSim provides a hierarchical, or "tree view" of your design in various windows (e.g.,
Main, Signals, Structure).

Depending on which window you are viewing, you will see various design items. Icons
denote the item type as follows:

• Blue circle – Verilog item

• Blue square – VHDL item

• Green diamond – SystemC item

• Orange diamond – Virtual item

• Yellow triangle – Comparison item

See the individual window descriptions later in the chapter for which items are viewable in
which windows.

Viewing the hierarchy

Whenever you see a tree view, you can use the mouse to collapse or expand the hierarchy.
Select the symbols as shown below to change the view of the structure.

Symbol Description

[+] click a plus box to expand the item and view the structure

[-] click a minus box to hide a hierarchy that has been expanded
ModelSim SE User’s Manual

UM-262 10 - Graphic interface

Model
Main window

The Main window is pictured below as it appears when ModelSim is first invoked. Note
that your operating system graphic interface provides the window-management frame only;
ModelSim handles all internal-window features including menus, buttons, and scroll bars.

You can customize the Main window layout–click and drag on the bars noted in the graphic
above to change the position of the panes and toolbars. You can also change the relative
size of each pane by dragging on its border. The graphic below shows a customized layout.

Click and
drag here to
reposition
panes
Sim SE User’s Manual

Main window UM-263
The graphic below shows the Main window as it might appear when you have a project and
a design loaded.

The menu bar at the top of the window provides access to a wide variety of simulation
commands and ModelSim preferences. The toolbar provides buttons for quick access to the
many common commands. The status bar at the bottom of the window gives you
information about the data in the active ModelSim window. The panes display different
parts of your design or different features of ModelSim. The panes, menu bar, toolbar, and
status bar are described in detail below.

Workspace

The Workspace is available in ModelSim versions 5.5 and later. It provides convenient
access to projects, libraries, design files, compiled design units, simulation/dataset
structures, and Waveform Comparison objects. It can be hidden or displayed by selecting
View > Workspace (Main window).

The Workspace can display five types of tabs as shown in the graphic above.

• Project tab
Shows all files that are included in the open project. See Chapter 2 - Projects for details.

• Library tab
Shows design libraries and compiled design units. See "Managing library contents" (UM-

57) for details.

Workspace

active processes

Transcript
ModelSim SE User’s Manual

UM-264 10 - Graphic interface

Model
• Structure tabs
Shows a hierarchical view of the active simulation and any open datasets. This is the
same data that is displayed in the "Structure window" (UM-331). There is one tab for the
current simulation (named "sim") and one tab for each open dataset. See "Viewing
dataset structure" (UM-243) for details.

• Files tab
Shows the source files for the loaded design.

• Compare tab
Shows comparison objects that were created by doing a waveform comparison. See
Chapter 13 - Waveform Compare for details.

Transcript

The Transcript portion of the Main window maintains a running history of commands that
are invoked and messages that occur as you work with ModelSim. When a simulation is
running, the Transcript displays a VSIM prompt, allowing you to enter command-line
commands from within the graphic interface.

You can scroll backward and forward through the current work history by using the vertical
scrollbar. You can also use arrow keys to recall previous commands, or copy and paste
using the mouse within the window (see "Mouse and keyboard shortcuts" (UM-269) for
details).

Saving the Main window transcript file

Variable settings determine the filename used for saving the Main window transcript. If
either PrefMain(file) in the modelsim.tcl file or TranscriptFile in the modelsim.ini file is
set, then the transcript output is logged to the specified file. By default the TranscriptFile
variable in modelsim.ini is set to transcript. If either variable is set, the transcript contents
are always saved and no explicit saving is necessary.

If you would like to save an additional copy of the transcript with a different filename, you
can use the File > Transcript > Save Transcript As, or File > Transcript > Save
Transcript menu items. The initial save must be made with the Save Transcript As
selection, which stores the filename in the Tcl variable PrefMain(saveFile). Subsequent
saves can be made with the Save Transcript selection. Since no automatic saves are
performed for this file, it is written only when you invoke a Save command. The file is
written to the specified directory and records the contents of the transcript at the time of the
save.

Using the saved transcript as a macro (DO file)

Saved transcript files can be used as macros (DO files). See the do command (CR-156) for
more information.

Active processes

This pane displays all processes that are scheduled to run during the current simulation
cycle. You can hide or display this pane by selecting View > Active Processes (Main
window). This same data can be displayed in the "Process window" (UM-314).
Sim SE User’s Manual

Main window UM-265
The Main window menu bar

This section provides information on select menu commands available in the Main
window. Many of the commands are also available from a context menu (click right or 3rd
mouse button within the window panes).

File menu

View menu

New Folder – create a new folder in the current directory
Library – create a new design library and mapping; see "Creating a
library" (UM-56)

Open Exclusion File – open an exclusion filter file; see "Excluding items from
coverage" (UM-443)

Import Library – import FPGA libraries; see "Importing FPGA libraries" (UM-68)

Save Exclusion File – saves an exclusion filter file; see "Excluding items from
coverage" (UM-443)

Change
Directory

this command is disabled if you have a project or dataset open or a
simulation running

Transcript Save Transcript – save the Main window transcript; see "Saving the Main
window transcript file" (UM-264)

Add to
Project

these commands are only available if you have a project open; see
Chapter 2 - Projects

Coverage provides these options:
Current Exclusions – hide or show the Exclusions pane
Missed Coverage – hide or show the Missed Coverage pane
Instance Coverage – hide or show the Instance Coverage pane
Details – hide or show the Details pane

See Chapter 12 - Code Coverage for details on these panes.

Encoding select from alphabetical list of encoding names that enable proper
display of character representations used by various operating
systems or file systems, such as Unicode, ASCII, or Shift-JIS.

Properties show information about the item selected in the Workspace

Project Settings show information about the open project; disabled if you don’t
have a project open
ModelSim SE User’s Manual

UM-266 10 - Graphic interface

Model
Compile menu

Simulate menu

Compile compile source files; disabled if you have a project open

Compile Options set various compile options; see "Setting default compile options"
(UM-370); disabled if you have a project open

SystemC Link collects the object files created in the different design libraries,
and uses them to build a shared library (.so) in the current work
library

Compile All compile all files in the open project; disabled if you don’t have a
project open

Compile Selected compile the files selected in the project tab; disabled if you don’t
have a project open

Compile Order set the compile order of the files in the open project; see
"Changing compile order" (UM-42) for details; disabled if you
don’t have a project open

Compile Report report on the compilation history of the selected file(s) in the
project; disabled if you don’t have a project open

Compile Summary report on the compilation history of all files in the project;
disabled if you don’t have a project open

Simulate load the selected design unit with the specified options; see
"Simulating with the graphic interface" (UM-377)

Simulation Options set various simulation options; see "Setting default simulation
options" (UM-386)

Run Restart – reload the design elements and reset the simulation time
to zero; only design elements that have changed are reloaded; you
specify whether to maintain the following after restart–List and
Wave window environment, breakpoints, logged signals, virtual
definitions, and assertion settings; see also the restart command
(CR-240)
Sim SE User’s Manual

Main window UM-267
Tools menu

Waveform
Compare

see "Waveform Compare menu" (UM-468)

Coverage load, merge, report on, or clear coverage data

Profile see "Profile menu" (UM-417)

C Debug (available
only on Unix)

see "C Debug menu reference" (UM-488)

Breakpoints open the Breakpoints dialog box; see "Setting file-line
breakpoints" (UM-329) for details

Execute Macro call and execute a .do or .tcl macro file

Macro Helper UNIX only - invoke the Macro Helper tool; see also "The Macro
Helper" (UM-401)

Tcl Debugger invoke the Tcl debugger, TDebug; see also "The Tcl Debugger"
(UM-402)

TclPro Debugger invoke TclPro Debugger by Scriptics®, if installed. TclPro
Debugger can be acquired from Scriptics.

Options
(all options are set
for the current
session only)

provides these options:
Transcript File – set a transcript file to save for this session only
Command History – set a file for saving command history only,
no comments
Save File – set filename for Save Transcript, and Save Transcript
As
Saved Lines – limit the number of lines saved in the transcript
(default is 5000)
Line Prefix – specify the comment prefix for the transcript
Update Rate – specify the update frequency for the Main window
status bar
ModelSim Prompt – change the title of the ModelSim prompt
VSIM Prompt – change the title of the VSIM prompt
Paused Prompt – change the title of the Paused prompt
HTML Viewer – specify the path to your browser; used for
displaying online help
PDF Viewer – specify the path to your PDF viewer; used to
display documentation

Edit Preferences set various preference variables; see "Preference variables located
in Tcl files" (UM-631) for more information

Save Preferences save current ModelSim settings to a Tcl preference file; see
"Preference variables located in Tcl files" (UM-631) for more
information
ModelSim SE User’s Manual

UM-268 10 - Graphic interface

Model
Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Layout Stylea

a.You can specify a Layout Style to become the default for ModelSim. After choosing
the Layout Style you want, select Tools > Save Preferences and the layout style will
be saved to the PrefMain(layoutStyle) preference variable.

provides these options:
Default - restore the windows to version 5.5 layout
Millennium - restore the windows to version 5.6 layout
Classic - restore the windows to pre-5.5 layout
Cascade - cascade all open windows
Horizontal - tile all open windows horizontally
Vertical - tile all open windows vertically

Customize use The Button Adder (UM-400) to define and add a button to either
the tool or status bar of the specified window
Sim SE User’s Manual

Main window UM-269
The Main window status bar

Fields at the bottom of the Main window provide the following information about the
current simulation:

Mouse and keyboard shortcuts

See "Main and Source window mouse and keyboard shortcuts" (UM-639).

Field Description

Project name of the current project

Now the current simulation time, using the default resolution units
(see "Simulating with the graphic interface" (UM-377)), or a
larger time unit if one can be used without a fractional remainder

Delta the current simulation iteration number

environment name of the current context (item selected in the Structure
window (UM-331))
ModelSim SE User’s Manual

UM-270 10 - Graphic interface

Model
Dataflow window

The Dataflow window allows you to explore the "physical" connectivity of your design; to
trace events that propagate through the design; and to identify the cause of unexpected
outputs.

Items you can view

The Dataflow window displays processes; signals, nets, and registers; and interconnect.
The window has built-in mappings for all Verilog primitive gates (i.e., AND, OR, etc.). For
components other than Verilog primitives, you can define a mapping between processes
and built-in symbols. See "Symbol mapping" (UM-283) for details.

Note: You cannot view SystemC items in the Dataflow window.
Sim SE User’s Manual

Dataflow window UM-271
Adding items to the window

You can use any of the following methods to add items to the Dataflow window:

• drag and drop items from other windows

• use the Navigate menu options in the Dataflow window

• use the add dataflow command (CR-54)

• double-click any waveform in the Wave window display

The Navigate menu offers four commands that will add items to the window. The
commands include:

View region — clear the window and display all signals from the current region

Add region — display all signals from the current region without first clearing window

View all nets — clear the window and display all signals from the entire design

Add ports — add port symbols to the port signals in the current region

When you view regions or entire nets, the window initially displays only the drivers of the
added items in order to reduce clutter. You can easily view readers by selecting an item and
invoking Navigate > Expand net to readers.

A small circle above an input signal on a block denotes a trigger signal that is on the
process’ sensitivity list.

Links to other windows

The Dataflow window has links to other windows as described below:

Window Link

 Main window (UM-262) select a signal or process in the Dataflow window, and
the Structure pane updates if that item is in a different
design unit

 Process window (UM-314) select a process in either window, and that process is
highlighted in the other

 Signals window (UM-316) select a signal in either window, and that signal is
highlighted in the other

 Wave window (UM-337) • trace through the design in the Dataflow
window, and the associated signals are added to
the Wave window

• move a cursor in the Wave window, and the
values update in the Dataflow window

 Source window (UM-325) select an item in the Dataflow window, and the
Source window updates if that item is in a
different source file
ModelSim SE User’s Manual

UM-272 10 - Graphic interface

Model
Dataflow window menu bar

This section provides information on select menu commands available in the Dataflow
window. Many of the commands are also available from the context menu (click right or
3rd mouse button).

Edit menu

View menu

Navigate menu

Erase selected clear the selected object from the window

Erase highlight remove green highlighting from interconnect lines

Regenerate clear and redraw the display using an optimal layout

Show Wave open the embedded wave viewer pane

Select set left mouse button to select mode and middle mouse button to
zoom mode

Zoom set left mouse button to zoom mode and middle mouse button to
pan mode

Pan set left mouse button to pan mode and middle mouse button to
zoom mode

Default set mouse to default mode

Expand net to
drivers

display driver(s) of the selected signal, net, or register

Expand net to
readers

display reader(s) of the selected signal, net, or register

Expand net display driver(s) and reader(s) of the selected signal, net, or
register

Expand to design
inputs

display the top-level driver of the net, which will most likely be in
a testbench or in the top entity or module

Expand to hierarchy
inputs

display the primary driver (port) of the net within its level of
hierarchy

Hide selected remove the selected component and all other components from
the same region and replace them with a single component
representing that region

Show selected expand the selected component to show all underlying
components
Sim SE User’s Manual

Dataflow window UM-273
Trace menu

Tools menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-268) for a
description of the commands.

View region clear the window and display all signals from the current region

Add region display all signals from the current region without first clearing
the window

View all nets clear the window and display all signals from the entire design

Add ports add port symbols to the port signals in the current region

TraceXTM step back to the last driver of an unknown (X) value

ChaseXTM jump to the source of an unknown (X) value

TraceX Delay step back in time to the last driver of an unknown (X) value

ChaseX Delay jump back in time to the point where the output value transitions
to X

Trace next event move the next event cursor to the next input event driving the
selected output

Trace event set jump to the source of the selected input event

Trace event reset return the next event cursor to the selected output

Load built-in
symbol map

load a .bsm file for mapping symbol instances; see "Symbol
mapping" (UM-283)

Load symlib library load a user-defined symbol library

Create symlib index create an index for a user-defined symbol library

Options configure Dataflow window preferences
ModelSim SE User’s Manual

UM-274 10 - Graphic interface

Model
Exploring the connectivity of your design

A primary use of the Dataflow window is exploring the "physical" connectivity of your
design. One way of doing this is by expanding the view from process to process. This
allows you to see the drivers/receivers of a particular signal, net, or register.

You can expand the view of your design using menu commands or your mouse. To expand
with the mouse, simply double click a signal, register, or process. Depending on the specific
item you click, the view will expand to show the driving process and interconnect, the
reading process and interconnect, or both.

Alternatively, you can select a signal, register, or net, and use one of the toolbar buttons or
menu commands described below:

As you expand the view, note that the "layout" of the design may adjust to best show the
connectivity. For example, the location of an input signal may shift from the bottom to the
top of a process.

Tracking your path through the design

You can quickly traverse through many components in your design. To help mark your
path, the items that you have expanded are highlighted in green.

You can clear this highlighting using the Edit > Erase highlight command.

Expand net to all drivers
display driver(s) of the selected signal, net, or
register

Navigate > Expand net
to drivers

Expand net to all drivers and readers
display driver(s) and reader(s) of the selected
signal, net, or register

Navigate > Expand net

Expand net to all readers
display reader(s) of the selected signal, net, or
register

Navigate > Expand net
to readers
Sim SE User’s Manual

Dataflow window UM-275
The embedded wave viewer

Another way of exploring your design is to use the Dataflow window’s embedded wave
viewer. This viewer closely resembles, in appearance and operation, the stand-alone Wave
window (see "Wave window" (UM-337) for more information).

The wave viewer is opened using the View > Show Wave command.

One common scenario is to place signals in the wave viewer and the Dataflow panes, run
the design for some amount of time, and then use time cursors to investigate value changes.
In other words, as you place and move cursors in the wave viewer pane (see "Using time
cursors in the Wave window" (UM-358) for details), the signal values update in the Dataflow
pane.

Another scenario is to select a process in the Dataflow pane, which automatically adds to
the wave viewer pane all signals attached to the process.

See "Tracing events (causality)" (UM-277) for another example of using the embedded wave
viewer.
ModelSim SE User’s Manual

UM-276 10 - Graphic interface

Model
Zooming and panning

The Dataflow window offers several tools for zooming and panning the display.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zooming with the mouse

To zoom with the mouse, you can either use the middle mouse button or enter Zoom Mode
by selecting View > Zoom and then use the left mouse button.

Four zoom options are possible by clicking and dragging in different directions:

• Down-Right: Zoom Area (In)

• Up-Right: Zoom Out (zoom amount is displayed at the mouse cursor)

• Down-Left: Zoom Selected

• Up-Left: Zoom Full

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixels to activate.

Panning with the mouse

You can pan with the mouse in two ways: 1) enter Pan Mode by selecting View > Pan and
then drag with the left mouse button to move the design; 2) hold down the <Ctrl> key and
drag with the middle mouse button to move the design.

Zoom In
zoom in by a factor
of two from the
current view

Zoom Out
zoom out by a
factor of two from
current view

Zoom Full
zoom out to view
the entire
schematic
Sim SE User’s Manual

Dataflow window UM-277
Tracing events (causality)

One of the most useful features of the Dataflow window is tracing an event to see the cause
of an unexpected output. This feature uses the Dataflow window’s embedded wave viewer
(see "The embedded wave viewer" (UM-275) for more details).

In short you identify an output of interest in the Dataflow pane and then use time cursors in
the wave viewer pane to identify events that contribute to the output.

The process for tracing events is as follows:

1 Log all signals before starting the simulation (add log -r /*).

2 After running a simulation for some period of time, open the Dataflow window and the
wave viewer pane.

3 Add a process or signal of interest into the Dataflow window (if adding a signal, find its
driving process). Select the process and all signals attached to the selected process will
appear in the wave viewer pane.

4 Place a time cursor on an edge of interest; the edge should be on a signal that is an output
of the process.

5 Select Trace > Trace next event.

A second cursor is added at the most recent input event.

6 Keep selecting Trace > Trace next event until you've reached an input event of interest.
Note that the signals with the events are selected in the wave pane.

7 Now select Trace > Trace event set.

The Dataflow display "jumps" to the source of the selected input event(s). The operation
follows all signals selected in the wave viewer pane. You can change which signals are
followed by changing the selection.

8 To continue tracing, go back to step 5 and repeat.

If you want to start over at the originally selected output, select Trace > Trace event reset.
ModelSim SE User’s Manual

UM-278 10 - Graphic interface

Model
Tracing the source of an unknown (X)

Another useful debugging option is locating the source of an unknown (X). Unknown
values are most clearly seen in the Wave window—the waveform displays in red when a
value is unknown.

The procedure for tracing an unknown is as follows:

1 Load your design.

2 Log all signals in the design or any signals that may possibly contribute to the unknown
value (log -r /* will log all signals in the design).

3 Add signals to the Wave window or wave viewer pane, and run your design the desired
length of time.

4 Put a cursor on the time at which the signal value is unknown.

5 Add the signal of interest to the Dataflow window, making sure the signal is selected.

6 Select Trace > TraceX, Trace > TraceX Delay, Trace > ChaseX, or Trace > ChaseX
Delay.

These commands behave as follows:

TraceX / TraceX Delay— Step back to the last driver of an X value. TraceX Delay works
similarly but it steps back in time to the last driver of an X value. TraceX should be used
for RTL designs; TraceX Delay should be used for gate-level netlists with backannotated
delays.
Sim SE User’s Manual

Dataflow window UM-279
ChaseX / ChaseX Delay — "Jumps" through a design from output to input, following X
values. ChaseX Delay acts the same as ChaseX but also moves backwards in time to the
point where the output value transitions to X. ChaseX should be used for RTL designs;
ChaseX Delay should be used for gate-level netlists with backannotated delays.

Finding items by name in the Dataflow window

Select Edit > Find to search for signal, net, or register names or an instance of a
component.

Enter an item name and specify whether it is an instance of a process (Instance); a signal,
net, or register (Signal); or either (Any).

Specify Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

If you want to zoom in on the located item, select Zoom To. You can continue searching
using the Find Next button.
ModelSim SE User’s Manual

UM-280 10 - Graphic interface

Model
Printing and saving the display

Saving a .eps file and printing under UNIX

Select File > Print Postscript to print the Dataflow display in UNIX, or save the waveform
as a .eps file on any platform.

The Print Postscript dialog box includes these options:

Printer

• Print command
Enter a UNIX print command to print the display in a UNIX environment.

• File name
Enter a filename for the encapsulated Postscript (.eps) file to create; or browse to a
previously created .eps file and use that filename.

Paper

• Paper size
Select the paper size used by the printer.

• Border width
Specify the border in inches.

• Font
Specify the font to use for printing.

Setup button

See "Printer Page Setup" (UM-366).
Sim SE User’s Manual

Dataflow window UM-281
Printing on Windows platforms

Select File > Print to print the Dataflow display or to save the display to a file.

The Print dialog box includes these options:

Printer

• Name
Choose the printer from the drop-down menu. Set printer properties with the Properties
button.

• Status
Indicates the availability of the selected printer.

• Type
Printer driver name for the selected printer. The driver determines what type of file is
output if "Print to file" is selected.

• Where
The printer port for the selected printer.

• Comment
The printer comment from the printer properties dialog box.

• Print to file
Make this selection to print the display to a file instead of a printer. The printer driver
determines what type of file is created. Postscript printers create a Postscript (.ps) file,
non-Postscript printers create a .prn or printer control language file. To create an
encapsulated Postscript file (.eps) use the File > Print Postscript menu selection.
ModelSim SE User’s Manual

UM-282 10 - Graphic interface

Model
Configuring page setup

Clicking the Setup button in the Print Postscript or Print dialog box allows you to define
the following options (this is the same dialog that opens via File > Page setup).

The Dataflow Page Setup dialog box includes these options:

• View
Specifies Full (everything in the window) or Current View (only that which is visible).

• Highlight
Specifies that highlighting (see "Tracking your path through the design" (UM-274)) is On
or Off.

• Color Mode
Specifies Color (256 colors), Invert Color (gray-scale) or Mono (monochrome) color
mode.

• Orientation
Specifies Landscape (horizontal) or Portrait (vertical) orientation.

• Paper
Specifies the font to use for printing.
Sim SE User’s Manual

Dataflow window UM-283
Symbol mapping

The Dataflow window has built-in mappings for all Verilog primitive gates (i.e., AND, OR,
etc.). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. This is done through a file containing name pairs, one per
line, where the first name is the concatenation of the design unit and process names,
(DUname.Processname), and the second name is the name of a built-in symbol. For
example:

xorg(only).p1 XOR
org(only).p1 OR
andg(only).p1 AND

Entities and modules are mapped the same way:

AND1 AND
AND2 AND # A 2-input and gate
AND3 AND
AND4 AND
AND5 AND
AND6 AND
xnor(test) XNOR

Note that for primitive gate symbols, pin mapping is automatic.

The Dataflow window looks in the current working directory and inside each library
referenced by the design for the file dataflow.bsm (.bsm stands for "Built-in Symbol Map).
It will read all files found.

User-defined symbols

You can also define your own symbols using an ASCII symbol library file format for
defining symbol shapes. This capability is delivered via Concept Engineering’s NlviewTM
widget Symlib format. For more specific details on this widget, see www.model.com/
support/documentation/BOOK/nlviewSymlib.pdf.

The Dataflow window will search the current working directory, and inside each library
referenced by the design, for the file dataflow.sym. Any and all files found will be given to
the Nlview widget to use for symbol lookups. Again, as with the built-in symbols, the DU
name and optional process name is used for the symbol lookup. Here's an example of a
symbol for a full adder:

symbol adder(structural) * DEF \
port a in -loc -12 -15 0 -15 \
pinattrdsp @name -cl 2 -15 8 \
port b in -loc -12 15 0 15 \
pinattrdsp @name -cl 2 15 8 \
port cin in -loc 20 -40 20 -28 \
pinattrdsp @name -uc 19 -26 8 \
port cout out -loc 20 40 20 28 \

pinattrdsp @name -lc 19 26 8 \
port sum out -loc 63 0 51 0 \
pinattrdsp @name -cr 49 0 8 \
path 10 0 0 7 \
path 0 7 0 35 \
path 0 35 51 17 \
path 51 17 51 -17 \
path 51 -17 0 -35 \
path 0 -35 0 -7 \
path 0 -7 10 0
ModelSim SE User’s Manual

http://www.model.com/support/documentation/BOOK/nlviewSymlib.pdf
http://www.model.com/support/documentation/BOOK/nlviewSymlib.pdf

UM-284 10 - Graphic interface

Model
Port mapping is done by name for these symbols, so the port names in the symbol definition
must match the port names of the Entity|Module|Process (in the case of the process, it’s the
signal names that the process reads/writes).

Configuring window options

You can configure several options that determine how the Dataflow window behaves. The
settings affect only the current session.

Select Tools > Options to open the Dataflow Options dialog box.

The General options tab includes these options:

• Hide Cells
By default the Dataflow window automatically hides instances that have either
'celldefine, VITAL_LEVEL0, or VITAL_LEVEL1 attributes. Unchecking this disables
automatic cell hiding.

• Keep Dataflow
Keeps previous contents when adding new signals or processes to the window.

• Show Hierarchy
Displays connectivity using hierarchical references. Note that selecting this will erase the
current contents of the window.

• Bottom inout pins
Places inout pins on the bottom of components rather than on the right with output pins.

Important: When you create or modify a symlib file, you must generate a file index.
This index is how the Nlview widget finds and extracts symbols from the file. To
generate the index, select Tools > Create symlib index (Dataflow window) and specify
the symlib file. The file will be rewritten with a correct, up-to-date index.
Sim SE User’s Manual

Dataflow window UM-285
• Disable Sprout
Displays only the selected signal or process with its immediate fanin/fanout. Configures
window to behave like the Dataflow window of versions prior to 5.6.

• Select equivalent nets
If the item you select traverses hierarchy, then ModelSim selects all connected items
across the hierarchy.

• Log nets
Logs signals when they are added to the window.

• Select Environment
Updates the Structure, Signals, and Source windows to reflect the net selected in the
Dataflow window.

• Automatic Add to Wave
Adds signals automatically to the Wave pane or window when executing ChaseX or
TraceX.

The Warning options tab includes these options:

• Enable diverging X fanin warning
Enables the warning message, "ChaseX: diverging X fanin. Reduce the selection list and
try again."

• Enable depth limit warning
Enables the warning message, "ChaseX: Stop because depth limit reached! Possible
loop?"

• Enable X event at time 0 warning
Enables the warning message, ""Driving X event at time 0."
ModelSim SE User’s Manual

UM-286 10 - Graphic interface

Model
List window

The List window displays the results of your simulation run in tabular format. The window
is divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and delta visible on the left.

Items you can view

The following type of items can be viewed in the List window:

VHDL

signals, aliases, process variables, and shared variables

Verilog

nets, registers, and variables

SystemC

primitive channels and ports

Comparisons

comparison regions and comparison signals; see Chapter 13 - Waveform Compare for more
information

Virtuals

Virtual signals and functions

Constants, generics, and parameters are not viewable in the List or Wave windows.
Sim SE User’s Manual

List window UM-287
Adding items to the List window

Before adding items to the List window you may want to set the window display properties
(see "Setting List window display properties" (UM-293)). You can add items to the List
window in several ways.

Adding items with drag and drop

You can drag and drop items into the List window from the Signals, Source, Process,
Variables, Wave, or Structure window. Select the items in the first window, then drop them
into the List window. Depending on what you select, all items or any portion of the design
may be added.

Adding items from the Main window command line

Invoke the add list (CR-55) command to add one or more individual items; separate the
names with a space:

add list <item_name> <item_name>

You can add all the items in the current region with this command:

add list *

Or add all the items in the design with:

add list -r /*

Adding items with a List window format file

To use a List window format file you must first save a format file for the design you are
simulating. The saved format file can then be used as a DO file to recreate the List window
formatting. Follow these steps:

• Add items to your List window.

• Edit and format the items to create the view you want (see "Editing and formatting items
in the List window" (UM-290)).

• Save the format to a file by selecting File > Save Format (List window).

To use the format file, start with a blank List window, and run the DO file in one of two
ways:

• Invoke the do (CR-156) command from the command line:
do <my_list_format>

• Select File > Load Format from the List window menu bar.

List window format files are design-specific; use them only with the design you were
simulating when they were created. If you try to use the wrong format file, ModelSim will
advise you of the items it expects to find.
ModelSim SE User’s Manual

UM-288 10 - Graphic interface

Model
The List window menu bar

This section provides information on select menu commands available in the List window.

File menu

Edit menu

View menu

Tools menu

Write List save the List window data to a text file in one of three formats; see
"Saving List window data to a file" (UM-301) for details

Save Format save the current List window display and signal preferences to a
DO (macro) file; running the DO file will reformat the List
window to match the display as it appeared when the DO file was
created

Load Format run a List window format DO file previously saved with Save
Format

Add Marker add a time marker at the currently selected line; see "Setting time
markers in the List window" (UM-300)

Delete Marker delete the selected marker from the listing

Find find the specified item label within the List window; see "Finding
items by name in the List window" (UM-297)

Search search the List window for a specified value, or the next transition
for the selected signal; see "Searching for item values in the List
window" (UM-298)

Signal Properties set item properties; see "Editing and formatting items in the List
window" (UM-290)

Goto choose the time marker to go to from a list of current markers

Combine Signals combine the selected fields into a user-defined bus; keep copies of
the original items rather than moving them; see "Combining items
in the List window" (UM-292)

Window
Preferences

set display properties for items in the window; see "Setting List
window display properties" (UM-293)
Sim SE User’s Manual

List window UM-289
Window menu

The Window menu is identical in all windows. See "Window menu" (UM-268) for a
description of the commands.

The List window context menu

Some commands like the following are available by clicking the right mouse button on an
entry in the right-hand pane:

Examine display the value of the item at the time selected

Annotate Diff Add a note to explain a comparison difference. See Chapter 13 -
Waveform Compare for further information.

Ignore Diff Disregard the selected comparison difference. See Chapter 13 -
Waveform Compare for further information.
ModelSim SE User’s Manual

UM-290 10 - Graphic interface

Model
Editing and formatting items in the List window

Once you have the items you want in the List window, you can edit and format the list to
create the view you find most useful. (See also, "Adding items to the List window" (UM-

287))

To edit an item:

Select the item’s label at the top of the List window or one of its values from the listing.
Move, copy or remove the item by selecting commands from the List window Edit menu
(UM-288) menu.

You can also click+drag to move items within the window.

To format an item:

Select the item’s label at the top of the List window or one of its values from the listing,
then select View > Signal Properties (List window). The resulting List Signal Properties
dialog box allows you to set the item’s label, label width, triggering, and radix.

The List Signal Properties dialog box includes these options:

• Signal
Shows the full pathname of the selected signal.

• Display Name
Specifies the label that appears at the top of the List window column.
Sim SE User’s Manual

List window UM-291
• Radix
Specifies the radix (base) in which the item value is expressed. The default radix is
symbolic, which means that for an enumerated type, the List window lists the actual
values of the enumerated type of that item. You can change the default radix for the
current simulation using either Simulate > Simulation Options (Main window) or the
radix command (CR-235). You can change the default radix permanently by editing the
DefaultRadix (UM-623) variable in the modelsim.ini file.

For the other radixes - binary, octal, decimal, unsigned, hexadecimal, or ASCII - the item
value is converted to an appropriate representation in that radix. In the system
initialization file, modelsim.tcl, you can specify the list translation rules for arrays of
enumerated types for binary, octal, decimal, unsigned decimal, or hexadecimal item
values in the design unit.

Changing the radix can make it easier to view information in the List window. Compare
the image below (with decimal values) with the image on page UM-286 (with symbolic
values).

• Width
Allows you to specify the desired width of the column used to list the item value. The
default is an approximation of the width of the current value.

• Trigger: Triggers line
Specifies that a change in the value of the selected item causes a new line to be displayed
in the List window.

• Trigger: Does not trigger line
Specifies that a change in the value of the selected item does not affect the List window.

The trigger specification affects the trigger property of the selected item. See also,
"Setting List window display properties" (UM-293).
ModelSim SE User’s Manual

UM-292 10 - Graphic interface

Model
Combining items in the List window

You can combine signals in the List window into busses. A bus is a collection of signals
concatenated in a specific order to create a new virtual signal with a specific value. To
create a bus, select one or more signals in the List window and then choose Tools >
Combine Signals.

The Combine Selected Signals dialog box includes these options:

• Name
Specifies the name of the newly created bus.

• Order of Indexes
Specifies in which order the selected signals are indexed in the bus. If set to Ascending,
the first signal selected in the List window will be assigned an index of 0. If set to
Descending, the first signal selected will be assigned the highest index number. Note that
the signals are added to the bus in the order that they appear in the window. Ascending
and descending affect only the order and direction of the indexes of the bus.

• Remove selected signals after combining
Specifies whether you want to remove the selected signals from the List window once the
bus is created.
Sim SE User’s Manual

List window UM-293
Setting List window display properties

Before you add items to the List window you can set the window’s display properties. To
change when and how a signal is displayed in the List window, select Tools > Window
Preferences (List window). The resulting Modify Display Properties dialog box contains
tabs for Window Properties and Triggers.

Window Properties tab

The Window Properties tab includes these options:

• Signal Names
Sets the number of path elements to be shown in the List window. For example, "0"
shows the full path. "1" shows only the leaf element.

• Max Title Rows
Sets the maximum number of rows in the name pane.

• Dataset Prefix: Always Show Dataset Prefixes
Displays the dataset prefix associated with each signal pathname. Useful for displaying
signals from multiple datasets.

• Dataset Prefix: Show Dataset Prefix if 2 or more
Displays dataset prefixes if there are signals in the window from 2 or more datasets.
ModelSim SE User’s Manual

UM-294 10 - Graphic interface

Model
• Dataset Prefix: Never Show Dataset Prefixes
Turns off display of dataset prefixes.

Triggers tab

The Triggers tab controls the triggering for the display of new lines in the List window.
You can specify whether an item trigger or a strobe trigger is used to determine when the
List window displays a new line. If you choose Trigger on: Signal Change, then you can
choose between collapsed or expanded delta displays. You can also choose a combination
of signal and strobe triggers. To use gating, Signal Change or Strobe or both must be
selected.

The Triggers tab includes the following options:

• Expand Deltas
When selected with the Trigger on: Signal Change check box, displays a new line for
each time step on which items change, including deltas within a single unit of time
resolution.

• Collapse Deltas
Displays only the final value for each time unit.

• No Deltas
Hides the simulation cycle (delta) column.
Sim SE User’s Manual

List window UM-295
• Trigger On Signal Change
Triggers on signal changes. Defaults to all signals. Individual signals can be excluded
from triggering by using the View > Signal Properties dialog box or by originally
adding them with the -notrigger option to the add list command (CR-55).

• Trigger On Strobe
Triggers on the Strobe Period you specify; specify the first strobe with First Strobe at:.

• Use Gating Expression
Enables triggers to be gated on (a value of 1) or off (a value of 0) by the specified
Expression, much like a hardware signal analyzer might be set up to start recording data
on a specified setup of address bits and clock edges. Affects the display of data, not the
acquisition of the data.

• Use Expression Builder (button)
Opens the Expression Builder to help you write a gating expression. See "The GUI
Expression Builder" (UM-395)

• Expression
Enter the expression for trigger gating into this field, or use the Expression Builder (select
the Use Expression Builder button). The expression is evaluated when the List window
would normally have displayed a row of data (given the trigger on signals and strobe
settings above).

• On Duration
The duration for gating to remain open after the last list row in which the expression
evaluates to true; expressed in x number of default timescale units. Gating is
level-sensitive rather than edge-triggered.

List window gating information is saved as configuration statements when the list format
is saved. The gating portion of a configuration statement might look like this:

configure list -usegating 1
configure list -gateduration 100
configure list -gateexpr {<expression>}
ModelSim SE User’s Manual

UM-296 10 - Graphic interface

Model
Configuring a List trigger with the Expression Builder

This example shows you how to set a List window trigger based on a gating expression
created with the ModelSim Expression Builder. Here is the procedure:

1 Select Tools > Window Preferences to access the Triggers tab.

2 Check the Use Gating Expression check box and click Use Expression Builder.

3 Select the signal in the List window that you want to be the enable signal by clicking on
its name in the header area of the List window.

4 Click Insert Selected Signal and then 'rising in the Expression Builder.

5 Click OK to close the Expression Builder.

You should see the name of the signal plus "'rising" added to the Expression entry box of
the Modify Display Properties dialog box.

6 Click OK to close the dialog.

If you already have simulation data in the List window, the display should immediately
switch to showing only those cycles for which the gating signal is rising. If that isn't quite
what you want, you can go back to the expression builder and play with it until you get it
the way you want it.

If you want the enable signal to work like a "One-Shot" that would display all values for
the next, say 10 ns, after the rising edge of enable, then set the On Duration value to 10
ns.
Sim SE User’s Manual

List window UM-297
Sampling signals at a clock change

You can sample signals at a clock change easily using the add list command (CR-55) with
the -notrigger argument. -notrigger disables triggering the display on the specified signals.
For example:

add list clk -notrigger a b c

When you run the simulation, List window entries for clk, a, b, and c appear only when clk
changes.

If you want to display on rising edges only, you have two options:

1 Turn off the List window triggering on the clock signal, and then define a repeating
strobe for the List window.

2 Define a "gating expression" for the List window that requires the clock to be in a
specified state. See "Configuring a List trigger with the Expression Builder" (UM-296).

Finding items by name in the List window

The Find dialog box
allows you to search for
text strings in the List
window. Select Edit >
Find (List window) to
bring up the Find dialog
box.

Enter a text string and
Find it by searching
Right or Left through the
List window display.
Specify Name to search the real pathnames of the items or Label to search their assigned
names (see "Setting List window display properties" (UM-293)).

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.
ModelSim SE User’s Manual

UM-298 10 - Graphic interface

Model
Searching for item values in the List window

Select an item in the List window. Select Edit > Search (List window) to bring up the List
Signal Search dialog box.

Signal Name(s) shows a list of the items currently selected in the List window. These items
are the subject of the search. The search is based on these options:

• Search Type: Any Transition
Searches for any transition in the selected signal(s).

• Search Type: Rising Edge
Searches for rising edges in the selected signal(s).

• Search Type: Falling Edge
Searches for falling edges in the selected signal(s).

• Search Type: Search for Signal Value
Searches for the value specified in the Value field; the value should be formatted using
VHDL or Verilog numbering conventions; see "Numbering conventions" (CR-21).

Note: If your signal values are displayed in binary radix, see "Searching for binary signal
values in the GUI" (CR-30) for details on how signal values are mapped between a binary
radix and std_logic.
Sim SE User’s Manual

List window UM-299
• Search Type: Search for Expression
Searches for the expression specified in the Expression field evaluating to a boolean
true. Activates the Builder button so you can use "The GUI Expression Builder" (UM-395)
if desired.

The expression can involve more than one signal but is limited to signals logged in the
List window. Expressions can include constants, variables, and DO files. If no expression
is specified, the search will give an error. See "Expression syntax" (CR-24) for more
information.

• Search Options: Match Count
Indicates the number of transitions or matches to search.You can search for the nth
transition or the nth match on value.

• Search Options: Ignore Glitches
Ignores zero width glitches in VHDL signals and Verilog nets.

The Search Results are indicated at the bottom of the dialog box.
ModelSim SE User’s Manual

UM-300 10 - Graphic interface

Model
Setting time markers in the List window

Select Edit > Add Marker (List window) to tag the selected list line with a marker. The
marker is indicated by a thin box surrounding the marked line. The selected line uses the
same indicator, but its values are highlighted. Delete markers by first selecting the marked
line, then selecting Edit > Delete Marker.

Finding a marker

Choose a specific marked line to view by selecting View > Goto. The marker name (on the
Goto list) corresponds to the simulation time of the selected line.
Sim SE User’s Manual

List window UM-301
Saving List window data to a file

Select File > Write List (List window) to save the List window data in one of these
formats:

• Tabular
writes a text file that looks like the window listing

ns delta /a /b /cin /sum /cout
0 +0 X X U X U
0 +1 0 1 0 X U
2 +0 0 1 0 X U

• Events
writes a text file containing transitions during simulation

@0 +0
/a X
/b X
/cin U
/sum X
/cout U
@0 +1
/a 0
/b 1
/cin 0

• TSSI
writes a file in standard TSSI format; see also, the write tssi command (CR-395)

0 00000000000000010?????????
2 00000000000000010???????1?
3 00000000000000010??????010
4 00000000000000010000000010
100 00000001000000010000000010

You can also save List window output using the write list command (CR-391).

List window keyboard shortcuts

See "List window keyboard shortcuts" (UM-642) .
ModelSim SE User’s Manual

UM-302 10 - Graphic interface

Model
Memory window

The memory window lists and displays the contents of the memories in your design. The
window is divided into two adjustable panes, allowing you to scroll vertically through the
memory contents displayed on the right, while keeping the memory list browser visible on
the left.

Memories you can view

The memory browser identifies and lists the following types of arrays as memories:

• reg, wire, bit, and std_logic arrays

Any signal or variable that is an array of two dimensions (including arrays of arrays) are
identified as memories and listed if the base type is a Verilog reg or wire type, or a VHDL
enumerated type with values in std_ulogic, bit, and all related sub-types.

• Integer arrays

Single dimensional arrays of integers are interpreted as 2D memory arrays. In these
cases, the word width listed in the Memory List pane is equal to the integer size, and the
depth is the size of the array itself. The appearance of this type of array in the memory
list can be disabled via the View menu or the ShowIntMem (UM-625) variable in the
modelsim.ini.

• Single dimensional arrays of VHDL enumerated types other than std_logic or bit

These enumerated type value sets must have values that are longer than one character.
The listed width is the number of entries in the enumerated type definition and the depth
is the size of the array itself. The appearance of this type of array in the memory list can
Sim SE User’s Manual

Memory window UM-303
be disabled via the View menu or the ShowEnumMem (UM-625) variable in the
modelsim.ini.

• 3D or greater arrays

Memories with three or more dimensions display with a plus sign ’+’ next to their names
in the Memory List. Click the ’+’ to show the array indices under that level. When you
finally expand down to the 2D level, you can click on the index, and the data for the
selected 2D slice of the memory will appear in the memory contents pane.The
appearance of this type of array in the memory list can be disabled via the View menu or
the Show3DMem (UM-625) variable in the modelsim.ini.

The Memory window menu bar

This section provides information on select menu commands available in the Memory
window. Several commands are also available on a context menu by right-clicking within
the content or address pane.

File menu

Edit menu

Load load memory data to the currently displayed memory instance
from a file; see "Loading files and patterns" (UM-309)

Save save currently displayed memory data (all or a range) to a file; see
"Saving memory data to a file" (UM-312)

Environment set the environment of the memory being viewed either to follow
context selection or to the current context

Goto go to specific memory address in currently displayed memory
instance; see "Using the Goto dialog" (UM-307)

Change change the memory contents for all addresses or a range of
addresses in the currently displayed memory instance; see
"Interactive memory initialization" (UM-311)

Find find the specified text string within the Memory window; see
"Finding a memory instance" (UM-308)

Data Search searches for a specified memory data pattern in the currently
displayed memory instance; see "Searching for a data pattern"
(UM-307)
ModelSim SE User’s Manual

UM-304 10 - Graphic interface

Model
View menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-268) for a
description of the commands.

Viewing memory contents

To bring up a Memory window, either select View > Memory from the menu bar, or enter
view memory at the command prompt. Multiple memory windows can be viewed
simultaneously.

Selecting memory instances

To select a memory instance for viewing its contents, you can:

• Click on one of the memory instances appearing in the Memory List pane.

• Drag and drop any instance shown in the other ModelSim windows, such as Structure or
Wave into the Address / Data pane. All memory instances in that level of hierarchy are
displayed.

• Enter the command add mem <instance> at the vsim command prompt.

Viewing multiple memory instances

You can view multiple memory instances. A tab appears at the bottom of the Address / Data
pane corresponding to each memory instance that is added to the view, as shown below. To
close one instance or all instances, select File > Close Instance or Close All, respectively.

Memory
Declaration

open up the Source window to the line of code where the currently
displayed memory instance is defined

Split Screen split the address pane horizontally into two identically-sized
panes, one upper and one lower; see "Splitting the Data Screen"
(UM-306).

Memory List toggle on and off the display of the Memory List pane

ShowIntMem toggle on and off the display in the Memory List pane of single
dimensional arrays of integers

ShowEnumMem toggle on and off the display in the Memory List pane of single
dimensional arrays of VHDL enumerated types other than
std_logic or bit

Show3DMem toggle on and off the display in the Memory List pane of arrays of
3 or more dimensions

Display Options set various window display options; see "Modifying the memory
window display" (UM-305).
Sim SE User’s Manual

Memory window UM-305
Modifying the memory window display

When you have added memory instances to the view, the Memory window appears as
follows:

The display can be modified by setting different display options and splitting the Data /
Address pane.
ModelSim SE User’s Manual

UM-306 10 - Graphic interface

Model
Setting display options

To change the display’s address and data radix, or line wrapping of the selected memory,
select View > Display Options. You can also right-click anywhere in the in the Address/
Data pane to bring up a pop-up menu containing Display Options.

The Display Options dialog box
includes these options:

• Address Radix
The radix for the address. Can be
Hexadecimal or Decimal.

• Data Radix
The radix for the data. Non-
enumerated type memories can be
Symbolic, Binary, Octal, Decimal,
Unsigned, and Hexadecimal.
Enumerated type memories are only
symbolic data types, and all other
options are grayed out.

• Line Wrap
The number of words per line can be
set, or arbitrarily determined based on
the size of the window.

Splitting the Data Screen

To split the Address
/ Data pane into two
screens displaying
the contents of a
single memory
instance, select
View > Split
Screen (or right-
click in the pane and
select Split Screen
from the pop-up
menu). This allows
you to view
different address
locations within the
same memory
instance
simultaneously.
Sim SE User’s Manual

Memory window UM-307
Navigating to memory locations within a memory instance

Other than using the scroll bar to scroll up and down through the memory, you can navigate
to specific memory locations within an instance in several ways.

Using the Goto dialog

Select Edit > Goto to bring up the Goto Memory
dialog. You can also right-click on the address
column in the Address / Data display area, and select
Goto from the pop-up menu. When selected, it
brings up the Goto dialog box, shown here. Enter the
desired address location into the field, select OK,
and the data view shifts to display the data in that
location.

Direct address navigation

You can navigate to any address
location directly by editing the address
in the address column. Double-click on
any address, type in the desired address,
and hit Enter. The address display
scrolls to the specified location.

Searching for a data
pattern

To find a particular data
pattern, select Edit > Data
Search or right-click in the
data area of the pane, and
select Data Search. The
Data Search in Memory
dialog box appears as
shown here. Specify the
pattern you want to find in
the Search for: field and,
optionally, a replacement
pattern in the a the Replace with: field. The Search Next button performs the search and
replace operation. Select Search backward to search and/or replace backward through the
memory for the specified pattern. Select Close to close the Data Search dialog box.
ModelSim SE User’s Manual

UM-308 10 - Graphic interface

Model
Finding a memory
instance

To find a particular data
pattern, select Edit > Find or
right-click in the data area of
the pane, and select Find.
The Find dialog box appears
as shown here, containing a
search pattern definition
field and a Find Next button.
Select Exact match to search for patterns exactly matching the specified pattern. Select
Search backward to search backward through the memory for the specified pattern. Select
Close to close the Find dialog box.
Sim SE User’s Manual

Memory window UM-309
Initializing memories

You can initialize memories in your design by either loading the contents from a file, or by
an interactive command. An entire memory, a specific range of addresses, or an individual
word can be overwritten. Choose the type of Load operation to be performed in the Load
Type area. The default load type is File Only. When either File Only or Data Only is
selected, the unused section of the dialog box is grayed out.

Loading files and patterns

To initialize a memory from a file:

Select File > Load. The Load Memory dialog box appears, as follows:

The Load Memory dialog box includes these options:

• Instance Name
Displays the name of the memory instance being loaded.
ModelSim SE User’s Manual

UM-310 10 - Graphic interface

Model
• Load Type
Defines the type of load function you will perform. Your choices for loading data are:
File Only, Data Only or Both File and Data.

• Address Range
Specifies all addresses or a range of addresses in the memory that you want to load. The
address radix of the displayed memory is shown in parentheses.

• File Load
Contains all inputs related to loading from a file. This whole area of the dialog is grayed
out if Load Type is specified as Data Only.

• File Format
Specifies the format of the file to be loaded. Verilog Hex, Verilog Binary, or MTI format
can be explicitly set, or the format can be determined automatically from the file (if the
file was created with the mem save command).

• Filter
Filters the file list.

• File name
The name of the memory file to load. You can manually edit this field, or select a file
from the Files list, and it will fill in automatically.

• Data Load
Contains all inputs related to loading memory data. This area of the dialog is grayed out
if Load Type is specified as File Only.

• Fill Data
Specifies the fill data for addresses not contained in the load file.

• Fill Type
Specifies how to apply the fill data, either directly as a value, or algorithmically. See the
mem load command (CR-195) for more information on Fill Type and Fill Data.

• Skip
Specifies the number of words to skip when applying a fill pattern sequence.
Sim SE User’s Manual

Memory window UM-311
Interactive memory initialization

Memory contents can be modified interactively during simulation for greater ease in
debugging your design. You can change the data values in multiple addresses in the
memory by using the Change Memory dialog, or change individual data values by editing
them directly in the data area of the Address / Data pane.

Changing data for multiple addresses

Select Edit > Change to open the Change Memory dialog box.

The Change Memory dialog box includes the following:

• Instance Name
Displays the name of the memory instance being loaded.

• Address Range
Specifies all addresses or a starting and ending address to be changed. The address radix
of the currently displayed memory is shown in parentheses.

• Fill Data
Specifies the fill data for specified addresses.

• Fill Type
Specifies how to apply the fill data, either directly as a value, or algorithmically. See the
mem load command (CR-195) for more information on Fill Type and Fill Data.

• Skip
Specifies the number of words to skip after applying a fill pattern sequence.

Changing data for individual addresses

To edit memory data in
place, Double click (or
right-click and select Edit in
Place) on any word in the
Address/Data pane of the
Memory window. The data
is highlighted. Type in the
desired change. Pressing <Enter> commits the change; <Esc> aborts it. <Tab> scrolls down
the list of data entries, while <Shift>-<Tab> scrolls up the list. As a short-cut, after editing
ModelSim SE User’s Manual

UM-312 10 - Graphic interface

Model
one data value, you can double-click on another data value to commit the change and edit
the second value.

Saving memory data to a file

To save the current memory data to a file, select File > Save.

The Save Memory File dialog box includes the following:

• File name
Name of file to be saved.

• Address Range
Specifies all or a range of addresses to be saved into the file. The address radix

• File Format
Specifies whether memory is to be saved in Verilog Hex, Verilog Binary, or MTI format.
Also, specify the Address and Data radix for MTI format.

• No addresses
Specifies that no addresses are to appear in the saved file. This enables the file to be
reloaded anywhere in the memory.
Sim SE User’s Manual

Memory window UM-313
• Compress
Applies a simple ASCII compression to the saved file. The compression algorithm
replaces repeating lines with a single asterisk, like is done with the Unix “od” command.

MTI memory data file format

The MTI memory data file format is as illustrated in the following example:

// memory data file
// (do not edit the following line - required for mem load use)

// format=mti addressradix=d dataradix=s direction=ascending

 0: 110 110 110 110 110 110

 6: 110 110 110 110 000 000

12: 000 000 000 000 000 000

18: 000 000 000 000 000 000

24: 000 000 000 000 000 000

30: 000 000

The possible format, address radix, data radix, and direction settings are as specified by the
corresponding options in the mem save and mem load commands. See the mem save
command (CR-198) and the mem load command (CR-195) for more information.
ModelSim SE User’s Manual

UM-314 10 - Graphic interface

Model
Process window

The Process window displays a list of processes, and SystemC method and thread
processes. In ModelSim versions 5.7 and later, the information contained in the Process
window can also be displayed in the Main window Workspace (UM-263).

If View > Active is selected then all processes, and SystemC methods and thread processes
scheduled to run during the current simulation cycle are displayed along with the pathname
of the instance in which each process is located. If View > In Region is selected then only
the processes in the currently selected region are displayed.

Understanding process status

Each item in the scrollbox is
preceded by one of the following
indicators:

• <Ready>
Indicates that the process is
scheduled to be executed within
the current delta time.

• <Wait>
Indicates that the process is
waiting for a VHDL signal or
Verilog net or variable to change
or for a specified time-out period.
SystemC items cannot be in a Wait
state.

• <Done>
Indicates that the process has executed a VHDL wait statement without a time-out or a
sensitivity list. The process will not restart during the current simulation run. SystemC
items cannot be in a Done state.

If you select a "Ready" process, it will be executed next by the simulator.

Links to other windows

When you click on a process in the Process window, the following windows are updated:

Window updated Result

 Dataflow window (UM-270) highlights the selected process

 Memory window (UM-302) shows the memory instances in that process

 Signals window (UM-316) shows the signals in the region in which the process is
located

 Source window (UM-325) shows the associated source code

 Structure window (UM-331) shows the region in which the process is located
Sim SE User’s Manual

Process window UM-315
The Process window menu bar

This section provides information on select menu commands available in the Process
window.

File menu

View menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-268) for a
description of the commands.

 Variables window (UM-334) shows the VHDL variables and Verilog registers and
variables in the process

Window updated Result

Save List save the process tree to a text file

Environment Follow Context Selection: update the window based on the
selection in the Structure window (UM-331);

Fix to Current Context: maintain the current view, do not update

Active display all the processes that are scheduled to run during the
current simulation cycle

In Region display any processes that exist in the region that is selected in the
Structure window

Sort sort the process list in either ascending, descending, or
declaration order
ModelSim SE User’s Manual

UM-316 10 - Graphic interface

Model
Signals window

The Signals window shows the names and current values of items in the current region
(which is selected in the Structure window). The data in this pane is similar to that shown
in the Wave window (UM-337), except that the values do not change dynamically with
movement of the selected Wave window cursor.

Clicking on a signal name in the Signals window highlights that signal in the Dataflow and
Wave windows. Double-clicking a signal highlights that signal in the Source window
(opening a Source window if one is not open already). You can also right click a signal
name and add it to the List or Wave window, or the current log file.

The items can be sorted in ascending, descending, or declaration order.

Items you can view

One entry is created for each of the following items in the design:

VHDL items

signals, aliases, generics, shared variables

Verilog items

nets, registers, variables, named events, and module parameters

SystemC items

primitive channels and ports
Sim SE User’s Manual

Signals window UM-317
Virtual items

virtual signals and virtual functions; see "Virtual signals" (UM-248) for more information

VHDL composite types (arrays and record types) and Verilog vector nets, vector registers,
and memories are shown in a hierarchical fashion. ModelSim indicates hierarchy with plus
(expandable), minus (expanded), and blank (single level) boxes. See "Tree window
hierarchical view" (UM-261) for more information.

The Signals window menu bar

This section provides information on select menu commands available in the Signals
window. Several commands are also available on a context menu by right-clicking on a
signal name.

File menu

Edit menu

Save List save the signals tree to a text file

Environment allow the window contents to change based on the current
environment, or fix to a specific context or dataset

Close close this copy of the Signals window; you can create a new
window with File > New > Window from the "The Main window
menu bar" (UM-265)

Force apply stimulus to the specified signal; see "Forcing signal and net
values" (UM-321)

Noforce remove the effect of an active force

Clock define clock signals; see"Defining clock signals in HDL designs"
(UM-323)
ModelSim SE User’s Manual

UM-318 10 - Graphic interface

Model
View menu

Add menu

Allows you to add the specified signals to the Wave or List windows or the current WLF
file

Tools menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-268) for a
description of the commands.

Signal Declaration open the source file in the Source window and highlight the signal
declaration

Sort sort the signals tree in either ascending, descending, or declaration
order

Filter choose the port and signal types to view; see "Filtering by signal
type" (UM-319)

Breakpoints open the Breakpoints dialog; see "Creating and managing
breakpoints" (UM-391)

Toggle Coverage add or reset toggle coverage; see Chapter 12 - Code Coverage for
details
Sim SE User’s Manual

Signals window UM-319
Filtering the signal list

You can filter the signal list by name or by signal type.

Filtering by name

To filter by name, start typing letters in the Contains field on the toolbar. As you type
letters, the signals list filters to show only those signals that contain those letters.

To display all signals again, click the Eraser icon to clear the entry.

Filters are stored relative to the region selected in the Structure window. If you re-select a
region that had a filter applied, that filter is restored. This allows you to apply different
filters to different regions.

Filtering by signal type

The View > Filter menu selection allows you to specify which
signal types to display in the Signals window. Multiple options
can be selected.

The signals list
filters dynamically
as you type letters
in the Contains:
field. Click the
eraser icon to clear
the field.
ModelSim SE User’s Manual

UM-320 10 - Graphic interface

Model
Finding items in the Signals window

To find the specified text string within the Signals window, choose the Name or Value field
to search and the search direction: Down or Up.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

You can also do a quick find from the keyboard. When the Signals window is active, each
time you type a letter the signal selector (highlight) will move to the next signal whose
name begins with that letter.
Sim SE User’s Manual

Signals window UM-321
Forcing signal and net values

The Edit > Force command (unavailable for SystemC) displays a dialog box that allows
you to apply stimulus to the selected signal or net. Multiple signals can be selected and
forced; the force dialog box remains open until all of the signals are either forced, skipped,
or you close the dialog box. To cancel a force command, use the Edit > NoForce
command. See also the force command (CR-176).

The Force dialog box includes these options:

• Signal Name
Specifies the signal or net for the applied stimulus.

• Value
Initially displays the current value, which can be changed by entering a new value into
the field. A value can be specified in radixes other than decimal by using the form (for
VHDL and Verilog, respectively):

base#value -or- b|o|d|h’value

16#EE or h’EE, for example, specifies the hexadecimal value EE.

• Kind: Freeze
Freezes the signal or net at the specified value until it is forced again or until it is unforced
with a noforce command (CR-204).

Freeze is the default for Verilog nets and unresolved VHDL signals and Drive is the
default for resolved signals.

If you prefer Freeze as the default for resolved and unresolved signals, you can change
the default force kind in the modelsim.ini file; see Appendix A - ModelSim variables.

• Kind: Drive
Attaches a driver to the signal and drives the specified value until the signal or net is
forced again or until it is unforced with a noforce command (CR-204). This type of force
is illegal for unresolved VHDL signals.

• Kind: Deposit
Sets the signal or net to the specified value. The value remains until there is a subsequent
driver transaction, or until the signal or net is forced again, or until it is unforced with a
noforce command (CR-204).
ModelSim SE User’s Manual

UM-322 10 - Graphic interface

Model
• Delay For
Allows you to specify how many time units from the current time the stimulus is to be
applied.

• Cancel After
Cancels the force command (CR-176) after the specified period of simulation time.

• OK
When you click the OK button, a force command (CR-176) is issued with the parameters
you have set, and is echoed in the Main window. If more than one signal is selected to
force, the next signal down appears in the dialog box each time the OK button is selected.
Unique force parameters can be set for each signal.

Adding items to the Wave and List windows or a WLF file

Use the Add menu to add items from the
Signals window to the Wave window
(UM-337), List window (UM-286), or log
file (WLF file). You can also access
these same commands by right-clicking
a signal in the window.

The WLF file is written as an archive file
in binary format and is used to drive the
List and Wave windows at a later time.
Once signals are added to the WLF file they cannot be removed (though you can turn off
logging with the nolog command (CR-205)). If you begin a simulation by invoking vsim
(CR-357) with the -view <WLF_fileame> argument, ModelSim reads the WLF file to drive
the Wave and List windows.

Choose one of the following options from the Add sub-menus:

• Selected Signals
Adds only the item(s) selected in the Signals window.

• Signals in Region
Adds all items in the region that is selected in the Structure window.

• Signals in Design
Adds all items in the design.

Adding items from the Main window command line

Another way to add items to the Wave or List window or the WLF file is to enter one of the
following commands at the VSIM prompt (choose either the add list (CR-55), add wave
(CR-64), or log (CR-187) command):

add list | add wave | log <item_name> <item_name>

You can add all the items in the current region with this command:

add list | add wave | log *

If the target window (Wave or List) is closed, ModelSim opens it when you when you
invoke the command.
Sim SE User’s Manual

Signals window UM-323
Setting signal breakpoints in HDL designs

You can set "Signal breakpoints" (UM-391) in the Signals window. When a signal breakpoint
is hit, a message appears in the Main window Transcript stating which signal caused the
breakpoint.

To insert a signal breakpoint, right-click a signal name and select Insert Breakpoint. See
"Creating and managing breakpoints" (UM-391) for more information.

Defining clock signals in HDL designs

Select Edit > Clock to define clock signals by Name, Period, Duty Cycle, Offset, and
whether the first edge is rising or falling. You can also specify a simulation period after
which the clock definition should be cancelled.

For clock signals starting on the rising edge, the definition for Period, Offset, and Duty
Cycle is as follows:

Period

Offset High Time

Low Value

High Value

Duty Cycle = High Time/Period
ModelSim SE User’s Manual

UM-324 10 - Graphic interface

Model
If the signal type is std_logic, std_ulogic, bit, verilog wire, verilog net, or any other logic
type where 1 and 0 are valid, then 1 is the default High Value and 0 is the default Low
Value. For other signal types, you will need to specify a High Value and a Low Value for
the clock.
Sim SE User’s Manual

Source window UM-325
Source window

The Source window allows you to view and edit your source code. When you first load a
design, the source file will display automatically if the Source window is open.
Alternatively, you can select an item in a Structure tab of the Main window or use the File
> Open command (Source window) to add a file to the window. (Your source code can
remain hidden if you wish.

The window displays your source code with line numbers. As shown in the picture below,
you may also see the following:

• Blue line numbers – denote lines on which you can set a breakpoint

• Blue arrow – denotes a process that you have selected in the Process window (UM-314) or
the line corresponding to a breakpoint at which the simulator is currently stopped

• Red diamonds – denote file-line breakpoints; hollow diamonds denote breakpoints that
are currently disabled

• File tabs – represent each open file

• Templates pane – displays HDL language templates (UM-397)

Note that files open by default in read-only mode. You can toggle this mode by selecting
Edit > read only.
ModelSim SE User’s Manual

UM-326 10 - Graphic interface

Model
The Source window menu bar

This section provides information on select menu commands available in the Source
window. Several commands are also available on a context menu by right-clicking in the
body of the window.

File menu

Edit menu

To edit a source file, make sure read only is not selected on the Edit menu.

View menu

Open Design
Source

open a dialog that lists all source files for the current design

Use Source specify an alternative file to use for the current source file; this
alternative source mapping exists for the current simulation only

Source Directory add to a list of directories to search for source files; you can set
this permanently using the SourceDir variable in the modelsim.tcl
file

Clear highlights clear highlights that result from double-clicking an error message
or a line in a Performance Analyzer report

Comment Selected turn the selected lines into comments by inserting the correct
language comment character at the beginning of each line

Uncomment
Selected

removes comment characters from the selected lines

Previous Coverage
Miss

when simulating with Code Coverage (UM-419), find the previous
line of code that was not used in the simulation

Next Coverage Miss when simulating with Code Coverage (UM-419), find the next line
of code that was not used in the simulation

read only toggle the read-only status of the current source file

Show line numbers toggle line numbers

Show language
templates

toggle display of the HDL language templates (UM-397) pane

Show coverage data toggle display of line hits when simulating with Code Coverage
(UM-419)

Show branch
coverage

toggle display of branch hits when simulating with Code
Coverage (UM-419)
Sim SE User’s Manual

Source window UM-327
Tools menu

Show coverage
numbers

toggle display of coverage numbers versus checkmarks when
simulating with Code Coverage (UM-419)

Show coverage By
Instance

toggle display of coverage numbers as sum of all instances or for
each individual instance when simulating with Code Coverage
(UM-419)

Properties list a variety of information about the source file; for example, file
type, file size, file modification date

Examine display the current value of the selected item; same as the
examine (CR-167) command; the item name is shown in the title
bar

Describe display information about the selected item; same as the describe
command (CR-152); the item name is shown in the title bar

Compile compile the currently active source file

Readers list the names of all readers of the selected signal or net

Drivers list the names of all drivers of the selected signal or net

C Debug commands for using "C Debug" (UM-473); available on UNIX
platforms only

Breakpoints add, edit, or delete file-line and signal breakpoints; see "Creating
and managing breakpoints" (UM-391)

Options set various Source window options; see Options sub-menu below
ModelSim SE User’s Manual

UM-328 10 - Graphic interface

Model
Options sub-menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-268) for a
description of the commands.

Colorize Source colorize key words, variables, and comments

Highlight
Executable Lines

highlight the line numbers of executable lines

Middle Mouse
Button Paste

enable/disable pasting by pressing the middle-mouse button

Verilog
Highlighting

specify Verilog-style colorizing

VHDL Highlighting specify VHDL-style colorizing

C Highlighting specify C-style colorizing

Freeze File maintain the same source file in the Source window (useful when
you have two Source windows open; one can be updated from the
Structure window (UM-331), the other frozen)

Freeze View disable updating the source view from other windows

Auto-Indent Mode indent code automatically when editing the file

Tab Stops set tab stop distance in Source window (see "Setting tab stops in
the Source window" (UM-330))

Examine Now examine selected item at the current simulation time; this option
affects the behavior of the Examine and Describe commands as
well as the examine popup; see "Checking item values and
descriptions" (UM-329)

Examine Current
Cursor

examine selected item at the time of the current cursor in the
Wave window; this option affects the behavior of the Examine
and Describe commands as well as the examine popup; see
"Checking item values and descriptions" (UM-329)
Sim SE User’s Manual

Source window UM-329
Setting file-line breakpoints

You can easily set "File-line breakpoints" (UM-391) in the Source window using your
mouse. Click on a blue line number at the left side of the Source window, and a red diamond
denoting a breakpoint will appear. The breakpoints are toggles – click once to create the
colored diamond; click again to disable or enable the breakpoint.

To delete the breakpoint completely, click the red diamond with your right mouse button,
and select Remove Breakpoint. Other options on the context menu include:

• Disable/Enable Breakpoint
Deactivate or activate the selected breakpoint.

• Edit Breakpoint
Open the File Breakpoint dialog to change breakpoint arguments; see "Adding a
breakpoint" (UM-393) for a description of the dialog.

• Edit All Breakpoints
Open the Modify Breakpoints dialog; see "Breakpoints dialog" (UM-392).

Checking item values and descriptions

There are two quick methods to determine the value and description of an item displayed
in the Source window:

• select an item, then choose Tools > Examine or Tools > Describe from the Source
window menu

• pause over an item with your mouse pointer to see an examine pop-up

Select Tools > Options > Examine Now or Tools > Options > Examine Current Cursor
to determine at what simulation time the item is examined or described.

You can also invoke the examine (CR-167) and/or describe (CR-152) command on the
command line or in a macro.

Finding and replacing in the Source window

The Find dialog box
allows you to find
and replace text
strings or regular
expressions in the
Source window.
Select Edit > Find
or Edit > Replace to
bring up the Find
dialog box. If you
select Edit > Find,
the Replace field is absent from the dialog.

Enter the value to search for in the Find field. If you are doing a replace, enter the
appropriate value in the Replace field. Optionally specify whether the entries are case
sensitive and whether to search backwards from the current cursor location. Check the
Regular expression checkbox if you are using regular expressions.
ModelSim SE User’s Manual

UM-330 10 - Graphic interface

Model
Setting tab stops in the Source window

You can set temporary tab stops in the Source window by selecting Tools > Options > Tab
Stops. Follow these steps:

1 Select Tools > Options > Tab Stops (Source window).

2 In the dialog that appears, enter either a single number "n" and units, which sets a tab
stop every n units, or enter a list of numbers which sets a tab at each location. Available
units and their abbreviations are as follows:

If you don’t specify units, they default to characters.

Here are three examples:

• Enter 5 to set a tab stop every 5 characters.

• Enter 10c to set a tab stop every 10 centimeters.

• Enter a list of numbers like the following to set tab stops at specific character locations:
21 49 77 105 133 161 189 217 245 273 301 329 357 385 413 441 469

If you want to set permanent tab stops, you have to edit the PrefSource(tabs) preference
variable and then save a modelsim.tcl file. See "Preference variables located in Tcl files"
(UM-631) for further details.

Units Abbreviations

centimeters c, cm

millimeters m, mm

inches i, in

points p

pixels (screen units) u

characters char, chars

Important: Do not use quotes or braces in the list (i.e., "21 49" or {21 49}); this will
cause the GUI to hang.
Sim SE User’s Manual

Structure window UM-331
Structure window

The Structure window provides a hierarchical view of the structure of your design. In
ModelSim versions 5.5 and later, the information contained in the Structure window is also
shown in the structure tabs of the Main window Workspace (UM-263). The Structure
window does not display by default. You can display the Structure window at any time by
selecting View > Structure (Main window).

An entry is created by each item within the design. (Your design structure can remain
hidden if you wish. When you select a region in the Structure window, it becomes the
current region and is highlighted. The Source window (UM-325) and Signals window (UM-

316) change dynamically to reflect the information for that region. This feature provides a
useful method for finding the source code for a selected region because the system keeps
track of the pathname where the source is located and displays it automatically, without the
need for you to provide the pathname.

Also, when you select a region in the Structure window, the Process window (UM-314) is
updated if In Region is selected in that window. The Process window will in turn update
the Variables window (UM-334).

Items you can view

The following items are
represented by hierarchy within
the Structure window.

VHDL items

(indicated by a dark blue square
icon)
component instantiations,
generate statements, block
statements, and packages

Verilog items

(indicated by a lighter blue circle
icon)
module instantiations, named
forks, named begins, tasks, and
functions

SystemC items

(indicated by a green diamond icon)
SystemC module instantiations, primitive channels, method and thread processes
ModelSim SE User’s Manual

UM-332 10 - Graphic interface

Model
Virtual items

(indicated by an orange diamond icon)
virtual regions; see "Virtual Objects (User-defined buses, and more)" (UM-248) for more
information.

You can expand and contract the display to view the hierarchical structure by clicking on
the boxes that contain "+" or "-". Clicking "+" expands the hierarchy so the sub-elements
of that item can be seen. Clicking "-" contracts the hierarchy.

Structure window menu bar

This section provides information on select menu commands available in the Signals
window. Several commands are also available on a context menu by right-clicking in the
right-hand pane of the window (see "Structure window context menu" (UM-333) for some
details).

File menu

View menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-268) for a
description of the commands.

Save List save the structure tree to a text file viewable with the ModelSim
notepad (CR-207)

Environment 1) specify that the window contents change when the active
dataset is changed; 2) fix the window contents to a specific
dataset; or 3) change to a new root context

Sort sort the structure tree in either ascending, descending, or
declaration order
Sim SE User’s Manual

Structure window UM-333
Structure window context menu

Access the following commands by clicking the right mouse button on an entry in the right-
hand pane:

Finding items in the Structure window

The Find dialog
box allows you to
search for text
strings in the
Structure
window. Select
Edit > Find
(Structure
window) to bring
up the Find
dialog box.

Enter the value to
search for in the
Find field. Specify whether you are looking for an Instance, Entity/Module, or
Architecture. Also specify which direction to search.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

View Source opens the source file in the Source window (UM-325); double-
clicking will also open the source file

Add adds the selected item to the Dataflow, List, or Wave window or
to the current log file

Save List writes the item names in the Structure tab to a text file

Coverage provides access to the Coverage Reports and Clear Coverage Data
commands; see Chapter 12 - Code Coverage for more details
ModelSim SE User’s Manual

UM-334 10 - Graphic interface

Model
Variables window

The Variables window is divided into two window panes. The left pane lists the names of
items within the current process. The right pane lists the current value(s) associated with
each name. The pathname of the current process is displayed at the bottom of the window.
(The internal variables of your design can remain hidden if you wish.

Items you can view

The following types of items
can be viewed in the Variables
window:

VHDL items

constants, generics, and
variables

Verilog items

registers and variables

SystemC items

SystemC variables are not
supported for viewing.

VHDL composite types (arrays and record types) and Verilog vector registers and
memories are shown in a hierarchical fashion. ModelSim indicates hierarchy with plus
(expandable), minus (expanded), and blank (single level) boxes. See "Tree window
hierarchical view" (UM-261) for more information.

To change the value of a VHDL variable, constant, or generic or a Verilog register or
variable, move the pointer to the desired name and click to highlight the selection. Select
Edit > Change (Variables window) to bring up a dialog box that lets you specify a new
value. You can enter any value that is valid for the variable. An array value must be
specified as a string (without surrounding quotation marks). To modify the values in a
record, you need to change each field separately.

Click on a process in the Process window to change the Variables window.
Sim SE User’s Manual

Variables window UM-335
The Variables window menu bar

This section provides information on select menu commands available in the Variables
window.

File menu

Edit menu

View menu

Add menu

Add variables to the Wave or List windows or the current WLF file.

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-268) for a
description of the commands.

Save List save the variable tree to a text file viewable with the ModelSim
notepad (CR-207)

Environment Follow Process Selection: update the window based on the
selection in the Process window (UM-314)

Fix to Current Process: maintain the current view, do not update

Close close this copy of the Variables window

Change change the value of the selected item(s)

Sort sort the variables tree in either ascending, descending, or
declaration order

Justify Values justify values to the left or right margins of the window pane
ModelSim SE User’s Manual

UM-336 10 - Graphic interface

Model
Finding items in the Variables window

To find the specified text string within the Variables window, choose the Name or Value
field to search and the search direction: Down or Up.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

You can also do a quick find from the keyboard. When the Variables window is active, each
time you type a letter the highlight will move to the next item whose name begins with that
letter.
Sim SE User’s Manual

Wave window UM-337
Wave window

The Wave window, like the List window, allows you to view the results of your simulation.
In the Wave window, however, you can see the results as waveforms and their values.

The Wave window is divided into a number of window panes. All window panes in the
Wave window can be resized by clicking and dragging the bar between any two panes.

Pathname pane

The pathname pane displays signal pathnames. Signals can be displayed with full
pathnames, as shown here, or with only the leaf element displayed. You can increase the
size of the pane by clicking and dragging on the right border. The selected signal is
highlighted.

The white bar along the left margin indicates the selected dataset (see "Splitting Wave
window panes" (UM-344)).

pathnames values waveforms

cursorscursors names and values
ModelSim SE User’s Manual

UM-338 10 - Graphic interface

Model
Value pane

The value pane displays the values of the displayed signals.

The radix for each signal can be symbolic, binary, octal, decimal, unsigned, hexadecimal,
ASCII, or default. The default radix can be set by selecting Simulate > Simulation
Options (Main window) (see "Setting default simulation options" (UM-386)).

The data in this pane is similar to that shown in the Signals window (UM-316), except that
the values change dynamically whenever a cursor in the waveform pane is moved.

Waveform pane

The waveform pane displays the waveforms that correspond to the displayed signal
pathnames. It also displays up to 20 cursors. Signal values can be displayed in analog step,
analog interpolated, analog backstep, literal, logic, and event formats. Each signal can be
formatted individually. The default format is logic.

If you rest your mouse pointer on a signal in the waveform pane, a popup displays with
information about the signal. You can toggle this popup on and off in the Wave Window
Properties dialog (see "Setting Wave window display properties" (UM-352)).

Cursor panes

There are three cursor panes–the left pane shows the cursor names; the middle pane shows
the current simulation time and the value for each cursor; and the right pane shows the
absolute time value for each cursor and relative time between cursors. Up to 20 cursors can
be displayed. See "Using time cursors in the Wave window" (UM-358) for more information.

Items you can view

The following types of items can be viewed in the Wave window

VHDL items

(indicated by a dark blue square)
signals, aliases, process variables, and shared variables

Verilog items

(indicated by a light blue circle)
nets, registers, variables, and named events

SystemC items

(indicated by a green diamond)
primitive channels and ports

Virtual items

(indicated by an orange diamond)
virtual signals, buses, and functions, see; "Virtual Objects (User-defined buses, and more)"
(UM-248) for more information
Sim SE User’s Manual

Wave window UM-339
Comparison items

(indicated by a yellow triangle)
comparison region and comparison signals; see Chapter 13 - Waveform Compare for more
information

Constants, generics, and parameters are not viewable in the Wave windows.

The data in the item values pane is very similar to the Signals window, except that the
values change dynamically whenever a cursor in the waveform pane is moved.

At the bottom of the waveform pane you can see a time line, tick marks, and the time value
of each cursor’s position. As you click and drag to move a cursor, the time value at the
cursor location is updated at the bottom of the cursor.

You can resize the window panes by clicking on the bar between them and dragging the bar
to a new location.

Waveform and signal-name formatting are easily changed via the Format menu (UM-342).
You can reuse any formatting changes you make by saving a Wave window format file, see
"Adding items with a Wave window format file" (UM-339).

Adding items in the Wave window

Before adding items to the Wave window you may want to set the window display
properties (see "Setting Wave window display properties" (UM-352)). You can add items to
the Wave window in several ways.

Adding items from other window with drag and drop

You can drag and drop items into the Wave window from the List, Process, Signals, Source,
Structure, or Variables window. Select the items in the first window, then drop them into
the Wave window. Depending on what you select, all items or any portion of the design can
be added.

Adding items from the command line

To add specific items to the window, enter (separate the item names with a space):

VSIM> add wave <item_name> <item_name>

You can add all the items in the current region with this command:

VSIM> add wave *

Or add all the items in the design with:

VSIM> add wave -r /*

Adding items with a Wave window format file

Select File > Open > Format and specify a previously saved format file. See "Saving the
Wave window format" (UM-340) for details on how to create a format file.
ModelSim SE User’s Manual

UM-340 10 - Graphic interface

Model
Saving the Wave window format

By default all Wave window information is forgotten once you close the Wave window. If
you want to restore the Wave window to a previously configured layout, you must save a
Wave window format file. Follow these steps:

1 Add the items you want to the Wave window.

2 Edit and format the items, see "Editing and formatting items in the Wave window" (UM-

347) to create the view you want.

3 Save the format to a file by selecting File > Save > Format (Wave window).

To use the format file, start with a blank Wave window and run the DO file in one of two
ways:

• Invoke the do command (CR-156) from the command line:

VSIM> do <my_wave_format>

• Select File > Open > Format (Wave window).

The Wave window menu bar

This section provides information on select menu commands available in the Wave
window. Many of these commands are also available via a context menu by clicking your
right mouse button within the Wave window itself.

File menu

Note: Wave window format files are design-specific; use them only with the design you
were simulating when they were created.

Open Format – run a Wave window format (DO) file previously saved with
Save Format; see "Saving the Wave window format" (UM-340)

Save Format – save the current Wave window display and signal
preferences to a DO (macro) file; see "Saving the Wave window
format" (UM-340)

Image – saves a bitmap file of the Wave window

Page Setup configure page setup for printing; see "Printer Page Setup" (UM-366)

Print Postscript save or print the waveform display as a Postscript file; see "Printing
and saving waveforms" (UM-363) for details
Sim SE User’s Manual

Wave window UM-341
Edit menu

View menu

Edit Cursor open a dialog to specify the location of the selected cursor

Delete Cursor delete the selected cursor from the window

Delete Window
Pane

delete the selected window pane

Remove All (Panes
and Signals)

removes all signals and additional window panes, leaving the
window in its original state

Find find the specified item label within the pathname pane or the
specified value within the value pane

Search search the waveform display for a specified value, or the next
transition for the selected signal; see: "Searching for item values
in the Wave window" (UM-356)

Mouse Mode toggle mouse pointer between Select Mode (click left mouse
button to select, drag with middle mouse button to zoom) and
Zoom Mode (drag with left mouse button to zoom, click middle
mouse button to select)

Signal Declaration open the source file in the Source window and highlight the signal
declaration for the currently selected signal

Cursors choose a cursor to go to from a list of available cursors

Bookmarks choose a bookmark to go to from a list of available bookmarks

Goto Time scroll the Wave window so the specified time is in view; "g"
hotkey produces the same result

Sort sort the top-level items in the pathname pane; sort with full path
or viewed name; use ascending or descending order

Justify Values justify values to the left or right margins of the window pane

Refresh Display clear the Wave window, empty the file cache, and rebuild the
window from scratch

 Signal Properties set properties for the selected item; see "Editing and formatting
items in the Wave window" (UM-347)
ModelSim SE User’s Manual

UM-342 10 - Graphic interface

Model
Insert menu

Format menu

Tools menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-268) for a
description of the commands.

Divider insert a divider at the current location

Breakpoint add a breakpoint on the selected signal; see "Signal breakpoints"
(UM-391)

Bookmark add a bookmark with the current zoom range and scroll location;
see "Saving zoom range and scroll position with bookmarks" (UM-

361)

Cursor add a cursor to the waveform pane

Window Pane split the pathname, values and waveform window panes to
provide room for a new waveset

Radix set the selected items’ radix

Format set the waveform format for the selected items – Literal, Logic,
Event, Analog

Color set the color for the selected items from a color palette

Height set the waveform height in pixels for the selected items

Waveform
Compare

see "Waveform Compare menu" (UM-468)

Breakpoints add, edit, and delete signal breakpoints; see "Creating and
managing breakpoints" (UM-391)

Bookmarks add, edit, delete, and goto bookmarks; see "Saving zoom range
and scroll position with bookmarks" (UM-361)

Dataset Snapshot enable periodic saving of simulation data to a WLF file

Combine Signals combine the selected items into a user-defined bus; see
"Combining items in the Wave window" (UM-345)

Window
Preferences

set various display properties; see "Setting Wave window display
properties" (UM-352)
Sim SE User’s Manual

Wave window UM-343
Using dividers

Dividers serve as a visual aid to signal debugging, allowing you to separate signals and
waveforms for easier viewing. Dividing lines can be placed in the pathname and values
window panes by selecting Insert > Divider (Wave window). Or, you can add a divider
using the -divider argument to the add wave command (CR-64).

Dividing lines can be assigned any name or no name at all. The default name is "New
Divider." In the illustration below, two datasets have been separated with a Divider called
"gold." Notice that the waveforms in the waveform window pane have been separated by
the divider as well.

After you have added a divider, you can move it, change its properties (name and size), or
delete it.

To move a divider — Click and drag the divider to the location you want.

To change a divider’s name and size — Click the divider with the right (Windows) or
third (UNIX) mouse button and select Divider Properties from the pop-up menu.

To delete a divider — Select the divider and either press the <Delete> key on your
keyboard or select Delete from the pop-up menu.
ModelSim SE User’s Manual

UM-344 10 - Graphic interface

Model
Splitting Wave window panes

The pathnames, values, and waveforms panes of the Wave window display can be split to
accommodate signals from one or more datasets. Selecting Insert > Window Pane (Wave
window) creates a space below the selected dataset and makes the new window pane the
selected pane. (The selected wave window pane is indicated by a white bar along the left
margin of the pane.)

In the illustration below, the Wave window is split, showing the current active simulation
with the prefix "sim," and a second view-mode dataset, with the prefix "gold."

For more information on viewing multiple simulations, see Chapter 9 - WLF files
(datasets) and virtuals.
Sim SE User’s Manual

Wave window UM-345
Combining items in the Wave window

You can combine signals in the Wave window into busses. A bus is a collection of signals
concatenated in a specific order to create a new virtual signal with a specific value. You can
also do this from the ModelSim prompt using the virtual signal command (CR-339).

To create a bus, select one or more signals in the Wave window and then choose Tools >
Combine Signals.

The Combine Selected Signals dialog box includes these options:

• Result Name
Specifies the name of the newly created bus.

• Order to combine selected items
Specifies the order in which to combine the selected signals. "Top down" specifies that
the selected signals are ordered as they appear top-to-bottom in the Wave window.
"Bottom up" reverses the order.

• Order of Result Indexes
Specifies in which order the selected signals are indexed in the bus. If set to Ascending,
the first signal selected in the Wave window will be assigned an index of 0. If set to
Descending, the first signal selected will be assigned the highest index number.

• Remove selected signals after combining
Specifies whether you want to remove the selected signals from the Wave window once
the bus is created.
ModelSim SE User’s Manual

UM-346 10 - Graphic interface

Model
• Reverse bit order of bus items in the result
If checked, the bits of each selected signal are reversed in the newly created bus. The
order of the signals in the bus is not affected.

• Flatten arrays
If checked, ModelSim combines the signals into one big array. If unchecked, ModelSim
combines signals together without merging them into one array. The signals become
elements of a record and retain their original names. When expanded, the new signal
looks just like a group of signals.

• Flatten records
If checked, causes elements of a record type signal to be pulled up to the top level. This
option is the reverse of "Flatten arrays."

In the illustration below, three signals have been combined to form a new bus called "bus".
Note that the component signals are listed in the order in which they were selected in the
Wave window. Also note that the value of the bus is made up of the values of its component
signals, arranged in a specific order. Virtual objects are indicated by an orange diamond.

Other virtual items in the Wave window

See "Virtual Objects (User-defined buses, and more)" (UM-248) for information about other
virtual items viewable in the Wave window.
Sim SE User’s Manual

Wave window UM-347
Displaying drivers of the selected waveform

You can automatically display in the Dataflow window the drivers of a signal selected in
the Wave window. You can do this three ways:

• Select a waveform and click the Show Drivers button on the toolbar.

• Select a waveform and select Show Drivers from the shortcut menu

• Double-click a waveform edge (you can enable/disable this option in the display
properties dialog; see "Setting Wave window display properties" (UM-352))

This operation will open the Dataflow window and display the drivers of the signal selected
in the Wave window. The Wave pane in the Dataflow window will also open showing the
selected signal with a cursor at the selected time. The Dataflow window will show the
signal(s) values at the current time cursor position.

Editing and formatting items in the Wave window

Once you have the items you want in the Wave window, you can edit and format the list in
the pathname and values panes to create the view you find most useful. (See also, "Setting
Wave window display properties" (UM-352).)

To edit an item:

Select the item’s label in the pathname pane or its waveform in the waveform pane. Move,
copy, or remove the item by selecting commands from the Wave window Edit menu (UM-

341).

You can also click+drag to move items within the pathnames and values panes:

• to select several items:
control+click to add or subtract from the selected group

• to move the selected items:
re-click and hold on one of the selected items, then drag to the new location

To format an item:

Select the item’s label in the pathname pane or its waveform in the waveform pane, then
select View > Signal Properties (Wave window) or use the selections in the Format menu.
ModelSim SE User’s Manual

UM-348 10 - Graphic interface

Model
When you select View > Signal Properties the Wave Signal Properties dialog box opens.
It has three tabs: View, Format, and Compare.
Sim SE User’s Manual

Wave window UM-349
The View tab includes these options:

• Display Name
Specifies a new name (in the pathname pane) for the selected signal.

• Radix
Specifies the Radix of the selected signal(s). Setting this to default causes the signal’s
radix to change whenever the default is modified using the radix command (CR-235).
Item values are not translated if you select Symbolic.

• Wave Color
Specifies the waveform color. Select a new color from
the color palette, or enter a color name. The Default
button in the Colors palette allows you to return the
selected item’s color back to its default value.

• Name Color
Specifies the signal name’s color. Select a new color
from the color palette, or enter a color name. The
Default button in the Colors palette allows you to
return the selected item’s color back to its default
value.

The Format tab includes these options:

• Format: Literal
Displays the waveform as a box containing the item value (if the value fits the space
available). This is the only format that can be used to list a record.
ModelSim SE User’s Manual

UM-350 10 - Graphic interface

Model
• Format: Logic
Displays values as U, X, 0, 1, Z, W, L, H, or -.

• Format: Event
Marks each transition during the simulation run.

• Format: Analog [Step | Interpolated | Backstep]
Analog Step
Displays the waveform in step style.

Analog Interpolated
Displays the waveform in interpolated style.

Analog Backstep
Displays the waveform in backstep style. Often used for power calculations.

Offset and Scale
Allows you to adjust the scale of the item as it is seen on the display. Offset is the number
of pixels offset from zero. The scale factor reduces (if less than 1) or increases (if greater
than 1) the number of pixels displayed.

Only the following types are supported in Analog format:

VHDL types:
All vectors - std logic vectors, bit vectors, and vectors derived from these types
Scalar integers
Scalar reals
Scalar times

Verilog types:
All vectors
Scalar reals
Scalar integers

SystemC types:
Vector types (sc_int<>, sc_bigint<>, etc.)
Scalar integers (char, short, int, long, etc.)
float, double
Sim SE User’s Manual

Wave window UM-351
The signals in the following illustration demonstrate the various signal formats.

• Height
Allows you to specify the height (in pixels) of the waveform.

The Compare tab includes the same options as those in the Add Signal Options dialog box
(see "Comparison Method tab" (UM-463)).
ModelSim SE User’s Manual

UM-352 10 - Graphic interface

Model
Setting Wave window display properties

You can define display properties of the Wave window by selecting Tools > Window
Preferences (Wave window). You can make these changes permanent by selecting Tools
> Save Preferences (Main window). See "Preference variables located in Tcl files" (UM-

631) for details on changing window properties permanently.

The dialog box has two tabs–Display and Grid & Timeline.

The Display tab includes the following options:

• Display Signal Path
Sets the display to show anything from the full pathname of each signal (e.g., sim:/top/
clk) to only its leaf element (e.g., sim:clk). A non-zero number indicates the number of
path elements to be displayed. The default is Full Path.

• Justify Value
Specifies whether the signal values will be justified to the left margin or the right margin
in the values window pane.
Sim SE User’s Manual

Wave window UM-353
• Snap Distance
Specifies the distance the cursor needs to be placed from an item edge to jump to that
edge (a 0 specification turns off the snap).

• Row Margin
Specifies the distance in pixels between top-level signals.

• Child Row Margin
Specifies the distance in pixels between child signals.

• Waveform Popup Enable
Toggles on/off the popup that displays when you rest your mouse pointer on a signal or
comparison object.

• Waveform Selection Highlighting Enabled
Toggles on/off waveform highlighting. When enabled the waveform is highlighted if you
select the waveform or its value.

• Double-Click to Show Drivers (Dataflow Window)
Toggles on/off double-clicking to show the drivers of the selected waveform. See
"Displaying drivers of the selected waveform" (UM-347) for more details.

• On Close Warn for Save Format
Toggles on/off a message that prompts you to save the Wave window format when you
close the window. See "Displaying drivers of the selected waveform" (UM-347) for more
details.

• Dataset Prefix
Specifies how signals from different datasets are displayed.

Always Show Dataset Prefixes
All dataset prefixes will be displayed along with the dataset prefix of the current
simulation ("sim").

Show Dataset Prefixes if 2 or more
Displays all dataset prefixes if 2 or more datasets are displayed. "sim" is the default prefix
for the current simulation.

Never Show Dataset Prefixes
No dataset prefixes will be displayed. This selection is useful if you are running only a
single simulation.
ModelSim SE User’s Manual

UM-354 10 - Graphic interface

Model
The Grid & Timeline tab is used to configure grid lines and the horizontal axis in the
waveform pane. You can also access this tab by right-clicking in the cursor tracks at the
bottom of the Wave window and selecting Grid & Timeline Properties. The tab has the
following options:

• Grid Offset
Specifies the time (in user time units) of the first grid line. Default is 0.

• Grid Period
Specifies the time (in user time units) between subsequent grid lines. Default is 1.

• Minimum Grid Spacing
Specifies the closest (in pixels) two grid lines can be drawn before intermediate lines will
be removed. Default is 40.

• Timeline Configuration
Specifies whether to display simulation time or grid period count on the horizontal axis.
Default is to display simulation time.

Sorting a group of items

Select View > Sort to sort the items in the pathname and values panes.

Setting signal breakpoints

You can set "Signal breakpoints" (UM-391) in the Wave window. When a signal breakpoint
is hit, a message appears in the Main window Transcript stating which signal caused the
breakpoint.

To insert a signal breakpoint, right-click a signal and select Insert Breakpoint. A
breakpoint will be set on the selected signal. See "Creating and managing breakpoints" (UM-

391) for more information.
Sim SE User’s Manual

Wave window UM-355
Finding items by name or value in the Wave window

The Find dialog box
allows you to search for
text strings in the Wave
window. Select
Edit > Find (Wave
window) to bring up
the Find dialog box.

Choose either the
Name or Value field to
search and enter the
value to search for in
the Find field. Find the
item by searching Down or Up through the Wave window display.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

The find operation works only within the active pane.
ModelSim SE User’s Manual

UM-356 10 - Graphic interface

Model
Searching for item values in the Wave window

Select an item in the Wave window and then select Edit > Search to bring up the Wave
Signal Search dialog box.

The Wave Signal Search dialog box includes these options:

You can locate values for the Signal Name(s) shown at the top of the dialog box. The
search is based on these options:

• Search Type: Any Transition
Searches for any transition in the selected signal(s).

• Search Type: Rising Edge
Searches for rising edges in the selected signal(s).

• Search Type: Falling Edge
Searches for falling edges in the selected signal(s).

• Search Type: Search for Signal Value
Searches for the value specified in the Value field; the value should be formatted using
VHDL or Verilog numbering conventions; see "Numbering conventions" (CR-21).

Note: If your signal values are displayed in binary radix, see "Searching for binary signal
values in the GUI" (CR-30) for details on how signal values are mapped between a binary
radix and std_logic.
Sim SE User’s Manual

Wave window UM-357
• Search Type: Search for Expression
Searches for the expression specified in the Expression field evaluating to a boolean
true. Activates the Builder button so you can use "The GUI Expression Builder" (UM-395)
if desired.

The expression can involve more than one signal but is limited to signals logged in the
Wave window. Expressions can include constants, variables, and DO files. If no
expression is specified, the search will give an error. See "Expression syntax" (CR-24) for
more information.

• Search Options: Match Count
You can search for the nth transition or the nth match on value; Match Count indicates
the number of transitions or matches to search for.

The Search Results are indicated at the bottom of the dialog box.
ModelSim SE User’s Manual

UM-358 10 - Graphic interface

Model
Using time cursors in the Wave window

When the Wave window is first drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. You can add
cursors to the waveform pane by selecting Insert > Cursor (or the Add Cursor button
shown below). The selected cursor is drawn as a bold solid line; all other cursors are drawn
with thin lines. Remove cursors by selecting them and selecting Edit > Delete Cursor (or
the Delete Cursor button shown below).

Naming cursors

By default cursors are named "Cursor <n>". To rename a cursor, click the name in the left-
hand cursor pane with your right mouse button. Type a new name and press the <Enter>
key on your keyboard.

interval measurement

selected cursor is bold

click name or value to
select or double-click to
jump to that cursor locked cursor is red

Insert Cursor
add a cursor to the
waveform window

Delete Cursor
delete the selected cursor
from the window
Sim SE User’s Manual

Wave window UM-359
Locking cursors

You can lock a cursor in position so it won’t move. Select the cursor you wish to lock and
select Edit > Edit Cursor (Wave window). In the dialog that appears, check Lock cursor
to specified time and click OK. The cursor turns red and you can no longer drag it with the
mouse.

As a convenience, you can hold down the <shift> key and click-and-drag a locked cursor.
Once you let go of the cursor, it will be locked in the new position.

To unlock a cursor, select Edit > Edit Cursor and uncheck Lock cursor to specified time.

Finding cursors

The cursor value corresponds to the simulation time of that cursor. Choose a specific cursor
view by selecting View > Cursors.

You can also access cursors by clicking a name or value in the left-hand cursor pane.
Single-clicking selects a cursor; double-clicking jumps to a cursor. Alternatively, you can
click a value with your second mouse button and type the value to which you want to scroll.

Making cursor measurements

Each cursor is displayed with a time box showing the precise simulation time at the bottom.
When you have more than one cursor, each time box appears in a separate track at the
bottom of the display. ModelSim also adds a delta measurement showing the time
difference between two adjacent cursor positions.

If you click in the waveform display, the cursor closest to the mouse position is selected
and then moved to the mouse position. Another way to position multiple cursors is to use
the mouse in the time box tracks at the bottom of the display. Clicking anywhere in a track
selects that cursor and brings it to the mouse position.

Cursors will "snap" to a waveform edge if you click or drag a cursor to within ten pixels of
a waveform edge. You can set the snap distance in the Window Preferences dialog (select
Tools > Window Preferences). You can position a cursor without snapping by dragging
in the cursor track below the waveforms.

You can also move cursors to the next transition of a signal with these toolbar buttons:

Find Previous
Transition
locate the previous signal
value change for the
selected signal

Find Next Transition
locate the next signal
value change for the
selected signal
ModelSim SE User’s Manual

UM-360 10 - Graphic interface

Model
Examining waveform values

You can use your mouse to display a dialog that shows the value of a waveform at a
particular time. You can do this two ways:

• Rest your mouse pointer on a waveform. After a short delay, a dialog will pop-up that
displays the value for the time at which your mouse pointer is positioned. If you’d prefer
that this popup not display, it can be toggled off in the display properties. See "Setting
Wave window display properties" (UM-352).

• Right-click a waveform and select Examine. A dialog displays the value for the time at
which you clicked your mouse.

Zooming - changing the waveform display range

Zooming lets you change the simulation range in the waveform pane. You can zoom using
the context menu, toolbar buttons, mouse, keyboard, or commands.

You can access Zoom commands from the View menu on the toolbar or by clicking the
right mouse button in the waveform pane.

The Zoom menu options include:

• Zoom Full
Redraws the display to show the entire simulation from time 0 to the current simulation
time.

• Zoom In
Zooms in by a factor of two, increasing the resolution and decreasing the visible range
horizontally.

• Zoom Out
Zooms out by a factor of two, decreasing the resolution and increasing the visible range
horizontally.

• Zoom Last
Restores the display to where it was before the last zoom operation.

• Zoom Range
Brings up a dialog box that allows you to enter the beginning and ending times for a range
of time units to be displayed.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zoom In 2x
zoom in by a factor of two
from the current view

Zoom Out 2x
zoom out by a factor of
two from current view

Zoom Full
zoom out to view the full
range of the simulation
from time 0 to the current
time

Zoom Mode
change mouse pointer to
zoom mode; see below
Sim SE User’s Manual

Wave window UM-361
Zooming with the mouse

To zoom with the mouse, first enter zoom mode by selecting View > Mouse Mode > Zoom
Mode (Wave window). The left mouse button (<Button-1>) then offers 3 zoom options by
clicking and dragging in different directions:

• Down-Right or Down-Left: Zoom Area (In)

• Up-Right: Zoom Out

• Up-Left: Zoom Fit

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixels to activate.

You can also enter zoom mode temporarily by holding the <Ctrl> key down while in select
mode.

With the mouse in the Select Mode, the middle mouse button will perform the above zoom
operations.

Zooming keyboard shortcuts

See "Wave window mouse and keyboard shortcuts" (UM-363) for a complete list of Wave
window keyboard shortcuts.

Saving zoom range and scroll position with bookmarks

Bookmarks allow you to save a particular zoom range and scroll position. This lets you
return easily to a specific view later. You save the bookmark with a name, and then access
the named bookmark from the Bookmark menu.

Bookmarks are saved in the Wave format file (see "Adding items with a Wave window
format file" (UM-339)) and are restored when the format file is read. There is no limit to the
number of bookmarks you can save.

Bookmarks can also be created and managed from the command line. See the bookmark
add wave command (CR-77) for details.

To add a bookmark, select Insert > Bookmark (Wave window).
ModelSim SE User’s Manual

UM-362 10 - Graphic interface

Model
The Bookmark Properties dialog includes the following options.

• Bookmark Name
A text label to assign to the bookmark. The name will identify the bookmark on the
View > Bookmarks menu.

• Zoom Range
A starting value and ending value that define the zoom range.

• Top Index
The item that will display at the top of the Wave window. For instance, if you specify 15,
the Wave window will be scrolled down to show the 15th item in the window.

• Save zoom range with bookmark
When checked the zoom range will be saved in the bookmark.

• Save scroll location with bookmark
When checked the scroll location will be saved in the bookmark.

Once the bookmark is saved, select it by name from the View > Bookmarks menu, and the
Wave window will be zoomed and scrolled accordingly.

To edit or delete a bookmark, select Tools > Bookmarks (Wave window).

The Bookmark Selection dialog includes the following options.

• Add (bookmark add wave)
Add a new bookmark.

• Modify
Edit the selected bookmark.

• Delete (bookmark delete wave)
Delete the selected bookmark.

• Goto (bookmark goto wave)
Zoom and scroll the Wave window using the selected bookmark.
Sim SE User’s Manual

Wave window UM-363
Wave window mouse and keyboard shortcuts

See "Wave window mouse and keyboard shortcuts" (UM-643).

Printing and saving waveforms

Saving a .eps file and printing under UNIX

Select File > Print Postscript (Wave window) to print all or part of the waveform in the
current Wave window in UNIX, or save the waveform as a .eps file on any platform (see
also the write wave command (CR-397)). Printing and writing preferences are controlled by
the dialog box shown below.

The Write Postscript dialog box includes these options:

Printer

• Print command
Enter a UNIX print command to print the waveform in a UNIX environment.

• File name
Enter a filename for the encapsulated Postscript (.eps) file to be created; or browse to a
previously created .eps file and use that filename.

Signal Selection

• All signals
Print all signals.

• Current View
Print signals in the current view.

• Selected
Print all selected signals.
ModelSim SE User’s Manual

UM-364 10 - Graphic interface

Model
Time Range

• Full Range
Print all specified signals in the full simulation range.

• Current view
Print the specified signals for the viewable time range.

• Custom
Print the specified signals for a user-designated From and To time.

Setup button

See "Printer Page Setup" (UM-366)

Printing on Windows platforms

Select File > Print (Wave window) to print all or part of the waveform in the current Wave
window, or save the waveform as a printer file (a Postscript file for Postscript printers).
Printing and writing preferences are controlled by the dialog box shown below.

Printer

• Name
Choose the printer from the drop-down menu. Set printer properties with the Properties
button.

• Status
Indicates the availability of the selected printer.
Sim SE User’s Manual

Wave window UM-365
• Type
Printer driver name for the selected printer. The driver determines what type of file is
output if "Print to file" is selected.

• Where
The printer port for the selected printer.

• Comment
The printer comment from the printer properties dialog box.

• Print to file
Make this selection to print the waveform to a file instead of a printer. The printer driver
determines what type of file is created. Postscript printers create a Postscript (.ps) file,
non-Postscript printers create a .prn or printer control language file. To create an
encapsulated Postscript file (.eps) use the File > Print Postscript menu selection.

Signal Selection

• All signals
Print all signals.

• Current View
Print signals in current view.

• Selected
Print all selected signals.

Time Range

• Full Range
Print all specified signals in the full simulation range.

• Current view
Print the specified signals for the viewable time range.

• Custom
Print the specified signals for a user-designated From and To time.

Setup button

See "Printer Page Setup" (UM-366)
ModelSim SE User’s Manual

UM-366 10 - Graphic interface

Model
Printer Page Setup

Clicking the Setup button in the Write Postscript or Print dialog box allows you to define
the following options (this is the same dialog that opens via File > Page setup).

• Paper Size
Select your output page size from a number of options; also choose the paper width and
height.

• Units
Specify whether measurements are in inches or centimeters.

• Margins
Specify the page margins; changing the Margin will change the Scale and Page
specifications.

• Label width
Specify Auto Adjust to accommodate any length label, or set a fixed label width.

• Cursors
Turn printing of cursors on or off.
Sim SE User’s Manual

Wave window UM-367
• Grid
Turn printing of grid lines on or off.

• Color
Select full color printing, grayscale, or black and white.

• Scaling
Specify a Fixed output time width in nanoseconds per page – the number of pages output
is automatically computed; or, select Fit to to define the number of pages to be output
based on the paper size and time settings; if set, the time-width per page is automatically
computed.

• Orientation
Select the output page orientation, Portrait or Landscape.
ModelSim SE User’s Manual

UM-368 10 - Graphic interface

Model
Compiling with the graphic interface

You can use a project or the Compile Source Files dialog box to compile VHDL or Verilog
designs. For information on compiling in a project, see "Getting started with projects" (UM-

34). To open the Compile Source Files dialog, select Compile > Compile (Main window).

From the Compile Source Files dialog box you can:

• select source files to compile in any language combination

• specify the target library for the compiled design units

• select among the compiler options for VHDL, Verilog, or SystemC

Select the Default Options button to change the compiler options, see "Setting default
compile options" (UM-370) for details. The same Compiler Options dialog box can also be
accessed by selecting Compile > Compile Options (Main window) or by selecting
Compile Properties from the context menu in the Project tab.

Select the Edit Source button to view or edit a source file via the Compile dialog box. See
"Source window" (UM-325) for additional source file editing information.
Sim SE User’s Manual

Compiling with the graphic interface UM-369
Locating source errors during compilation

If a compiler error occurs during compilation, a red error message is printed in the Main
transcript. Double-click on the error message to open the source file in an editable Source
window with the error highlighted.

double-click on the error in the Main window
and the error is highlighted and ready
to edit in the Source window
ModelSim SE User’s Manual

UM-370 10 - Graphic interface

Model
Setting default compile options

Select Compile > Compile Options (Main window) to bring up the Compiler Options
dialog.

VHDL compiler options tab

The VHDL compiler options tab includes the following options:

• Language Syntax
Specifies which version of the 1076 standard to use when compiling. The default for
versions 5.8 and later is 2002. You can also set this with arguments to the vcom
command (CR-303) or by editing the VHDL standard (UM-630) variable in the
modelsim.ini file. Changing the setting in the modelsim.ini file will make the setting
permanent.

Important: Note that changes made in the Compiler Options dialog box become the
default for all future simulations.
Sim SE User’s Manual

Compiling with the graphic interface UM-371
• Don’t put debugging info in library
Models compiled with this option do not use any of the ModelSim debugging features.
Consequently, your user will not be able to see into the model. This also means that you
cannot set breakpoints or single step within this code. Don’t compile with this option
until you are done debugging. Same as the -nodebug argument to the vcom command
(CR-303). Edit the NoDebug (UM-619) variable in the modelsim.ini file to set a permanent
default.

• Use explicit declarations only
Used to ignore an error in packages supplied by some other EDA vendors; directs the
compiler to resolve ambiguous function overloading in favor of the explicit function
definition. Same as the -explicit argument to the vcom command (CR-303). Edit the
Explicit (UM-619) variable in the modelsim.ini file to set a permanent default.

Although it is not intuitively obvious, the = operator is overloaded in the std_logic_1164
package. All enumeration data types in VHDL get an “implicit” definition for the =
operator. So while there is no explicit = operator, there is an implicit one. This implicit
declaration can be hidden by an explicit declaration of = in the same package (LRM
Section 10.3). However, if another version of the = operator is declared in a different
package than that containing the enumeration declaration, and both operators become
visible through use clauses, neither can be used without explicit naming, for example:

ARITHMETIC.”=”(left, right)

This option allows the explicit = operator to hide the implicit one.

• Disable loading messages
Disables loading messages in the Main window. Same as the -quiet argument for the
vcom command (CR-303). Edit the Quiet (UM-619) variable in the modelsim.ini file to set
a permanent default.

• Show source lines with errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-source argument to the vcom command (CR-303). Edit the Show_source (UM-619)
variable in the modelsim.ini file to set a permanent default.

• Disable all optimizations
Instructs the compiler to remove all optimizations. Same as the -O0 argument to the
vcom command (CR-303). Useful when running "Code Coverage" (UM-419), where
optimizations can skew results.

Check for:

• Synthesis
Turns on limited synthesis-rule compliance checking. Checks only signals used (read) by
a process; also, checks understand only combinational logic, not clocked logic. Edit the
CheckSynthesis (UM-619) variable in the modelsim.ini file to set a permanent default.

• Vital Compliance
Toggle Vital compliance checking. Edit the NoVitalCheck (UM-619) variable in the
modelsim.ini file to set a permanent default.
ModelSim SE User’s Manual

UM-372 10 - Graphic interface

Model
Report Warnings on:

• Unbound component
Flags any component instantiation in the VHDL source code that has no matching entity
in a library that is referenced in the source code, either directly or indirectly. Edit the
Show_Warning1 (UM-619) variable in the modelsim.ini file to set a permanent default.

• Process without a WAIT statement
Flags any process that does not contain a wait statement or a sensitivity list. Edit the
Show_Warning2 (UM-619) variable in the modelsim.ini file to set a permanent default.

• Null range
Flags any null range, such as 0 down to 4. Edit the Show_Warning3 (UM-620) variable in
the modelsim.ini file to set a permanent default.

• No space in time literal (e.g. 5ns)
Flags any time literal that is missing a space between the number and the time unit. Edit
the Show_Warning4 (UM-620) variable in the modelsim.ini file to set a permanent default.

• Multiple drivers on unresolved signals
Flags any unresolved signals that have multiple drivers. Edit the Show_Warning5 (UM-

620) variable in the modelsim.ini file to set a permanent default.

Optimize for:

• StdLogic1164
Causes the compiler to perform special optimizations for speeding up simulation when
the multi-value logic package std_logic_1164 is used. Unless you have modified the
std_logic_1164 package, this option should always be checked. Edit the Optimize_1164
(UM-619) variable in the modelsim.ini file to set a permanent default.

• Vital
Toggle acceleration of the Vital packages. Edit the NoVital (UM-619) variable in the
modelsim.ini file to set a permanent default.

• Other VHDL options
Enter any other valid vcom arguments. See the vcom command (CR-303) in the ModelSim
Command Reference for a complete list.
Sim SE User’s Manual

Compiling with the graphic interface UM-373
Verilog compiler options tab

• Enable runtime hazard checks
Enables the run-time hazard checking code. Same as the -hazards argument to the vlog
command (CR-345). Edit the Hazard (UM-618) variable in the modelsim.ini file to set a
permanent default.

• Disable debugging data
Models compiled with this option do not use any of the ModelSim debugging features.
Consequently, your user will not be able to see into the model. This also means that you
cannot set breakpoints or single step within this code. Don’t compile with this option
until you are done debugging. Same as the -nodebug argument for the vlog command
(CR-345). Edit the NoDebug (UM-619) variable in the modelsim.ini file to set a permanent
default.

• Convert identifiers to upper-case
Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Same as the -u argument to the vlog command (CR-345). Edit the UpCase (UM-618)
variable in the modelsim.ini file to set a permanent default.
ModelSim SE User’s Manual

UM-374 10 - Graphic interface

Model
• Verilog 1995 Compatible
Some requirements in Verilog 2001 conflict with requirements in the 1995 LRM. Use of
this option ensures that code that was valid according to the 1995 LRM can still be
compiled. Same as the -vlog95compat argument to the vlog command (CR-345). Edit the
vlog95compat (UM-618) variable in the modelsim.ini file to set a permanent default.

• Disable loading messages
Disables loading messages in the Main window. Same as the -quiet argument for the
vlog command (CR-345). Edit the Quiet (UM-619) variable in the modelsim.ini file to set a
permanent default.

• Show source lines with errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-source argument to the vlog command (CR-345). Edit the Show_source (UM-619) variable
in the modelsim.ini file to set a permanent default.

• Disable all optimizations
Instructs the compiler to remove all optimizations. Same as the -O0 argument to the vlog
command (CR-345). Useful when running "Code Coverage" (UM-419), where
optimizations can skew results.

• Enable `protect usage
Enables encryption of regions of your Verilog source code. See "ModelSim compiler
directives" (UM-152) for more details. Same as the +protect argument for the vlog
command (CR-345). Edit the Protect (UM-618) variable in the modelsim.ini file to set a
permanent default.

Other Verilog Options:

Specify any valid vlog command (CR-345) arguments. When you specify Other Verilog
Options, they are saved into a file called vlog.opt. If you do this while a project is open, an
OptionFile entry is written into your project file. If you do this when a project is not open,
an OptionFile entry is written into the modelsim.ini file that you are currently using.

• Library Search
Specifies the Verilog source library directory to search for undefined modules. Same as
the -y <library_directory> argument for the vlog command (CR-345).

• Extension
Specifies the suffix of files in the library directory. Multiple suffixes can be used. Same
as the +libext+<suffix> argument for the vlog command (CR-345).

• Library File
Specifies the Verilog source library file to search for undefined modules. Same as the -v
<library_file> argument for the vlog command (CR-345).

• Include Directory
Specifies a directory for files included with the ‘include filename compiler directive.
Same as the +incdir+<directory> argument for the vlog command (CR-345).

• Macro
Defines a macro to execute during compilation. Same as the compiler directive: ‘define
macro_name macro_text. Also the same as the
+define+<macro_name> [=<macro_text>] argument for the vlog command (CR-345).
Sim SE User’s Manual

Compiling with the graphic interface UM-375
Coverage compiler options tab

The options on this tab are described in the section "Enabling Code Coverage" (UM-423).

SystemC compiler options tab

• Enable compilation log file
Writes the compilation output to a file name, specified in the File path field. Same as the
-log argument to the sccom command (CR-248).

• Include SystemC verification library
Includes the SystemC verification library. Same as the -scv argument to the sccom
command (CR-248).

• Enable verbose sccom messages
Echoes subprocess invocations with command arguments. Same as the -verbose
argument to the sccom command (CR-248).

Other CPP Options

Specify any valid g++/aCC compiler options. All options are accepted, with the exception
of the -o and -c options.

• Include Directory
Includes a directory that contains source files. Same as the -I argument to g++/aCC.

• Macro
Defines a macro. Same as the -D argument to g++/aCC.
ModelSim SE User’s Manual

UM-376 10 - Graphic interface

Model
• Enable Debug Mode
Compiles SystemC code with debugging information. By default SystemC code is
compiled without debugging information. Same as the -g argument to g++/aCC.

• Optimization level
Specify optimization value you wish to use. By default, no optimization is performed.
Same as the -O# argument to g++/aCC.

Setting SystemC link options

Before you can simulate a SystemC design, you must link the design. The SystemC linking
collects the object files created in the different design libraries, and uses them to build a
shared library (.so) in the current work library. To link the design using the GUI, select
Compile -> SystemC Link. A dialog box opens, allowing you to enter any g++/aCC
linking options your design requires.

• Include SystemC verification library
Includes the SystemC verification library. Same as the -scv argument to the sccom
command (CR-248).

• SystemC Link Options
Specify any valid g++/aCC linking options (e.g. -l, -L, etc.). All options are accepted.
Sim SE User’s Manual

Simulating with the graphic interface UM-377
Simulating with the graphic interface

You can use the Library tab in the workspace or the Simulate dialog box to simulate a
compiled design. To simulate from the Library tab, simply double-click a design unit. To
open the Simulate dialog, select Simulate > Simulate (Main window).

Six tabs - Design, VHDL, Verilog, Libraries, SDF, and Options - allow you to select
various simulation options. You can switch between tabs to modify settings, then begin
simulation by selecting the OK button.

Design tab

The Design tab includes these options:

• Simulate
Specifies the design unit(s) to simulate. You can simulate your Verilog top-level
module(s), a VHDL top-level design unit, or your SystemC top-level module(s) in one
of two ways:

- Type a design unit name (configuration, module, or entity) into the field, separate
additional names with a space. Specify library/design units with the following syntax:

[<library_name>.]<design_unit>

- Select a design unit from the list. You can select multiple design units from the list by
using the control key when you click.
ModelSim SE User’s Manual

UM-378 10 - Graphic interface

Model
• Resolution
(-t [<multiplier>]<time_unit>)
The drop-down menu sets the simulator time units.

Simulator time units can be expressed as any of the following:

See also, "Simulator resolution limit" (UM-77).

• Optimize
Recompile the selected Verilog design unit using +opt optimizations. Please read
"Compiling for faster performance" (UM-127) before using this option.

Simulation time units

1fs, 10fs, or 100fs femtoseconds

1ps, 10ps, or 100ps picoseconds

1ns, 10ns, or 100ns nanoseconds

1us, 10us, or 100us microseconds

1ms, 10ms, or 100ms milliseconds

1sec, 10sec, or 100sec seconds
Sim SE User’s Manual

Simulating with the graphic interface UM-379
VHDL tab

The VHDL tab includes these options:

Generics

The Add button opens a dialog box (shown below) that allows you to specify the value of
generics within the current simulation; generics are then added to the Generics list. You
can also select a generic on the listing to Delete or Edit.

From the Specify a
Generic dialog box you can
set the following options.

• Generic Name (-g
<Name>=<Value>)
The name of the generic
parameter. Type it in as it
appears in the VHDL
source (case is ignored).

• Generic Value
Specifies a value for all
generics in the design
with the given name
(above) that have not
received explicit values in generic maps (such as top-level generics and generics that
ModelSim SE User’s Manual

UM-380 10 - Graphic interface

Model
would otherwise receive their default value). The value must be appropriate for the
declared data type of the generic. No spaces are allowed in the specification (except
within quotes) when specifying a string value.

• Override Instance - specific Values (-G <Name>=<Value>)
Select to override generics that received explicit values in generic maps. The name and
value are specified as above. The use of this switch is indicated in the Override column
of the Generics list.

VITAL

• Disable Timing Checks (+notimingchecks)
Disables timing checks generated by VITAL models.

• Use Vital 2.2b SDF Mapping (-vital2.2b)
Selects SDF mapping for VITAL 2.2b (default is Vital95).

• Disable Glitch Generation (-noglitch)
Disables VITAL glitch generation.

TEXTIO files

• STD_INPUT (-std_input <filename>)
Specifies the file to use for the VHDL textio STD_INPUT file. Use the Browse button
to locate a file within your directories.

• STD_OUTPUT (-std_output <filename>)
Specifies the file to use for the VHDL textio STD_OUTPUT file. Use the Browse button
to locate a file within your directories.
Sim SE User’s Manual

Simulating with the graphic interface UM-381
Verilog tab

The Verilog tab includes these options:

Pulse Options

• Disable pulse error and warning messages (+no_pulse_msg)
Disables path pulse error warning messages.

• Rejection Limit (+pulse_r/<percent>)
Sets the module path pulse rejection limit as a percentage of the path delay.

• Error Limit (+pulse_e/<percent>)
Sets the module path pulse error limit as a percentage of the path delay.
ModelSim SE User’s Manual

UM-382 10 - Graphic interface

Model
Other Options

• Enable Hazard Checking (-hazards)
Enables hazard checking in Verilog modules.

• Disable Timing Checks in Specify Blocks (+notimingchecks)
Disables the timing check system tasks ($setup, $hold,...) in specify blocks.

• Delay Selection (+mindelays | +typdelays | +maxdelays)
Use the drop-down menu to select timing for min:typ:max expressions.

• User Defined Arguments (+<plusarg>)
Arguments are preceded with “+”, making them accessible through the Verilog PLI
routine mc_scan_plusargs. The values specified in this field must have a "+" preceding
them or ModelSim may parse them incorrectly.

• Optimize Preferences (-fast +acc)
Enable design unit access for certain modules. See "Enabling design object visibility in
optimized simulations" (UM-389) for details.

Libraries tab

The Libraries tab includes these options:

• Search Libraries (-L)
Specifies the libraries to search for design units instantiated from Verilog.

• Search Libraries First (-Lf)
Same as Search Libraries but these libraries are searched before ‘uselib.
Sim SE User’s Manual

Simulating with the graphic interface UM-383
SDF tab

The SDF (Standard Delay Format) tab includes these options:

SDF Files

Click the Add button to specify the SDF files to load for the current simulation; files are
then added to the SDF Files list. You may also select a file on the listing to Delete or
Modify (opens the dialog box below).
ModelSim SE User’s Manual

UM-384 10 - Graphic interface

Model
From the Add SDF Entry dialog box you can set the following options.

• SDF file ([<region>] = <sdf_filename>)
Specifies the SDF file to use for annotation. Use the Browse button to locate a file within
your directories.

• Apply to region ([<region>] = <sdf_filename>)
Specifies the design region to use with the selected SDF options.

• Delay (-sdfmin | -sdftyp | -sdfmax)
The drop-down menu selects delay timing (min, typ, or max) to be used from the
specified SDF file. See also, "Specifying SDF files for simulation" (UM-544).

SDF options

• Disable SDF warnings (-sdfnowarn)
Select to disable warnings from the SDF reader.

• Reduce SDF errors to warnings (-sdfnoerror)
Change SDF errors to warnings so the simulation can continue.

• Multi-Source Delay (-multisource_delay <sdf_option>)
Select max, min, or latest delay. Controls how multiple PORT or INTERCONNECT
constructs that terminate at the same port are handled. By default, the Module Input Port
Delay (MIPD) is set to the max value encountered in the SDF file. Alternatively, you can
choose the min or latest of the values.
Sim SE User’s Manual

Simulating with the graphic interface UM-385
Options tab

The Options tab includes these options:

• Enable code coverage (-coverage)
Turn on collection of Code Coverage statistics. You must also specify which type of
statistics you want when you compile the design. See Chapter 12 - Code Coverage for
more information.

• Treat non-existent VHDL files ... (-absentisempty)
Cause VHDL files opened for read that target non-existent files to be treated as empty,
rather than ModelSim issuing fatal error messages.

• Do not share file descriptors... (-nofileshare)
By default ModelSim shares a file descriptor for all VHDL files opened for write or
append that have identical names. This option turns off file descriptor sharing.

• WLF File (-wlf <filename>)
Specify the name of the wave log format (WLF) file to create. The default is vsim.wlf.

• Assert File (-assertfile <filename>)
Designate an alternative file for recording assertion messages. By default assertion
messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (see "Creating a transcript file" (UM-628)).

• Other options
Specify any other vsim command (CR-357) arguments.
ModelSim SE User’s Manual

UM-386 10 - Graphic interface

Model
Setting default simulation options

Select Simulate > Simulation Options (Main window) to bring up the Simulation
Options dialog box shown below. Changes made in the Simulation Options dialog box
are the default for the current simulation only. Options can be saved as the default for future
simulations by editing the simulator control variables in the modelsim.ini file; the variables
to edit are noted in the text below.

Defaults tab

The Defaults tab includes these options:

• Default Radix
Sets the default radix for the current simulation run. You can also use the radix (CR-235)
command to set the same temporary default. A permanent default can be set by editing
the DefaultRadix (UM-623) variable in the modelsim.ini file. The chosen radix is used for
all commands (force (CR-176), examine (CR-167), change (CR-87) are examples) and for
displayed values in the Signals, Variables, Dataflow, List, and Wave windows.

• Suppress Warnings
Selecting From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. Edit the StdArithNoWarnings (UM-625)
variable in the modelsim.ini file to set a permanent default.

Selecting From IEEE Numeric Std Packages suppresses warnings generated within the
accelerated numeric_std and numeric_bit packages. Edit the NumericStdNoWarnings
(UM-624) variable in the modelsim.ini file to set a permanent default.

• Default Run
Sets the default run length for the current simulation. Edit the RunLength (UM-625)
variable in the modelsim.ini file to set a permanent default.
Sim SE User’s Manual

Simulating with the graphic interface UM-387
• Iteration Limit
Sets a limit on the number of deltas within the same simulation time unit to prevent
infinite looping. Edit the IterationLimit (UM-624) variable in the modelsim.ini file to set a
permanent iteration limit default.

• Default Force Type
Selects the default force type for the current simulation. Edit the DefaultForceKind (UM-

623) variable in the modelsim.ini file to set a permanent default.

Assertions tab

The Assertions tab includes these options:

• Break on Assertion
Selects the assertion severity that will stop simulation. Edit the BreakOnAssertion (UM-

622) variable in the modelsim.ini file to set a permanent default.

• Ignore Assertions For
Selects the assertion type to ignore for the current simulation. Multiple selections are
possible. Edit the IgnoreFailure, IgnoreError, IgnoreWarning, and IgnoreNote (UM-624)
variables in the modelsim.ini file to set permanent defaults.

When an assertion type is ignored, no message will be printed, nor will the simulation
halt (even if break on assertion is set for that type).

Note: Assertions that appear within an instantiation or configuration port map clause
conversion function will not stop the simulation regardless of the severity level of the
assertion.
ModelSim SE User’s Manual

UM-388 10 - Graphic interface

Model
WLF Files tab

The WLF Files tab includes these options:

• WLF File Size Limit
Limits the WLF file by size (as closely as possible) to the specified number of megabytes.
If both size and time limits are specified, the most restrictive is used. Setting it to 0 results
in no limit. Edit the WLFSizeLimit (UM-626) variable in the modelsim.ini file to set a
permanent default.

• WLF File Time Limit
Limits the WLF file by size (as closely as possible) to the specified amount of time. If
both time and size limits are specified, the most restrictive is used. Setting it to 0 results
in no limit. Edit the WLFTimeLimit (UM-626) variable in the modelsim.ini file to set a
permanent default.

• WLF Attributes
Specifies whether to compress WLF files and whether to delete the WLF file when the
simulation ends. You would typically only disable compression for troubleshooting
purposes. Edit the WLFCompress (UM-626) variable in the modelsim.ini file to set a
permanent default for compression. Edit the WLFDeleteOnQuit (UM-626) variable in the
modelsim.ini file to set a permanent default for WLF file deletion.

• Design Hierarchy
Specifies whether to save all design hierarchy in the WLF file or only regions containing
logged signals. Edit the WLFSaveAllRegions (UM-626) variable in the modelsim.ini file
to set a permanent default.
Sim SE User’s Manual

Simulating with the graphic interface UM-389
Enabling design object visibility in optimized simulations

Designs simulated with -fast have limited access to design objects. See "Enabling design
object visibility with the +acc option" (UM-133) for more details. On the "Verilog tab" (UM-

381) of the Simulate dialog, you can select Optimize Preferences to selectively enable
design object visibility.

The Optimization Preferences dialog includes these options:

• No Design Object Visibility
Default behavior where ModelSim optimizes at will without concern for underlying
design object visibility.

• Apply to All Modules (+acc)
Specifies visibility settings for all modules in your design. Please see "Enabling design
object visibility with the +acc option" (UM-133) for more details. Options include:

Access to Registers (+acc=r) Enable access to registers (including
memories, integer, time, and real types).

Access to Nets (+acc=n) Enable access to nets.

Access to Tasks and Functions (+acc=t) Enable access to tasks and functions.
ModelSim SE User’s Manual

UM-390 10 - Graphic interface

Model
• Specify Modules (+acc[=<spec>][+<module>[.]])
Specifies visibility settings for individual modules in your design. Click Add to open the
Add Access Entry dialog.

The Add Access Entry dialog includes these options:

• Module Name
Specifies the module to which the visibility settings will apply.

• Visibility Specifications
See above.

• Apply Visibility to Sub-Modules
Specifies that the settings apply to all sub-modules of the specified Module Name.

Access to Line Debugging (+acc=l) Enable line number directives and process
names for line debugging, profiling, and code
coverage.

Access to Ports (+acc=p) Enable access to ports.

Access to Bits of Vector Nets (+acc=b) Enable access to individual bits of vector nets.

Access to Cells (+acc=c) Enable access to library cells.
Sim SE User’s Manual

Creating and managing breakpoints UM-391
Creating and managing breakpoints

ModelSim supports both signal (i.e., when conditions) and file-line breakpoints.
Breakpoints can be set from multiple locations in the GUI or from the command line.
Breakpoints within SystemC portions of the design can only be set using File-line
breakpoints (UM-391).

Signal breakpoints

Signal breakpoints (when conditions) instruct ModelSim to perform actions when the
specified conditions are met. For example, you can break on a signal value or at a specific
simulator time (see the when command (CR-375) for additional details). When a breakpoint
is hit, a message in the Main window transcript identifies the signal that caused the
breakpoint.

Setting signal breakpoints from the command line

You use the when command (CR-375) to set a signal breakpoint from the VSIM> prompt.
See the Command Reference for further details.

Setting signal breakpoints from the GUI

Signal breakpoints are most easily set in the Signals window (UM-316) and the Wave
window (UM-337). Right-click a signal and select Insert Breakpoint from the context
menu. A breakpoint is set on that signal and will be listed in the Breakpoints dialog.

Alternatively you can set signal breakpoints from the Breakpoints dialog (UM-392).

File-line breakpoints

File-line breakpoints are set on executable lines in your source files. When the line is hit,
the simulator stops.

Since C Debug is invoked when you set a breakpoint within a SystemC module, your C
Debug settings must be in place prior to setting a breakpoint. See Setting up C Debug (UM-

475) for more information. Once invoked, C Debug can be exited using the C Debug menu.

Setting file-line breakpoints from the command line

You use the bp command (CR-81) to set a file-line breakpoint from the VSIM> prompt. See
the Command Reference for further details.

Setting file-line breakpoints from the GUI

File-line breakpoints are most easily set using your mouse in the Source window (UM-325).
Click on a blue line number at the left side of the Source window, and a red diamond
denoting a breakpoint will appear. The breakpoints are toggles – click once to create the
colored diamond; click again to disable or enable the breakpoint. To delete the breakpoint
completely, click the red diamond with your right mouse button, and select Remove
Breakpoint.

Alternatively you can set file-line breakpoints from the Breakpoints dialog (UM-392).
ModelSim SE User’s Manual

UM-392 10 - Graphic interface

Model
Breakpoints dialog

The Breakpoints dialog box allows you to create and manage both Signal breakpoints (UM-

391) and File-line breakpoints (UM-391). Select Tools > Breakpoints from the Main,
Signals, Source, or Wave windows to open the dialog.

The Breakpoints dialog includes these options:

• Breakpoints
List of all existing breakpoints. Breakpoints set from anywhere in the GUI, or from the
command line, are listed. A red ’X’ through the hand icon means the breakpoint is
currently disabled.

• Add
Create a new signal or file-line breakpoint. See below for more details.

• Modify
Change properties of an existing breakpoint. See below for more details.

• Disable/Enable
De-activate or activate the selected breakpoint.

• Delete
Delete the selected breakpoint.

• Label
Text label of the selected breakpoint.
Sim SE User’s Manual

Creating and managing breakpoints UM-393
• Condition
The condition under which the breakpoint will be hit.

• Command
The command that will be executed when the breakpoint is hit.

Adding a breakpoint

Click Add to add a new breakpoint, and you will see the Add Breakpoint dialog.

Choose whether to create a signal breakpoint or a file-line breakpoint and then select Next.
Depending on which type of breakpoint you’re creating, you’ll see one of the two dialogs
below. These are the same dialogs you’ll see if you modify an exiting breakpoint.

The Signals Breakpoint dialog includes these options:

• Breakpoint Label
Specify an optional text label for the breakpoint.

• Breakpoint Condition
Specify condition(s) to be met for the command(s) to be executed. See the when
command (CR-375) for more information on creating the condition statement.
ModelSim SE User’s Manual

UM-394 10 - Graphic interface

Model
• Breakpoint Commands
Specify command(s) to be executed when the condition is met. Any ModelSim or Tcl
command or series of commands are valid, with one exception – the run command (CR-

246) cannot be used.

The File Breakpoint dialog includes these options:

• File
Specify the file in which to set the breakpoint.

• Line
Specify the line number on which to set the breakpoint. Note that breakpoints can be set
only on executable lines.

• Instance Name
Specify a region in which to apply the breakpoint. If left blank the breakpoint affects
every instance in the design.

• Breakpoint Condition
Specify a condition that determines whether the breakpoint is hit.

• Breakpoint Commands
Specify command(s) to be executed when the breakpoint is hit. Any ModelSim or Tcl
command or series of commands is valid, with one exception – the run command (CR-

246) cannot be used.
Sim SE User’s Manual

Miscellaneous tools and add-ons UM-395
Miscellaneous tools and add-ons

Several miscellaneous tools and add-ons are available from ModelSim menus. Follow the
links below for more information.

• The GUI Expression Builder (UM-395)

Edit > Search > Search for Expression > Builder (List or Wave window)
Helps you build logical expressions for use in Wave and List window searches and
several simulator commands. For expression format syntax see
"GUI_expression_format" (CR-23).

• HDL language templates (UM-397)

View > Show language templates (Source window)
Helps you write VHDL or Verilog code.

• The Button Adder (UM-400)

Window > Customize (any window)
Allows you to add a temporary function button or toolbar to any window.

• The Macro Helper (UM-401)

Tools > Macro Helper (Main window)
Creates macros by recording mouse movements and key strokes. UNIX only (excluding
Linux).

• The Tcl Debugger (UM-402)

Tools > Tcl Debugger (Main window)
Helps you debug your Tcl procedures.

• Debug Detective™
Debug Detective is an add-on tool that lets you view any level of your design as block
diagrams, Interface-Based Design™ (IBD™) tables, state machines, or flow charts.
Enhanced debugging features include graphical breakpoints, signal probing, graphics to
text source cross-highlighting, animation, and cause analysis.

The tool is accessed directly from within ModelSim. Assuming you have purchased and
installed Debug Detective, a new menu and toolbar button will appear in ModelSim when
you load a design. Complete documentation for Debug Detective is available from the
Start Menu once the product is installed. Please see www.mentor.com/debugdetective
for more information.

The GUI Expression Builder

The GUI Expression Builder is a feature of the Wave and List Signal Search dialog boxes,
and the List trigger properties dialog box. It aids in building a search expression that
follows the "GUI_expression_format" (CR-23).

To locate the Builder:

• select Edit > Search (List or Wave window)

• select the Search for Expression option in the resulting dialog box
ModelSim SE User’s Manual

http://www.mentor.com/hdldesigner/debugdetective/

UM-396 10 - Graphic interface

Model
• select the Builder button

The Expression Builder dialog box provides an array of buttons that help you build a GUI
expression. For instance, rather than typing in a signal name, you can select the signal in
the associated Wave or List window and press Insert Reference Signal in the Expression
Builder. The result will be the full signal name added to the expression field. All Expression
Builder buttons correspond to the "Expression syntax" (CR-24).

To search for when a signal reaches a particular value

Select the signal in the Wave window and click Insert Selected Signal and ==. Then, click
the value buttons or type a value.

To evaluate only on clock edges

Click the && button to AND this condition with the rest of the expression. Then select the
clock in the Wave window and click Insert Selected Signal and ‘rising. You can also
select the falling edge or both edges.

Operators

Other buttons will add operators of various kinds (see "Expression syntax" (CR-24)), or you
can type them in.
Sim SE User’s Manual

Miscellaneous tools and add-ons UM-397
HDL language templates

ModelSim language templates help you write VHDL or Verilog code. They are a collection
of wizards, menus, and dialogs that produce code for new designs, language constructs,
logic blocks, etc.

To use the templates, either open an existing HDL file in the Source window (UM-325), or
select File > New (Source window) to create a new file. Once the file is open, select View
> Show language templates. This displays a pane that shows the available templates.

The templates that appear depend on the type of file you create. For example Module and
Primitive templates are available for Verilog files, and Entity and Architecture templates
are available for VHDL files.

Important: The language templates are not intended to replace thorough knowledge of
coding. They are intended as an interactive "reference" for creating small sections of
code. If you are unfamiliar with VHDL or Verilog, you should attend a training class or
consult one of the many books available on HDL languages.
ModelSim SE User’s Manual

UM-398 10 - Graphic interface

Model
Double-click an item in the list to begin creating code. Some of the items bring up wizards
while others insert code into your HDL file. The dialog below is part of the wizard for
creating a new design. Simply follow the directions in the wizards.

Code inserted into your source file may contain yellow or gray highlighted "fields". Yellow
highlighting identifies an object that needs a name. Double-click the yellow object to enter
a name. Note that all yellow objects with the same label (e.g., "configuration_name" below)
will change to whatever name you enter. This ensures matching fields remain in synch.
Sim SE User’s Manual

Miscellaneous tools and add-ons UM-399
Gray highlighting indicates that a context menu with additional commands is available. In
the example below, right-clicking "configuration_declarative_part" gives you three options
for continuing the definition of the Configuration.

The first menu item is always "DELETE." This allows you to remove unwanted objects
from the HDL code, such as optional fields.

Keyboard shortcut

<control - p> edits a yellow field and expands a gray field at the current cursor location.
ModelSim SE User’s Manual

UM-400 10 - Graphic interface

Model
The Button Adder

The Button Adder creates a single button or a combined button and toolbar in any
currently opened ModelSim window. The button exists only until you close the window
unless you add the button code to the window’s user hook variable (see "Making the button
persistent" (UM-400) below).

Invoke the Button Adder from any ModelSim window menu: Window > Customize.

You have the following
options for adding a button:

• Window Name is the name
of the window to which you
want to add the button.

• Button Name is the button’s
label.

• Function can be any
command or macro you
might execute from the
ModelSim command line. For example, you might want to add a Run or Step button to
the Wave window.

Locate the button within the window with these selections:

• Tool Bar places the button on a new toolbar.

• Footer adds the button to the window’s status bar.

Justify the button within the toolbar/footer with these selections:

• Right places the button on the right side of the toolbar/footer.

• Left adds the button on the left side of the toolbar/footer.

• Top places the button at the top/center of the toolbar/footer.

• Bottom places the button at the bottom/center of the toolbar/footer.

Making the button persistent

When you create a button with the Button Adder, the underlying commands are echoed in
the transcript. You can use these commands to make the button appear every time you
invoke the window. Follow these steps:

1 Create a button using the Button Adder.

2 Copy the commands from the transcript into a Tcl procedure in the modelsim.tcl file. If
you don’t have a modelsim.tcl file already, create a new text file with that name and set
the MODELSIM_TCL environment variable to the full path of the modelsim.tcl file.

3 Append the procedure name to the window’s user_hook Tcl variable. See "Preference
variables located in Tcl files" (UM-631) for more information on Tcl preference variables.
Sim SE User’s Manual

Miscellaneous tools and add-ons UM-401
An example will help clarify. Say you create a button in the Wave window that adds all
signals from the selected region to the Wave window. The button code will look something
like this:

_add_menu .wave controls right SystemButtonFace black AddWaves {add wave *}

You would insert that code into a Tcl procedure in the modelsim.tcl file and then append
the procedure to the PrefWave(user_hook) variable. The entire entry in the modelsim.tcl
file would look as follows:

proc AddWaves winname {
_add_menu .wave controls right SystemButtonFace black AddWaves {add wave *}
}

lappend PrefWave(user_hook) AddWaves

Now, any time you start ModelSim and open the Wave window, it will have a button
labeled "AddWaves" that executes the command "add wave *".

The Macro Helper

This tool is available for UNIX only (excluding Linux).

The purpose of the Macro Helper is to aid macro creation by recording a simple series of
mouse movements and key strokes. The resulting file can be called from a more complex
macro by using the play (CR-214) command. Actions recorded by the Macro Helper can
only take place within the ModelSim GUI (window sizing and repositioning are not
recorded because they are handled by your operating system’s window manager). In
addition, the run (CR-246) commands cannot be recorded with the Macro Helper but can be
invoked as part of a complex macro.

Select Tools > Macro Helper (Main
window) to access the Macro Helper.

• Record a macro
by typing a new macro file name into
the field provided, then press Record.
Use the Pause and Stop buttons as
shown in the table below.

• Play a macro
by entering the file name of a Macro Helper file into the field and pressing Play.

Files created by the Macro Helper can be viewed with the notepad (CR-207).

Button Description

Record/Stop Record begins recording and toggles to Stop once a recording
begins

Insert Pause inserts a .5 second pause into the macro file; press the button more
than once to add more pause time; the pause time can
subsequently be edited in the macro file

Play plays the Macro Helper file specified in the file name field
ModelSim SE User’s Manual

UM-402 10 - Graphic interface

Model
See the macro_option command (CR-191) for playback speed, delay, and debugging
options for completed macro files.

The Tcl Debugger

We would like to thank Gregor Schmid for making TDebug available for use in the public
domain.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of FITNESS FOR A PARTICULAR
PURPOSE.

Starting the debugger

Select Tools > Tcl Debugger (Main window) to run the debugger. Make sure you use the
ModelSim and TDebug menu selections to invoke and close the debugger. If you would
like more information on the configuration of TDebug see Help > Technotes > tdebug.

The following text is an edited summary of the README file distributed with TDebug.

How it works

TDebug works by parsing and redefining Tcl/Tk-procedures, inserting calls to `td_eval' at
certain points, which takes care of the display, stepping, breakpoints, variables etc. The
advantages are that TDebug knows which statement in which procedure is currently being
executed and can give visual feedback by highlighting it. All currently accessible variables
and their values are displayed as well. Code can be evaluated in the context of the current
procedure. Breakpoints can be set and deleted with the mouse.

Unfortunately there are drawbacks to this approach. Preparation of large procedures is slow
and due to Tcl's dynamic nature there is no guarantee that a procedure can be prepared at
all. This problem has been alleviated somewhat with the introduction of partial preparation
of procedures. There is still no possibility to get at code running in the global context.

The Chooser

Select Tools > Tcl Debugger (Main window) to open the TDebug chooser.

The TDebug chooser has three parts. At
the top the current interpreter, vsim.op_,
is shown. In the main section there are
two list boxes. All currently defined
procedures are shown in the left list
box. By clicking the left mouse button
on a procedure name, the procedure
gets prepared for debugging and its
name is moved to the right list box.
Clicking a name in the right list box
returns a procedure to its normal state.

Press the right mouse button on a
procedure in either list box to get its
program code displayed in the main
debugger window.
Sim SE User’s Manual

Miscellaneous tools and add-ons UM-403
The three buttons at the bottom let you force a Rescan of the available procedures, Popup
the debugger window or Exit TDebug. Exiting from TDebug doesn't terminate ModelSim,
it merely detaches from vsim.op_, restoring all prepared procedures to their unmodified
state.

The Debugger

Select the Popup button in the Chooser to open the debugger window.

The debugger window is divided into the main region with the name of the current
procedure (Proc), a listing in which the expression just executed is highlighted, the Result
of this execution and the currently available Variables and their values, an entry to Eval
expressions in the context of the current procedure, and some button controls for the state
of the debugger.

A procedure listing displayed in the main region will have a darker background on all lines
that have been prepared. You can prepare or restore additional lines by selecting a region
(<Button-1>, standard selection) and choosing Selection > Prepare Proc or Selection >
Restore Proc from the debugger menu (or by pressing ^P or ^R).

When using `Prepare' and `Restore', try to be smart about what you intend to do. If you
select just a single word (plus some optional white space) it will be interpreted as the name
of a procedure to prepare or restore. Otherwise, if the selection is owned by the listing, the
corresponding lines will be used.

Be careful with partial prepare or restore! If you prepare random lines inside a `switch' or
`bind' expression, you may get surprising results on execution, because the parser doesn't
know about the surrounding expression and can't try to prevent problems.
ModelSim SE User’s Manual

UM-404 10 - Graphic interface

Model
There are seven possible debugger states, one for each button and an ̀ idle' or ̀ waiting' state
when no button is active. The button-activated states are:

Closing the debugger doesn't quit it, it only does `wm withdraw'. The debugger window
will pop up the next time a prepared procedure is called. Make sure you close the debugger
with Debugger > Close.

Breakpoints

To set/unset a breakpoint, double-click inside the listing. The breakpoint will be set at the
innermost available expression that contains the position of the click. Conditional or
counted breakpoints aren’t supported.

The Eval entry supports a simple history mechanism available via the <Up_arrow> and
<Down_arrow> keys. If you evaluate a command while stepping through a procedure, the
command will be evaluated in the context of the procedure; otherwise it will be evaluated
at the global level. The result will be displayed in the result field. This entry is useful for a
lot of things, but especially to get access to variables outside the current scope.

Button Description

Stop stop after next expression, used to get out of slow/fast/nonstop
mode

Next execute one expression, then revert to idle

Slow execute until end of procedure, stopping at breakpoints or when
the state changes to stop; after each execution, stop for ’delay’
milliseconds; the delay can be changed with the ’+’ and ’-’
buttons

Fast execute until end of procedure, stopping at breakpoints

Nonstop execute until end of procedure without stopping at breakpoints or
updating the display

Break terminate execution of current procedure
Sim SE User’s Manual

Miscellaneous tools and add-ons UM-405
Try entering the line `global td_priv' and watch
the Variables box (with global and array
variables enabled of course).

Configuration

You can customize TDebug by setting up a file
named .tdebugrc in your home directory. See the
TDebug README at Help > Technotes >
tdebug for more information on the configuration
of TDebug.

TclPro Debugger

The Tools menu in the Main window contains a
selection for the TclPro Debugger from Scriptics
Corporation. This debugger and any available
documentation can be acquired from Scriptics.
Once acquired, do the following steps to use the
TclPro Debugger:

1 Make sure the TclPro bin directory is in your PATH.

2 In TclPro Debugger, create a new project with Remote Debugging enabled.

3 Start ModelSim and select Tools > TclPro Debugger (Main window)

4 Press the Stop button in the debugger in order to set breakpoints, etc.

Note: TclPro Debugger version 1.4 does not work with ModelSim.
ModelSim SE User’s Manual

UM-406 10 - Graphic interface

Model
Sim SE User’s Manual

 UM-407
11 - Performance Analyzer

Chapter contents
Introducing Performance Analysis. UM-408

A statistical sampling profiler UM-408

Getting started UM-410

Interpreting the data UM-411
Viewing Performance Analyzer results UM-411
Interpreting the Name field UM-413
Interpreting the Under(%) and In(%) fields UM-413
Differences in the ranked and hierarchical views UM-414

Analyzing C code performance UM-415

Reporting results UM-416

Profile menu UM-417

Performance Analyzer commands UM-417

Performance Analyzer preference variables UM-417

You can use the Performance Analyzer to easily identify areas in your simulation where
performance can be improved. The Performance Analyzer can be used at all levels of
design simulation – Functional, RTL, and Gate Level – and has the potential to save hours
of regression test time. In addition, ASIC and FPGA design flows benefit from the use of
this tool.

Note: If you need to run the Performance Analyzer under Windows on a design that
contains FLI/PLI/VPI code, add these two switches to the compiling/linking command:

/DEBUG /DEBUGTYPE:COFF

These switches add symbols to the .dll file that the profiler can use in its report.
ModelSim SE User’s Manual

UM-408 11 - Performance Analyzer

Model
Introducing Performance Analysis

The Performance Analyzer provides an interactive graphical representation of where
ModelSim is spending its time while running your design. This feature enables you to
quickly determine what is impacting the design environment’s simulation performance.
Those familiar with the design and validation environment will be able to find first-level
improvements in a matter of minutes.

For example, the Performance Analyzer might show some or all of the following

• A non-accelerated VITAL library cell is impacting simulation run time

• A process is consuming more time than necessary because of non-required items in its
sensitivity list

• A testbench process is active even though it is not needed

• A C module is inefficient

• A random number process is consuming simulation resources when in a testbench that is
running in non-random mode

With this information, you can make changes to the VHDL or Verilog source code that will
speed up the simulation.

A statistical sampling profiler

The Performance Analyzer is a statistical sampling profiler. It periodically samples the
current simulation at a user-determined rate and records what is executing in the simulation.
The advantage of statistical analysis is that an entire simulation may not have to be run to
get good information from the Performance Analyzer. A few thousand samples, for
example, can be accumulated before pausing the simulation to see where simulation time
is being spent.

The Performance Analyzer reports only on the samples that it can attribute to user code. For
example, if you used the -nodebug argument to vcom (CR-303) or vlog (CR-345), it could
not report sample results.
Sim SE User’s Manual

Introducing Performance Analysis UM-409
During sampling, the Samples field in the footer of the Main window displays the number
of profiling samples collected, and each sample becomes one data point in the simulation
profile.
ModelSim SE User’s Manual

UM-410 11 - Performance Analyzer

Model
Getting started

Performance analysis occurs during the ModelSim run command To enable the
Performance Analyzer, select Tools > Profile > Profile On (Main window). After this
command is executed, all subsequent run commands will have profiling statistics gathered
for them. With the Performance Analyzer enabled and a run command initiated, the
simulator will provide a message indicating that profiling has started.

You can turn off the Performance Analyzer by selecting Tools > Profile > Profile Off
(Main window). Any ModelSim run commands that follow will not be profiled.

Profiling results are cumulative. Therefore, each run command performed with profiling
ON will add new information to the data being gathered. To clear this data, select Tools >
Profile > Clear Profile Data (Main window).
Sim SE User’s Manual

Interpreting the data UM-411
Interpreting the data

The Performance Analyzer helps most in cases where a high percentage of simulation time
is spent in one module/entity. For example, say Performance Analyzer shows the
simulation is spending 60% of its time in module X. This information can be used to find
where module X was implemented poorly and to implement a change that runs faster.

More commonly the Performance Analyzer will tell you, for example, that 30% of
simulation time was spent in model X, 25% in model Y, and 20% in model Z. In such
situations, careful examination and improvement of each model may result in overall speed
improvement.

There are times, however, when the Performance Analyzer tells you nothing better than that
the simulation has executed in several hundred different models and has spent less 1% or
2% of its time in any one of them. In such situations, the Performance Analyzer provides
little helpful information and simulation improvement must come from a higher level
examination of how the design can be changed or optimized.

Viewing Performance Analyzer results

The Performance Analyzer provides two views of the collected data – a hierarchical and a
ranked view. The hierarchical view is accessed by selecting Tools > Profile > View
hierarchical profile (Main window) or by typing view_profile at the VSIM prompt. The
ranked view is accessed by selecting Tools > Profile > View ranked profile or by typing
view_profile_ranked at the VSIM prompt.

In the Hierarchical Profile window, you can expand and collapse various levels to hide data
that is not useful and/or is cluttering the data display. Click on the '-' box to collapse all
levels beneath the entry. Click on the '+' box to expand an entry. By default, all levels are
fully expanded.

In the hierarchical view below, test_sm.v:96 is taking the majority of the simulation time.
ModelSim SE User’s Manual

UM-412 11 - Performance Analyzer

Model
In the Ranked Profile view the modules and code lines are ranked in order of the amount
of simulation time used.

The Hierarchical and Ranked profile windows share a similar toolbar. The table below
describes the icons.

Button Function

Provides access to a search function that can be used to search for a
given string in the window. Type text in the entry box and then press
Return or click the binocular icon.

Specifies a cutoff percentage for displaying the data. By default,
every entry in the profiling data that has spent at least 1% of the
simulation time under that entry will be displayed. In the Ranked
view, the value is for the In%. See "Interpreting the Under(%) and
In(%) fields" (UM-413) for more information.

The hierCutoff and rankCutoff variables provide a similar function.
See "Performance Analyzer preference variables" (UM-417)

Causes the data to be reloaded from the simulator. If you change the
cutoff percentage or do an additional simulation run, the Ranked and
Hierarchical Profile windows are not updated automatically. You
should click on this button to update the data being displayed in these
windows.

Allows the data to be saved to disk. You will be prompted for the
output file name.

The profile report command (CR-226) provides another way to save
profile data.
Sim SE User’s Manual

Interpreting the data UM-413
Interpreting the Name field

The Name, Under(%), and In(%) fields appear in both the ranked and hierarchical views.
These fields are interpreted identically in both views. Typically a Name consists of an HDL
file and line number pair. Most useful names consist of a line of VHDL or Verilog source
code. If you use a PLI/VPI or FLI routine, then the name of the C function that implements
that routine can also appear in the name field.

vsim is a stripped executable file, so that any functions inside of it will be credited to the
line of code that uses the function.

The hierarchical view opens with all levels displayed. You can collapse the hierarchical
view by clicking the boxes next to the high-level names. At this time, the hierarchical view
will not remember which levels are opened or closed when data is reloaded. By default,
hierarchical levels are opened every time data is reloaded.

Interpreting the Under(%) and In(%) fields

The In(%) and Under(%) columns describe the percentage of the total simulation time
spent in and under a function listed in the Name field.

The distinction between In(%) and Under(%) is subtle but important. In(%) shows that x%
of the total simulation time was actually spent executing this one line of HDL code.
Under(%) shows that a particular line and all support routines it needed took x% of total
simulation time.

In the body of the Hierarchical Profile or Ranked Profile windows, you can double-click on
any VHDL/Verilog file and line-number pair to bring up that file in the Source window
with the selected line highlighted.
ModelSim SE User’s Manual

UM-414 11 - Performance Analyzer

Model
Differences in the ranked and hierarchical views

The hierarchical view differs from the ranked view in two important respects.

• Entries in the Name column of the hierarchical view are indented in order to show which
functions or routines call which others.

• A %Parent column in the hierarchical view allows you to see what percentage of a parent
routine’s simulation time is used in which subroutines.

Indentation in the Name column of the Hierarchical Profile window indicates which line is
calling a function.

The hierarchical view presents data in a call-graph style format that provides more context
than does the ranked view about where simulation time is spent . For example, your models
may contain several instances of a utility function that computes the maximum of 3-delay
values. A ranked view might reveal that the simulation spent 60% of its time in this utility
function, but would not tell you which routine or routines were making the most use of it.
The hierarchical view will reveal which line is calling the function most frequently. Using
this information, you might decide that instead of calling the function every time to
compute the maximum of the 3-delays, this spot in your VHDL code can be used to
compute it just once. You can then store the maximum delay value in a local variable.

The %Parent column provides the percent of simulation time a given entry used of its
parent’s total simulation time. From this column, you can calculate the percentage of total
simulation time taken up by any function. For example, if a particular parent entry used
10% of the total simulation time, and it called a routine that used 80% of its simulation time,
then the percentage of total simulation time spent in that routine would be 80% of 10%, or
8%.

In addition to these differences, the ranked view displays any particular function only once,
regardless of where it was used. In the hierarchical view, the function can appear multiple
times – each time in the context of where it was used.
Sim SE User’s Manual

Analyzing C code performance UM-415
Analyzing C code performance

You can include C code in your design via SystemC, the Verilog PLI/VPI, or the ModelSim
FLI. The Performance Analyzer can be used to determine the impact of these C modules
on simulator performance. For example, in the illustration below, the do_and C module is
using the majority of simulation time.

Factors that can affect simulator performance when a design includes C code are as follows:

• PLI/FLI applications with large sensitivity lists

• Calling operating system functions from C code

• Calling the simulator’s command interpreter from C code

• Inefficient C code

In addition, the Verilog PLI/VPI requires maintenance of the simulator’s internal data
structures as well as the PLI/VPI data structures for portability. (VHDL does not have this
problem in ModelSim because the FLI gets information directly from the simulator.)
ModelSim SE User’s Manual

UM-416 11 - Performance Analyzer

Model
Reporting results

Either click the save icon on the toolbar or use the profile report command (CR-226) to save
the Performance Analyzer results.

For example, the command

profile report -hierarchical -file hier.rpt -cutoff 4

will produce a profile report in a text file called hier.rpt, as shown here.
Sim SE User’s Manual

Profile menu UM-417
Profile menu

The following commands are available from the Tools > Profile menu (Main window).

Performance Analyzer commands

The table below provides a brief description of the profile commands. See the ModelSim
Command Reference for complete command details.

Performance Analyzer preference variables

Various Tcl variables control how the Hierarchical Profile and Ranked Profile windows are
displayed.You can set these preference variables by selecting Tools > Edit Preferences >
By Name > Profile (Main window). Use the Apply button to view temporary changes, or
Save the changes to a local modelsim.tcl file. Once saved, the preferences will be the
default for subsequent simulations invoked from the same directory. See "Preference
variables located in Tcl files" (UM-631) for more information.

Profile On turn on the Performance Analyzer

Profile Off turn off the Performance Analyzer

View hierarchical
profile

view a hierarchical report of simulation performance; see
"Interpreting the data" (UM-411)

View ranked profile view a ranked report of simulation performance; see "Interpreting
the data" (UM-411)

Clear Profile Data clear current profile data

Command Description

profile clear (CR-221) clears any data that has been gathered during previous run
commands; after this command is executed, all profiling data
will be reset

profile interval (CR-222) selects the frequency with which the profiler collects samples
during a run command

profile off (CR-223) disables runtime profiling

profile on (CR-224) enables runtime analysis of where your simulation is spending
its time

profile option (CR-225) changes various profiling options

profile report (CR-226) produces textual output of the profiling statistics that have
been gathered up to the point at which you execute the
command
ModelSim SE User’s Manual

UM-418 11 - Performance Analyzer

Model
Sim SE User’s Manual

 UM-419
12 - Code Coverage

Chapter contents
Introduction UM-420

Usage flow for Code Coverage UM-420
Supported types UM-421
Important notes about coverage statistics UM-422

Enabling Code Coverage UM-423

Viewing coverage data in the Main window UM-426
Workspace pane UM-430
Missed Coverage pane UM-430
Current Exclusions pane UM-431
Instance Coverage pane UM-432
Details pane UM-433

Viewing coverage data in the Source window UM-435

Toggle coverage UM-437
Enabling Toggle coverage UM-437
Excluding nodes from Toggle coverage UM-438
Viewing toggle coverage data in the Signals window . . . UM-439
Toggle coverage reporting UM-440

Filtering coverage data UM-441
Covfilter toolbar UM-442

Excluding items from coverage UM-443
Excluding lines/files via the GUI UM-443
Excluding lines/files with pragmas UM-443
Excluding lines/files with a filter file UM-444
Excluding nodes from toggle statistics UM-445

Reporting coverage data UM-446
Sample reports. UM-448

Saving and reloading coverage data UM-450
From the command line UM-450
From the graphic interface UM-450
With the vcover utility UM-451

Coverage statistics details UM-452
Condition coverage UM-452
Expression coverage UM-453

Code Coverage preference variables UM-454
ModelSim SE User’s Manual

UM-420 12 - Code Coverage

Model
Introduction

Code Coverage gives you graphical and report file feedback on which statements, branches,
conditions, and expressions in your source code have been executed. It also measures bits
of logic that have been toggled during execution.

With coverage enabled, ModelSim counts how many times each executable statement,
branch, condition, expression, and logic node in each instance is executed during
simulation. Statement coverage counts the execution of each statement on a line
individually, even if there are multiple statements in a line. Branch coverage counts the
execution of each conditional "if/then/else" and "case" statement and indicates when a true
or false condition has not executed. Condition coverage analyzes the decision made in "if"
and ternary statements and is an extension to branch coverage. Expression coverage
analyzes the expressions on the right hand side of assignment statements, and is similar to
condition coverage. And toggle coverage counts each time a logic node transitions from
one state to another.

Coverage statistics are displayed in the Main, Signals, and Source windows and also can be
output in different text reports (see "Reporting coverage data" (UM-446)). Raw coverage
data can be saved and recalled, or merged with coverage data from the current simulation
(see "Saving and reloading coverage data" (UM-450)).

ModelSim Code Coverage offers these benefits:

• It is totally non-intrusive because it’s integrated into the ModelSim engine – it doesn’t
require instrumented HDL code as do third-party coverage products.

• It has very little impact on simulation performance (typically 5 to 10 percent).

• It allows you to merge sets of coverage data without requiring elaboration of the design
or a simulation license.

Usage flow for Code Coverage

The following is an overview of the usage flow for simulating with Code Coverage. More
detailed instructions are presented in the sections that follow.

1 Compile the design using the -cover bcest argument to vcom (CR-303) or vlog (CR-345).

2 Simulate the design using the -coverage argument to vsim (CR-357).

3 Run the design.

4 Analyze coverage statistics in the Main, Signals, and Source windows.

5 Edit the source code to improve coverage.

6 Re-compile, re-simulate, and re-analyze the statistics and design.
Sim SE User’s Manual

Introduction UM-421
Supported types

Code Coverage supports only certain data types.

VHDL

Supported types are scalar std_ulogic/std_logic. The tool doesn’t currently support bit or
boolean.

Vector and integer and real are not supported directly. However, subexpressions that
involve an unsupported type and a relational operator and produce a boolean result are
supported. These types of subexpressions are treated as an external expression that is first
evaluated and then used as a boolean input to the full condition. The subexpression needs
to look like:

(var <relop> const)

where "var" could be of type std_logic_vector, integer, or real; "<relop>" is a relational
operator (e.g., <, >, >=); and "const" is a constant of the appropriate type. The tool doesn’t
currently support (var1 <relop> var2).

Verilog

Supported types are net and one-bit register, but subexpressions of the form:

(var1 <relop> var2)

are supported, where the variables may be multiple-bit registers or integer or real.
ModelSim SE User’s Manual

UM-422 12 - Code Coverage

Model
Important notes about coverage statistics

You should be aware of the following special circumstances related to calculating coverage
statistics:

• When ModelSim optimizes a design, it "removes" unnecessary lines of code (e.g., code
in a procedure that is never called). The lines that are optimized away aren't counted in
the coverage data, and this may cause misleading results. As a result, when you compile
with coverage enabled, ModelSim disables certain optimizations depending on which
coverage types you choose. This produces more accurate statistics but also may slow
simulation.

The table below shows the coverage types and what ModelSim does to optimizations.

• Package bodies are not instance-specific: ModelSim sums the counts for all invocations
no matter who the caller is. If you want separate statistics on each package, place them
in separate files rather than mixing them with entities or architectures. Also, all standard
and accelerated packages are ignored for coverage statistics calculation.

Coverage type Effect on optimizations

statement optimizations not disabled automatically; specify -O0 to get most
accurate statistics

branch case statement optimizations are disabled automatically

condition optimizations not disabled automatically

expression all optimizations disabled automatically

toggle optimizations not disabled automatically
Sim SE User’s Manual

Enabling Code Coverage UM-423
Enabling Code Coverage

Enabling Code Coverage is a two-step process:

1 Use the -cover argument to vcom or vlog when you compile your design. This argument
tells ModelSim which coverage statistics to collect. For example:

vlog top.v proc.v cache.v -cover bcesx

Each character after the -cover argument identifies a type of coverage statistic: "b"
indicates branch, "c" indicates condition, "e" indicates expression, "s" indicates
statement, "t" indicates 2-transition toggle, and "x" indicates extended 6-transition toggle
coverage (t and x are mutually exclusive). See "Enabling Toggle coverage" (UM-437) for
details on two other methods for enabling toggle coverage.

2 Use the -coverage argument to vsim when you simulate your design. For example:

vsim -coverage work.top

In ModelSim versions prior to 5.8, you didn’t have to enable coverage at compile time.
Code Coverage metrics (statement and branch coverage) were turned on just by using the
-coverage argument to vsim. For backwards compatibility, ModelSim will still display
statement statistics if you simulate with coverage enabled, even if you don’t use the -cover
argument when you compile the design.
ModelSim SE User’s Manual

UM-424 12 - Code Coverage

Model
To enable coverage from the graphic interface, first select Compile > Compile Options
(Main window) and select the Coverage tab. Alternatively, if you are using a project,
right-click on a selected design item (or items) and select Properties.
Sim SE User’s Manual

Enabling Code Coverage UM-425
Next, select Simulate > Simulate (Main window) and check Enable source file coverage
on the Options tab.
ModelSim SE User’s Manual

UM-426 12 - Code Coverage

Model
Viewing coverage data in the Main window

When you simulate a design with Code Coverage enabled, coverage data is displayed in the
Main, Source, and Signals windows. In the Main window, coverage data displays in five
window panes: Workspace, Missed Coverage, Current Exclusions, Instance Coverage, and
Details.

Workspace

Missed Coverage Current
Exclusions

Coverage Details
Instance
Sim SE User’s Manual

Viewing coverage data in the Main window UM-427
Workspace pane

The Workspace pane displays code coverage information in the Files tab and in the tabs
displaying structure for any datasets being simulated (e.g., the sim tab). When coverage is
invoked, several columns for displaying coverage data are added to the Workspace pane.
You can toggle columns on/off by right-clicking on a column name and selecting from the
context menu that appears. The following columns are relevant to the Workspace pane:

Column name Description

Design unit the name of the design unit

Design unit type the type (e.g., Module, Entity, etc.) of the design unit

Stmt count the number of executable statements in each file

Stmt hits the number of executable statements that have been
executed in the current simulation

Stmt misses the number of executable statements that were not
executed in the current simulation

Stmt % the current ratio of Stmt hits to Stmt count

Stmt graph a bar chart displaying the Stmt %; if the percentage is
below 90%, the bar is red; 90% or more, the bar is green;
you can change this threshold percentage by editing the
PrefCoverage(cutoff) preference variable

Branch count the number of executable branches in each file

Branch hits the number of executable branches that have been
executed in the current simulation

Branch misses the number of executable branches that were not executed
in the current simulation

Branch % the current ratio of Branch hits to Branch count

Branch graph a bar chart displaying the Branch %; if the percentage is
below 90%, the bar is red; 90% or more, the bar is green;
you can change this threshold percentage by editing the
PrefCoverage(cutoff) preference variable

Condition rows the number of conditions in each file

Condition hits the number of times the conditions in a file have been
executed

Condition misses the number of conditions in a file that were not executed

Condition % the current ratio of Condition hits to Condition rows

Condition graph a bar chart displaying the Condition %; if the percentage is
below 90%, the bar is red; 90% or more, the bar is green;
you can change this threshold percentage by editing the
PrefCoverage(cutoff) preference variable
ModelSim SE User’s Manual

UM-428 12 - Code Coverage

Model
The diagram below show a portion of the Workspace window pane with code coverage data
displayed.

You can sort code coverage information for any column by clicking the column heading.
Clicking the column heading again will reverse the order.

Expression rows the number of executable expressions in each file

Expression hits the number of times expressions in a file have been
executed

Expression misses the number of executable expressions in a file that were not
executed

Expression % the current ratio of Expression hits to Expression rows

Expression graph a bar chart displaying the Expression %; if the percentage
is below 90%, the bar is red; 90% or more, the bar is green;
you can change this threshold percentage by editing the
PrefCoverage(cutoff) preference variable

Toggle nodes the number of points in each instance where the logic will
transition from one state to another

Toggle hits the number of nodes in each instance that have transitioned
at least once

Toggle misses the number of nodes in each instance that have not
transitioned at least once

Toggle % the current ratio of Toggle hits to Toggle nodes

Toggle graph a bar chart displaying the Toggle %; if the percentage is
below 90%, the bar is red; 90% or more, the bar is green;
you can change this threshold percentage by editing the
PrefCoverage(cutoff) preference variable

Column name Description
Sim SE User’s Manual

Viewing coverage data in the Main window UM-429
Workspace context menu

When you right-click in the Files tab of the Workspace pane, you open the following
context menu.

The menu includes the following options:

• View Source
Allows you to view the selected file in the Source window.

• Save List
Opens the Save File List dialog and allows you to save the coverage statistics for the
selected file in a text file.

• Coverage
Opens a submenu that allows you to generate coverage reports, exclude the selected file
from the coverage statistics (this selection will cause the file to appear in the Current
Exclusions pane), or clear coverage data.

• Properties
Opens the File Properties dialog box, which displays the file name, location, MS-DOS
name (full pathname), file size, the last time the file was modified, and file attributes.

Coverage information in the Workspace pane is dynamically linked to the Missed
Coverage pane and the Current Exclusions pane. Click the left mouse button on any file in
the Workspace pane to display that file’s un-executed statements, branches, conditions,
expressions, and toggles in the Missed Coverage pane. Lines from the selected file that are
excluded from coverage statistics are displayed in the Current Exclusions pane.
ModelSim SE User’s Manual

UM-430 12 - Code Coverage

Model
Missed Coverage pane

When you select a file in the Workspace pane, the Missed Coverage pane displays that
file’s un-executed statements, branches, conditions, and expressions and signals that
haven’t toggled. The pane includes a tab for each item, as shown below.

Each tab includes a column for the line number and a column for statement, branch,
condition, expression, or toggle on that line. The "X" indicates the item was not executed.

The Branch tab also includes a column for branch code (conditional "if/then/else" and
"case" statements). "XT" indicates that only the true condition of the branch was not
executed. "XF" indicates that only the false condition of the branch was not executed.
Fractional numbers indicate how many case statement labels were not executed. For
example, if only one of four case labels executed, the Branch tab would indicate "X 1/4."

When you right-click any item in the Statement, Branch, Condition, or Expression tabs an
Exclude Selection button will pop up, allowing you to exclude the item from coverage
statistics and make it appear in the Current Exclusions pane.
Sim SE User’s Manual

Viewing coverage data in the Main window UM-431
Current Exclusions pane

The Current Exclusions pane lists all files and lines that are excluded from coverage
statistics. See "Excluding items from coverage" (UM-443) for more details.

The Current Exclusions pane offers a pop-up menu
with commands for controlling exclusions.
Right-click anywhere in the pane to access the
following commands:

• Cancel Selected Exclusions
Cancels exclusion filtering for selected lines or
files and places them back into the coverage
statistics.

• Load Exclusion File
Opens the Load Exclusion File dialog, allowing you to select a saved exclusion file for
loading. Eliminates the need to create a new exclusion file for every simulation run.

• Save Exclusions File
Opens the Save Current Exclusions dialog, allowing you to name and save all current
exclusions in a single file for later recall. Loading a saved exclusion file eliminates the
need to create a new exclusion file for every simulation run.

• Hide (Show) Pragma Exclusions
Toggles the Current Exclusions pane to hide or show VHDL and Verilog pragma
exclusions.
ModelSim SE User’s Manual

UM-432 12 - Code Coverage

Model
Instance Coverage pane

The Instance Coverage pane displays coverage statistics for each instance in a flat, non-
hierarchical view. The Instance Coverage pane contains the same code coverage statistics
columns as in the "Workspace pane" (UM-427)

A partial view of the Instance Coverage pane is shown below.

Instance coverage pane context menu

Right-click any item in the Instance Coverage pane to open a pop-up menu that allows you
to create reports, set a display filter, or clear coverage data for the design.

• Coverage reports opens the Coverage Report dialog, which allows you to create a
number of different code coverage reports (see "Reporting coverage data" (UM-446) for
details).

• Set filter opens the Filter instance list dialog, which allows you to filter coverage
statistics (see "Filtering coverage data" (UM-441) for details).

• Clear coverage data clears all coverage statistics for every item in the design.
Sim SE User’s Manual

Viewing coverage data in the Main window UM-433
Details pane

After code coverage is invoked and the simulation is loaded and run you can turn on the
Details pane by selecting View > Coverage > Details in the Main window. The Details
pane shows the details of missed coverage. When an item is selected in the Missed
Coverage pane, the details of that coverage are displayed in the Details pane. Truth tables
will be displayed for condition and expression coverage, as shown here.

Toggle details are displayed as follows:
ModelSim SE User’s Manual

UM-434 12 - Code Coverage

Model
By clicking the left mouse button on the statement Hits column in the Source window, all
coverage information for that line will be displayed in the Details pane as shown here:
Sim SE User’s Manual

Viewing coverage data in the Source window UM-435
Viewing coverage data in the Source window

The Source window (UM-325) includes two columns for code coverage statistics – the Hits
column and the BC (Branch Coverage) column. These columns provide an immediate
visual indication about how your source code is executing. The default code coverage
indicators are check marks and Xs.

• A green check mark indicates that the statements and/or branches in a particular line have
executed.

• A red X indicates that a statement or branch was not executed.

• An XT indicates the true branch of an conditional statement was not executed.

• An XF indicates the false branch was not executed.

• A green "E" indicates a line of code that has been excluded from code coverage statistics.

When you hover the cursor over a line of code (see line 51 in the illustration above), the
number of statement and branch executions, or "hits," will be displayed in place of the
check marks and Xs. Notice, in this illustration, five of six conditions have been executed.

Also, when you click in either the Hits or BC column, the Details pane in the Main window
updates to display information on that line.
ModelSim SE User’s Manual

UM-436 12 - Code Coverage

Model
The Source window View menu provides five options for displaying coverage statistics:

• Show line numbers toggles the ln # column off and on.

• Show coverage data toggles the Hits column off and on.

• Show branch coverage toggles the BC column off and on.

• Show coverage numbers displays the number of executions in the Hits and BC columns
rather than checkmarks and Xs. When multiple statements occur on a single line an
ellipsis ("...") replaces the Hits number. In such cases, hover the cursor over each
statement to highlight it and display the number of executions for that statement.

• Show coverage By Instance displays only the number of executions for the currently
selected instance (in the Main window workspace).

You can skip to "missed lines" three ways: select Edit > Previous Coverage Miss and Edit
> Next Coverage Miss from the menu bar; click the Previous zero hits and Next zero hits
icons on the toolbar; or press <Shift> - <Tab> (previous miss) or Tab (next miss).
Sim SE User’s Manual

Toggle coverage UM-437
Toggle coverage

Toggle coverage is the ability to count and collect changes of state on specified nodes,
including Verilog nets and registers and the following VHDL signal types: bit, bit_vector,
std_logic, and std_logic_vector. Toggle coverage is integrated as a metric into the coverage
tool so that the use model and reporting are the same as the other coverage metrics.

There are two modes of toggle coverage operation - standard and extended. Standard toggle
coverage only counts Low or 0 <--> High or 1 transitions. Extended toggle coverage counts
these transitions plus the following:

X or Z --> 1 or H

X or Z --> 0 or L

1 or H --> X or Z

0 or L --> X or Z

This extended coverage allows a more detailed view of testbench effectiveness and is
especially useful for examining coverage of tri-state signals. It helps to ensure, for example,
that a bus has toggled from high 'Z' to a '1' or '0', and a '1' or '0' back to a high 'Z'.

Enabling Toggle coverage

In the Enabling Code Coverage (UM-423) section we explained that toggle coverage could
be enabled during compile by using the ’t’ or ’x’ arguments with vcom -cover or vlog
-cover. This section describes two other methods for enabling toggle coverage:

1 using the toggle add command (CR-271)

2 using the Tools > Toggle Coverage > Add or Tools > Toggle Coverage > Extended
selections in the Signals window menu.

Using the toggle add command

The toggle add command allows you to initiate toggle coverage at any time from the
command line. (See the Command Reference (CR-271) for correct syntax and arguments.)
Upon the next running of the simulation, toggle coverage data will be collected according
to the arguments employed (i.e., the -full argument enables collection of extended toggle
coverage statistics for the six transitions mentioned above).
ModelSim SE User’s Manual

UM-438 12 - Code Coverage

Model
Using the Signals window menu selections

You can enable toggle coverage by selecting Tools > Toggle Coverage > Add or Tools >
Toggle Coverage > Extended from the Signals window menu. These selections allow you
to enable toggle coverage for Selected Signals, Signals in Region, or Signals in Design.

After making a selection, toggle coverage statistics will be captured the next time you run
the simulation.

Excluding nodes from Toggle coverage

You can disable toggle coverage with the toggle disable command (CR-273). This
command disables toggle statistics collection on the specified nodes and provides a method
of implementing coverage exclusions for toggle coverage. It is intended to be used as
follows:

1 Enable toggle statistics collection for all signals using the -cover t/x argument to vcom
or vlog.

2 Exclude certain signals by disabling them with the toggle disable command.

The toggle enable command (CR-274) re-enables toggle statistics collection on nodes
whose toggle coverage has previously been disabled via the toggle disable command. (See
the Command Reference for correct syntax.)
Sim SE User’s Manual

Toggle coverage UM-439
Viewing toggle coverage data in the Signals window

Toggle coverage data is displayed in the Signals window in multiple columns, as shown
below. There is a column for each of the six transition types.

Right click any column name to toggle that column on or off.

The following table provides a description of the available columns:

Column name Description

Name the name of each signal in the current region

Value the current value of each signal

1H -> 0L the number of times each signal has transitioned from a 1
or a High state to a 0 or a Low state

0L -> 1H the number of times each signal has transitioned from a 0
or a Low state to 1 or a High state

0L -> XZ the number of times each signal has transitioned from a 0
or a Low state to an unknown (X) or a high impedance (Z)
state

XZ -> 0L the number of times each signal has transitioned from an
unknown or high impedance state to a 0 or a Low state

1H -> XZ the number of times each signal has transitioned from a 1
or a High state to an unknown or a high impedance state

XZ -> 1H the number of times each signal has transitioned from an
unknown or a high impedance state to 1 or a High state

Nodes the number of scalar bits in each signal

Toggled the number of nodes that have transitioned at least once

% Toggled the current ration of the # Toggled to the # Nodes for each
signal
ModelSim SE User’s Manual

UM-440 12 - Code Coverage

Model
Toggle coverage reporting

The toggle report command (CR-275) displays a list of all nodes that have not transitioned
at least once. Also displayed is a summary of the number of nodes checked, the number that
toggled, the number that didn't toggle, and a percentage that toggled.

The toggle report command is intended to be used as follows:

1 Enable statistics collection with the toggle add command (CR-271).

2 Run the simulation with the run command (CR-246).

3 Produce the report with the toggle report command..

You can produce this same information using the coverage report command (CR-137).

% 01 the percentage of 1H -> 0L and 0L -> 1H transitions that
have occurred (transitions in the first two columns)

% Full the percentage of all transitions that have occurred (all six
columns)

% XZ the percentage of 0L -> XZ, XZ -> 0L, 1H -> XZ, and
XZ -> 1H transitions that have occurred (last four colmns)

Column name Description
Sim SE User’s Manual

Filtering coverage data UM-441
Filtering coverage data

You can specify a percentage above or below which you don’t want to see coverage
statistics. For example, you might set a threshhold of 85% such that only items with
coverage below that percentage are displayed. Anything above that percentage is filtered.

You can set a filter using either a dialog or toolbar icons (see below). To access the dialog,
right-click any item in the Instance Coverage pane and select Set Filter.

The dialog has the following options:

• Filter method
Specifies whether you want to filter items that exceed the threshold or fall below the
threshold.

• Coverage Type
Determines which coverage statistics you want to filter.

• Threshold level
Specifies the percentage above or below which items are filtered.
ModelSim SE User’s Manual

UM-442 12 - Code Coverage

Model
Covfilter toolbar

When you simulate with Code Coverage enabled, the Covfilter toolbar is added to the Main
window.

The toolbar has the following buttons:.

Covfilter toolbar buttons

Button

Enable Filtering
enables display filtering of coverage statistics in the Workspace and
Instance Coverage panes of the Main window

Threshold above
displays all coverage statistics above the Filter Threshold for selected
columns

Threshold below
displays all coverage statistics below the Filter Threshold for selected
columns

Filter Threshold
specifies the display coverage percentage for the selected
coverage columns

Statement
applies the display filter to all Statement coverage columns in the
Workspace and Instance Coverage panes of the Main window

Branch
applies the display filter to all Branch coverage columns in the
Workspace and Instance Coverage panes of the Main window

Condition
applies the display filter to all Condition coverage columns in the
Workspace and Instance Coverage panes of the Main window

Expression
applies the display filter to all Expression coverage columns in the
Workspace and Instance Coverage panes of the Main window

Toggle
applies the display filter to all Toggle coverage columns in the
Workspace and Instance Coverage panes of the Main window
Sim SE User’s Manual

Excluding items from coverage UM-443
Excluding items from coverage

You can exclude any number of lines or entire files so ModelSim doesn’t collect statistics
on them. The line exclusions can be instance-specific or they can apply to all instances in
the enclosing design unit. You can also exclude nodes from toggle statistics collection
using the toggle disable command (CR-273).

There are three methods for excluding lines and files:

• Use a popup menu command in the GUI

• Insert pragmas into your source code

• Create an exclusion filter file

Excluding lines/files via the GUI

There are several locations in the GUI where you can access commands to exclude lines or
files:

• Right-click a file in the Main window Workspace pane and select Coverage > Exclude
Selected File from the popup menu.

• Right-click an entry in the Main window Missed Coverage pane and select Exclude
Selection or Exclude Selection For Instance <inst_name> from the popup menu.

• Right-click a line in the Hits column of the Source window and select Exclude Coverage
Line xxx, Exclude Coverage Line xxx For Instance <inst_name>, or Exclude Entire
File.

Excluding lines/files with pragmas

ModelSim also supports the use of source code pragmas to selectively turn coverage off and
on. In Verilog, the pragmas are:

// coverage off
// coverage on

In VHDL, the pragmas are:

-- coverage off
-- coverage on

Bracket the line or lines you want to exclude with these pragmas.

Note: Pragmas cannot be used to exclude specific conditions or expressions within lines.
ModelSim SE User’s Manual

UM-444 12 - Code Coverage

Model
Excluding lines/files with a filter file

Exclusion filter files specify files and line numbers that you wish to exclude from the
coverage statistics. You can create the filter file in any text editor or save the current filter
in the Source window by selecting File > Save > Exclusion File (Main window). To load
the filter during a future analysis, select File > Open > Exclusion File (Main window).

Syntax

<filename>...
[[<range> ...] [<line#> ...]] | all

or

begin instance <instance_name>...
<inst_filename>...
[[<range> ...] [<line#> ...]] | all
end instance

Arguments

<filename>

The name of the file you want to exclude. Required if you are not specifying an instance.
The filter file may include an unlimited number of filename entries, each on its own line.
You may use environment variables in the pathname.

begin instance <instance_name>

The name of an instance for which you want to exclude lines. Required if you don’t
specify <filename>. The filter file may include an unlimited number of instances.

<inst_filename>

The name of the file(s) that compose the instance from which you are excluding lines.
Optional.

<range> ...

A range of line numbers you want to exclude. Optional. Enter the range in "# - #" format.
For example, 32 - 35. You can specify multiple ranges separated by spaces.

<line#> ...

A line number that you want to exclude. Optional. You can specify multiple line numbers
separated by spaces.

all

Specifies that all lines in the file should be excluded. Required if a range or line number
is not specified.

Example

control.vhd
72 - 76 84 93

testring.vhd
all

begin instance /test_delta/chip/bid01_inst
src/delta/buffers.vhd

45-46
end instance
Sim SE User’s Manual

Excluding items from coverage UM-445
Default filter file

The Tcl preference variable PrefCoverage(pref_InitFilterFrom) specifies a default filter
file to read when a design is loaded with the -coverage switch. By default this variable is
not set. See "Code Coverage preference variables" (UM-454) for details on changing this
variable.

A file named workingExclude.cov appears in the design directory when you specify
exclusions in the GUI. This file remains after quitting simulation.

Excluding nodes from toggle statistics

To exclude nodes from toggle statistics collection, use the toggle disable command (CR-

273).
ModelSim SE User’s Manual

UM-446 12 - Code Coverage

Model
Reporting coverage data

To create reports on coverage statistics, use either the coverage report command (CR-137),
the toggle report command (CR-275) (see Toggle coverage reporting (UM-440) in this
chapter), or the Coverage Report dialog.

To access the Coverage Report dialog, right-click any item in the Files tab of the
Workspace pane and select Coverage > Coverage Reports; or, select Tools > Coverage
> Reports (Main window).

The dialog contains these options:

• Report on all files
Saves a textual summary for each file in the design.

• Report on all instances
Saves a textual summary for each instance in the design.
Sim SE User’s Manual

Reporting coverage data UM-447
• Report on a specific instance
Saves a textual summary for the specified instance. The selected instance automatically
appears in the Instance Name field. You can browse for other instances.

• Report on a source file
Saves a textual summary for the specified source file. The selected file automatically
appears in the File Name field. You can browse for other source files.

The Coverage Type section of the dialog allows you to select the type of coverage to be
reported – statement, branch, condition, expression, toggle, and extended toggle coverage.

The Coverage Report dialog includes options for filtering report data according to coverage
percent. The default is No Filtering.

• Zero Coverage Only
Saves a textual summary of statement and branch coverage that includes columns for the
number of statements and branches not executed.

• Include Line Details
Saves a detailed textual report of the statement and branch coverage for every line of
code.

• Include Coverage Totals
Saves a text report of the coverage totals by files and by instances. Includes total hits and
coverage percentages for all active statements and branches.

• Disable Source Annotation
Removes source code from coverage reports.

• Recursive
Reports on the specified instance, and all included instances, recursively.

• Write XML format
Produces output in an XML-structured format. The following example is an abbreviated
"By Instance" report that includes line details:

<?xml version="1.0"?>
<report xmlns="http://model.com/coverage"
lines="1"
byInstance="1">
<instance path="/test_delta/chip/control_126k_inst" du="mode_two_control">
<source_table files="1">
<file fn="0" path="C:/modelsim_examples/coverage/Modetwo.v"></file>
</source_table>
<statements active="30" hits="17" percent="56.7"> </statements>
<statement_data>
<stmt fn="0" ln="39" st="1" hits="82"> </stmt>
<stmt fn="0" ln="42" st="1" hits="82"> </stmt>
<stmt fn="0" ln="44" st="1" hits="82"> </stmt>

"fn" stands for "filename", "ln" stands for "line number", and "st" stands for "statement.
ModelSim SE User’s Manual

UM-448 12 - Code Coverage

Model
Sample reports

Below are two abbreviated coverage reports with descriptions of select fields.

Zero counts report by file

The "%" field shows the percentage of statements in the file that had zero coverage.
Sim SE User’s Manual

Reporting coverage data UM-449
Instance report with line details

The "Stmt" field identifies the number of statements with zero coverage on that line.

Branch count report snippet

The following report snippet demonstrates two values that require explanation:

Branches with Zeros
#
Line Stmt True False
---- ---- ---- -----

211 1 INF 0
421 1 0 465,987,218
665 1 - 0

Value Meaning

INF coverage value has exceeded ~4 billion (232 -1)

- the field is irrelevant to that particular line of code; for example, line
665 in the report above will never have an entry under the True column
ModelSim SE User’s Manual

UM-450 12 - Code Coverage

Model
Saving and reloading coverage data

Raw coverage data can be saved and then reloaded later. Saved data can also be merged
with coverage statistics from the current simulation. You can perform these operations via
the command line, the graphic interface, or the $coverage_save Verilog system task (see
"ModelSim Verilog system tasks" (UM-149)).

From the command line

The coverage save command (CR-140) saves current coverage statistics to a file that can be
reloaded later, preserving instance-specific information.

The coverage reload command (CR-136) seeds the coverage statistics of the current
simulation with the output of a previous coverage save command. This allows you, for
example, to gather statistics from multiple simulation runs into a single report.

From the graphic interface

To save raw coverage data, select Tools > Coverage > Save (Main window).

To reload previously saved coverage data, select Tools > Coverage > Load.

Loading a previously saved file clears all existing coverage data unless you check Merge.
If you check Merge in this dialog, ModelSim merges the saved coverage data with
coverage data in the current simulation.

Optionally, you can change the hierarchy of the file you are loading. Use the Install Path
field to add hierarchy, and Levels of Hierarchy to Strip to delete hierarchy. This allows
you to merge coverage results from simulations that have different hierarchies.
Sim SE User’s Manual

Saving and reloading coverage data UM-451
With the vcover utility

The merge utility, vcover merge, allows you to merge sets of coverage data without
requiring elaboration of the design or a simulation license. It is a standard ModelSim utility
that can be invoked from within the GUI or from the command line.

See the vcover merge command (CR-311) in the ModelSim Command Reference for further
details.
ModelSim SE User’s Manual

UM-452 12 - Code Coverage

Model
Coverage statistics details

This section describes how condition and expression coverage statistics are calculated. In
general, condition and expression coverage is limited to boolean and std_logic types. The
coverage utility will analyze conditions and expressions of the form <integer variable>
<op> <integer constant>. It will not, however, produce coverage results when, for example,
two variables are being compared.

Condition coverage

Condition coverage analyzes the decision made in "if" and ternary statements and is an
extension to branch coverage. A truth table is constructed for the condition expression and
counts are kept for each row of the truth table that occurs. For example, the following IF
statement:

Line 180: IF (a or b) THEN x := 0; else x := 1; endif;

reflects this truth table.

Row 1 indicates that (a or b) is true if a is true, no matter what b is. The "counts" column
indicates that this combination has executed 5 times. The '-' character means "don't care."
Likewise, row 2 indicates that the result is true if b is true no matter what a is, and this
combination has executed zero times. Finally, row 3 indicates that the result is always zero
when a is zero and b is zero, and that this combination has executed 8 times.

The truth table body only deals with boolean values. If any inputs are unknown, the result
is set to unknown and is counted.

Values that are vectors are treated as subexpressions external to the table until they resolve
to a boolean result. For example, take the IF statement:

Line 38:IF ((e = '1') AND (bus = "0111")) ...

A truth table will be generated in which bus = "0111" is evaluated as a subexpression and
the result, which is boolean, becomes an input to the truth table. The truth table looks as
follows:

Truth table for line 180

counts a |b ||(a or b)

Row 1 5 1 - 1

Row 2 0 - 1 1

Row 3 8 0 0 0

unknown 0

Truth table for line 38

counts e |(bus="0111") ||e=’1’) AND (bus = "0111")

Row 1 0 0 - 0

Row 2 10 - 0 0
Sim SE User’s Manual

Coverage statistics details UM-453
Index expressions also serve as inputs to the table. Conditions containing function calls
cannot be handled and will be ignored for condition coverage.

If a line contains a condition that is uncovered - some part of its truth table was not
encountered - that line will appear in the Missed Coverage pane under the Conditions tab.
When that line is selected, the condition truth table will appear in the Details pane and the
line will be highlighted in the Source window.

Condition coverage truth tables are printed in coverage reports when the Condition
Coverage type is selected in the Coverage Reports dialog (see "Reporting coverage data"
(UM-446)) or when the -lines argument is specified in the coverage report command and
one or more of the rows has a zero hit count.

Expression coverage

Expression coverage analyzes the expressions on the right hand side of assignment
statements and counts when these expressions are executed. For expressions that involve
boolean operators, a truth table is constructed and counts are tabulated for conditions
matching rows in the truth table.

For example, take the statement:

Line 236: x <= a xor (not b(0));

This results are in the following truth table, with associated counts.

If a line contains an expression that is uncovered - some part of its truth table was not
encountered - that line will appear in the Missed Coverage pane under the Expressions tab.
When that line is selected, the expression truth table will appear in the Details pane and the
line will be highlighted in the Source window.

As with condition coverage, expression coverage truth tables are printed in coverage
reports when the Expression Coverage type is selected in the Coverage Reports dialog (see

Row 3 1 1 1 1

unknown 0 0

Truth table for line 38

counts e |(bus="0111") ||e=’1’) AND (bus = "0111")

Truth table 236

counts a |b(0) |(a xor (not b(0))) |||(not b(0))

Row 1 1 0 0 1 1

Row 2 0 0 1 0 0

Row 3 2 1 0 0 1

Row 4 0 1 1 1 0

unknown 0
ModelSim SE User’s Manual

UM-454 12 - Code Coverage

Model
"Reporting coverage data" (UM-446)) or when the -lines argument is specified in the
coverage report command and one or more of the rows has a zero hit count.

Code Coverage preference variables

Various Tcl variables control how the coverage data is displayed. You can set these
preference variables by selecting Tools > Edit Preferences in the Main window; then, in
the Preferences dialog box select the By Name tab and expand the Coverage hierarchy.
Select a property and click the Change Value button to change values. Use the Apply
button to view temporary changes, or Save the changes to a local modelsim.tcl file. Once
saved, the preferences will be the default for subsequent simulations invoked from the same
directory.
Sim SE User’s Manual

 UM-455
13 - Waveform Compare

Chapter contents
Introduction UM-456

Two modes of comparison UM-457
Comparing hierarchical and flattened designs UM-457

Graphic interface to Waveform Compare UM-459
Opening dataset comparison UM-459
Adding signals, regions, and clocks UM-461
Setting compare options UM-465
Wave window display. UM-466
Waveform Compare menu UM-468
Printing compare differences UM-470
Compare objects in the List window UM-470

Waveform Compare commands UM-471

Waveform Compare preference variables UM-472
ModelSim SE User’s Manual

UM-456 13 - Waveform Compare

Model
Introduction

The ModelSim Waveform Compare feature allows you to compare the current live
simulation against a reference dataset (.wlf file), compare two datasets, or compare
different parts of the current live simulation. You can view the results of these comparisons
in the Wave and List windows and generate a text file of the results in the Main window.

With the Waveform Compare feature you can:

• specify the signals or regions to be compared

• define tolerances for timing differences

• set a start time and end time for the comparison

• limit the comparison to a specific number of timing differences

• step through a succession of timing differences via buttons in the Wave window

All differences encountered in the comparison are summarized and listed in the transcript
area of the Main window. Waveform differences are also displayed in the Wave and List
windows (see "Wave window display" (UM-466) and "Compare objects in the List window"
(UM-470)). You can also write a list of the differences to a file using the compare info
command (CR-112).
Sim SE User’s Manual

Introduction UM-457
Two modes of comparison

The Waveform Compare feature provides two modes of comparison: continuous and
clocked.

Continuous Compare

In the continuous mode, a test signal (or a group of test signals within a region) is compared
to a reference signal (or a group of reference signals within a region) at each transition of
the reference. Timing differences between the test and reference signals are highlighted
with rectangular red difference markers in the Wave window and yellow markers in the List
window.

The continuous compare mode allows you to specify two edge tolerances for timing
differences. The leading edge tolerance specifies how much earlier the test signal edge may
occur before the reference signal edge. The trailing edge tolerance specifies how much later
the test signal edge may occur after the reference signal edge. The default value for both
tolerances is zero. In addition, these tolerances may be specified differently for each signal
compared.

Clocked Compare

Clocked comparisons allow you to make a comparison only at or just after an edge on some
signal. In this mode, you define one or more clocks. The test signal is compared to a
reference signal and both are sampled relative to the defined clock. The clock can be
defined as the rising or falling edge (or either edge) of a particular signal plus a user-
specified delay. The design need not have any events occurring at the specified clock time.

Differences between the test signal(s) and clock are highlighted with red diamonds in the
Wave window.
ModelSim SE User’s Manual

UM-458 13 - Waveform Compare

Model
Comparing hierarchical and flattened designs

If you are comparing a hierarchical RTL design simulation against a flattened synthesized
design simulation, you may have different hierarchies, different signal names, and the
buses may be broken down into one-bit signals in the gate-level design. All of these
differences can be handled by ModelSim’s Waveform Compare feature.

• If the test design is hierarchical but the hierarchy is different from the hierarchy of the
reference design, you can use the compare add command (CR-100) to specify which
region path in the test design corresponds to that in the reference design.

• If the test design is flattened and test signal names are different from reference signal
names, the compare add command (CR-100) allows you to specify which signal in the
test design will be compared to which signal in the reference design.

• If, in addition, buses have been dismantled, or "bit-blasted", you can use the -rebuild
option of the compare add command (CR-100) to automatically rebuild the bus in the test
design. This will allow you to look at the differences as one bus versus another.

If signals in the RTL test design are different in type from the synthesized signals in the
reference design – registers versus nets, for example – the Waveform Compare feature will
automatically do the type conversion for you. If the type differences are too extreme (say
integer versus real), Waveform Compare will let you know.
Sim SE User’s Manual

Graphic interface to Waveform Compare UM-459
Graphic interface to Waveform Compare

Waveform Compare is initiated from either the Main or Wave window by selecting Tools
>Waveform Compare > Start Comparison.

Opening dataset comparison

The Start
Comparison dialog
box allows you
define the
Reference and Test
datasets.

Reference
Dataset

The Reference
Dataset is the .wlf
file that the test
dataset will be
compared to. It can
be a saved dataset,
the current
simulation dataset,
or any part of the
current simulation
dataset.

Test Dataset

The Test Dataset is the .wlf file that will be compared against the Reference Dataset. Like
the Reference Dataset, it can be a saved dataset, the current simulation dataset, or any part
of the current simulation dataset.

• Use Current Simulation
Selects the current simulation to be used as the Test Dataset. Provides for an optional
update on the comparison after each simulation run.

• Specify Dataset
Allows you to select any saved .wlf file to be used as the Test Dataset.

You can specify either dataset by typing in a dataset name, by selecting a dataset from a
drop-down history of past dataset selections, or by clicking either of the Browse buttons.
ModelSim SE User’s Manual

UM-460 13 - Waveform Compare

Model
Both Browse buttons take you to the Select Dataset File dialog where you can browse for
the dataset you want.

Once the Reference and Test Datasets have been specified, clicking "OK" in the Compare
Dataset dialog box will place a Compare tab in the project pane of the Main window. After
adding the signals, regions, and/or clocks you want to use in the comparison (see "Adding
signals, regions, and clocks" (UM-461)) you’ll be able to drag compare objects from this
project tab into the Wave and List windows.
Sim SE User’s Manual

Graphic interface to Waveform Compare UM-461
Adding signals, regions, and clocks

To designate the signals, regions and/or clocks to be used in the comparison, click Tools >
Waveform Compare > Add in the Main or Wave window, then make a selection
(Compare by Signal (UM-461), Compare by Region (UM-462), Clocks) from the popup
menu.

Compare by signal

Clicking Tools >
Waveform Compare >
Add > Compare by Signal
in the Wave window opens
the structure_browser
window, where you can
specify signals to be used in
the comparison.

You can also set signal
options by clicking the
Options button. See
"Comparison Method tab"
(UM-463) for details.
ModelSim SE User’s Manual

UM-462 13 - Waveform Compare

Model
Compare by region

Clicking Tools > Waveform Compare > Add > Compare by Region in the Wave
window opens the Add Comparison by Region window, where you can specify signals to
be used in the comparison.

Region Data tab

• Reference Region
Allows you to specify the reference region that will be used in the comparison.

• Test Region
Allows you to specify a test region that might have a different name from that of the
reference region.

• Compare Signals of Type
Allows you to specify that All Types of signals will be used in the comparison or only
Selected Types (In, Out, InOut, Internal, or Port).

• Recursive Search
Specifies whether to search for signals in the hierarchy below the selected region.
Sim SE User’s Manual

Graphic interface to Waveform Compare UM-463
Comparison Method tab

Allows you to select clocked or continuous comparison, and provides the capability to
specify a "When" expression.

• Clocked comparison
Allows you to select a clock from
the drop-down history of past
clock selections. Or, you can
click the Clocks button to add a
new clock.

Clicking the Clocks button opens
the Comparison Clocks dialog
box.

To add a signal, click the Add
button to open the Add Clock
dialog box, where you can define
a clock signal name, a delay
signal offset, the signal upon
which the clock will be based,
and whether the compare strobe
edge will be the rising or falling
edge or both. You can also use
the Expression Builder to specify
ModelSim SE User’s Manual

UM-464 13 - Waveform Compare

Model
a when expression that must evaluate to "true" or 1 at the signal edge for the clock to
become effective.

• Continuous comparison
With the Continuous Comparison method you can set leading and trailing edge
tolerances. The leading edge tolerance specifies how much earlier the test signal edge
may occur before the reference signal edge. The trailing edge tolerance specifies how
much later the test signal edge may occur after the reference signal edge. The default
value for both tolerances is zero. In addition, these tolerances may be specified
differently for each signal compared.

• Specify When Expression
Allows you to use "The GUI Expression Builder" (UM-395) to specify a when expression
that must evaluate to "true" or 1 at the signal edge for the comparison to become
effective.
Sim SE User’s Manual

Graphic interface to Waveform Compare UM-465
Setting compare options

Selecting Tools > Waveform Compare > Options in either the Main or Wave windows
provides access to the Comparison Options dialog box. This dialog is divided into two
tabs – the General Options tab and the Comparison Method tab (see "Comparison
Method tab" (UM-463) for a description).

Comparison Limit Count –– Allows you to limit the comparison to a specific number
of total differences and/or a specific number of differences per signal.

VHDL Matching –– Allows you to designate which VHDL signal values will match X,
Z, 1, and 0 values.

Verilog Matching –– Allows you to designate which Verilog signal values will match
X, Z, 1, and 0 values. It also allows you to ignore the strength of the Verilog signal and
consider only logic values.

Automatically add comparisons to the wave window?— Specifies whether new signal
comparison objects are added automatically to the Wave window.
ModelSim SE User’s Manual

UM-466 13 - Waveform Compare

Model
Save as Default — Allows you to save all changes as the new default settings for
subsequent comparisons.

Reset to Default — Resets all settings to original default values.

Wave window display

The Wave window provides a graphic display of comparison results. Pathnames of all test
signals included in the comparison are denoted by yellow triangles. Test signals that
contain timing differences when compared with the reference signals are denoted by a red
X over the yellow triangle.

The names of the comparison items take the form

<path>/\refSignalName<>testSignalName\
Sim SE User’s Manual

Graphic interface to Waveform Compare UM-467
If you compare two signals from different regions, the signal names include the uncommon
part of the path.

In comparisons of signals with multiple bits, you may display them in "buswise" or
"bitwise" format. Buswise format lists the busses under the compare item whereas bitwise
format lists each individual bit under the compare item. To select one format or the other,
click your right mouse button on the plus sign (’+’) next to a compare item.

Timing differences are also indicated by red bars in the vertical and horizontal scroll bars
of the waveform display, and by red difference markers on the waveforms themselves.
Rectangular difference markers denote continuous differences. Diamond difference
markers denote clocked differences. Placing your mouse cursor over any difference marker
will initiate a popup display that provides timing details for that difference. You can toggle
this popup on and off in the Wave Window Properties dialog (see "Setting Wave window
display properties" (UM-352)).

The values column of the Wave window displays the words "match" or "diff" for every test
signal, depending on the location of the selected cursor. "Match" indicates that the value of
the test signal matches the value of the reference signal at the time of the selected cursor.
"Diff" indicates a difference between the test and reference signal values at the selected
cursor.

Annotating differences

You can tag differences with textual notes that are included in the difference details popup
and comparison reports. Click a difference with the right mouse button, and select
Annotate Diff. Or, use the compare annotate (CR-104) command.

difference markersdifference details

Pathnames Values Waveform display
ModelSim SE User’s Manual

UM-468 13 - Waveform Compare

Model
Compare icons

The Wave window includes six comparison icons that
let you quickly jump between differences. From left to
right, the icons do the following: find first difference,
find previous annotated difference, find previous difference, find next difference, find next
annotated difference, find last difference. Use these icons to move the selected cursor.

These buttons cycle through differences on all signals. To view differences for just the
selected signal, press <tab> and <shift - tab> on your keyboard.

A comparison is independent from any window in which you view it. As a result, if you
have two Wave windows displayed, each containing different comparison objects, the
compare icons will cycle through the differences displayed in both windows.

Waveform Compare menu

The Compare menu provides a number of options for controlling waveform comparisons.

• Start Comparison
Opens the Compare Dataset dialog box where you can enter reference and test dataset
names.

• Comparison Wizard
Gives step-by-step assistance while you create a waveform comparison.

• Run Comparison
Computes the number of differences from time zero to the end of the simulation run, from
time zero until the maximum total number of differences per signal limit is reached, or
from time zero until the maximum total number of differences for all signals compared
is reached. This information is posted to the Main window transcript. It is equivalent to
the compare run (CR-120) command:

• End Comparison
Stops difference computation and closes the currently open comparison.

Note: If you have differences on individual bits of a bus, the compare icons will stop on
those differences but <tab> and <shift - tab> will not.
Sim SE User’s Manual

Graphic interface to Waveform Compare UM-469
• Add

Compare by Signal — Opens the structure_browser dialog box and allows you to
designate signals for comparison.

Compare by Region — Opens the Add Comparison by Region dialog box and allows
you to designate a reference region for comparison. Also allows you to designate a test
region of a different name.

Clocks — Opens the Comparison Clocks dialog box and allows you to define clocks to
be used in the comparison.

• Options
Opens the Comparison Options dialog box, which allows you to define a number of
waveform comparison options.

• Differences

Clear — Clears all differences from the Wave window and resets the waveform
comparison function. It is equivalent to the compare reset command (CR-119).

Show — Displays the differences in text format in the transcript area of the Main
window. It is equivalent to the compare info command (CR-112).

Save — Opens the Specify Differences File dialog box where you can save the
differences to a file that can be reloaded later in ModelSim. The default file name is
"compare.dif".

Write Report— Saves a report of the differences to a text file that you can view.

• Rules

Show — Displays the rules or instructions used to set up the waveform compare. It is
equivalent to the compare list command (CR-113).

Save — Opens the Specify Rule File dialog box and allows you to assign a name to the
file that will contain all rules for making the comparison. The default file name is
"compare.rul."

• Reload
Opens the Reload and Redisplay Compare Differences dialog box and allows you to
enter or browse for waveform rules and difference file names.
ModelSim SE User’s Manual

UM-470 13 - Waveform Compare

Model
Printing compare differences

You can print the compare differences shown in the Wave window either to a printer or to
a Postscript file. See "Printing and saving waveforms" (UM-363) for details.

Compare objects in the List window

Compare objects can be displayed in the List window too. Differences are highlighted with
a yellow background. Tabbing on selected columns moves the selection to the next
difference (actually difference edge). Shift-tabbing moves the selection backwards.

Right-clicking on a yellow-highlighted difference gives you three options: Diff Info,
Annotate Diff, and Ignore/Noignore diff. With these options you can elect to display
difference information, you can ignore selected differences or turn off ignore, and you can
annotate individual differences.
Sim SE User’s Manual

Waveform Compare commands UM-471
Waveform Compare commands

The table below provides a brief description of the compare commands. See the ModelSim
Command Reference for complete command details.

Command Description

compare add (CR-100) defines a comparison between the signals in a specified reference design
and the signals in a specified test design

compare annotate (CR-104) annotates a difference with a textual note

compare clock (CR-105) defines a clock for clocked comparison; or, if -delete is specified, deletes
a previously-defined clock

compare configure (CR-107) modifies options for compare signals or regions

compare continue (CR-109) continues difference computation that had been suspended

compare delete (CR-110) deletes a signal or region from the current open comparison

compare end (CR-111) quits the comparison

compare info (CR-112) writes out results of the comparison; writes to the transcript unless the
-write option is specified

compare list (CR-113) shows all the compare add commands currently in effect

compare options (CR-114) sets values for various compare options on the Tcl parser side; when
subsequent commands are called, these values become the defaults

compare reload (CR-118) reloads comparison differences to allow viewing without recomputation

compare reset (CR-119) clears the current compare differences, allowing another compare start
to be executed

compare run (CR-120) runs the difference computation on the signals selected for comparison;
reports the total number of errors found

compare savediffs (CR-121) saves the comparison result differences in a form that can be reloaded later

compare saverules (CR-122) saves the comparison setup information (or "rules") to a file that can be re-
executed later as a command file; saves compare options and all clock
definitions and region and signal selections

compare see command (CR-123) causes the specified compare difference to be made visible in the specified
wave window, using whatever horizontal and vertical scrolling is
necessary

compare start command (CR-125) initializes internal data structures for waveform compare

compare stop command (CR-127) used internally by the compare stop button to suspend comparison
computations in progress

compare update command (CR-128) used internally to update the comparison differences when comparing a
live simulation against a .wlf file
ModelSim SE User’s Manual

UM-472 13 - Waveform Compare

Model
Waveform Compare preference variables

Various Tcl variables control how the compare data is displayed. You can set these
preference variables by selecting Tools > Edit Preferences > By Name > Compare (Main
window). Use the Apply button to view temporary changes, or Save the changes to a local
modelsim.tcl file. Once saved, the preferences will be the default for subsequent
simulations invoked from the same directory.
Sim SE User’s Manual

 UM-473
14 - C Debug

Chapter contents
Supported platforms and gdb versions UM-474

Setting up C Debug UM-475

Setting breakpoints. UM-476

Stepping in C Debug UM-478
Known problems with stepping in C Debug UM-478

Finding function entry points with Auto find bp UM-479

Identifying all registered function calls UM-480
Enabling Auto step mode UM-480
Example UM-481
Auto find bp versus Auto step mode UM-482

Debugging functions during elaboration UM-483
FLI functions in initialization mode UM-484
PLI functions in initialization mode UM-484
VPI functions in initialization mode UM-486
Completing design load UM-486

Debugging functions when quitting simulation UM-487

C Debug menu reference UM-488

C Debug command reference UM-489

C Debug dialog reference UM-490

C Debug allows you to interactively debug FLI/PLI/VPI/SystemC C/C++ source code with
the open-source gdb debugger. Even though C Debug doesn’t provide access to all gdb
features, you may wish to read gdb documentation for additional information.

 Please be aware of the following caveats before using C Debug:

• C Debug is an interface to the open-source gdb debugger. We have not customized gdb
source code, and C Debug doesn’t remove any of the limitations or bugs of gdb.

• We assume that you are competent with C or C++ coding and C debugging in general.

• Recommended usage is that you invoke C Debug once for a given simulation and then
quit both C Debug and ModelSim. Starting and stopping C Debug more than once during
a single simulation session may cause problems for gdb.

• The gdb debugger has a known bug that makes it impossible to set breakpoints reliably
in constructors or destructors. Be careful while stepping through code which may end up
calling constructors of SystemC objects; it may crash the debugger.

• Generally you should not have an existing .gdbinit file. If you do, make certain you
haven’t done any of the following: defined your own commands or renamed existing
commands; used 'set annotate...', 'set height...', 'set width...', or 'set print...'; set
breakpoints or watchpoints.
ModelSim SE User’s Manual

UM-474 14 - C Debug

Model
Supported platforms and gdb versions

ModelSim ships with the gdb 6.0 debugger. Testing has shown this version to be the most
reliable for SystemC applications. However, for FLI/PLI applications, you can also use a
current installation of gdb if you prefer. C Debug has been tested on the these platforms
with these versions of gdb:

To invoke C Debug, you must have the following:

• A cdebug license feature; contact Model Technology sales for more information.

• The correct gdb debugger version for your platform.

Platform Required gdb version

32-bit Solaris 2.6, 7, 8, 9 gdb-5.0-sol-2.6

32- and 64-bit HP-UX 11.0a, 11.11

a.You must install kernel patch PHKL_22568 (or a later patch that supercedes
PHKL_22568) on HP-UX 11.0. If you do not, you will see the following error
message when trying to enable C Debug:
Unable to find dynamic library list.

error from C debugger

wdb version 3.3 or later

64-bit HP-UX B.11.22 on Itanium 2 wdb version 4.2

32-bit AIX 4.2, 4.3 gdb-5.1-aix-4.2

32-bit Redhat Linux 7.2 or later /usr/bin/gdb 5.2 or later
Sim SE User’s Manual

http://www.model.com/contact_us

Setting up C Debug UM-475
Setting up C Debug

Before viewing your SystemC/C/C++ source code, you must set up the C Debug path and
options. To set up C Debug, follow these steps:

1 Compile and link your C code with the -g switch (to create debug symbols) and without
-O (or any other optimization switches you normally use). See Chapter 7 - SystemC
simulation for information on compiling and linking SystemC code. See the FLI
Reference Manual or Chapter 6 - Verilog PLI / VPI for information on compiling and
linking C code.

2 Specify the path to the gdb debugger by selecting Tools > C Debug > C Debug Setup.

Select "default" to point at the Model Technology supplied version of gdb or "custom"
to point at a separate installation.

3 Start the debugger by selecting Tools > C Debug > Start C Debug. ModelSim will start
the debugger automatically if you set a breakpoint in a SystemC file.

4 If you are not using gcc, or otherwise haven’t specified a source directory, specify a
source directory for your C code with the following command:

ModelSim> gdb dir <srcdirpath1>[:<srcdirpath2>[...]]
ModelSim SE User’s Manual

UM-476 14 - C Debug

Model
Setting breakpoints

Breakpoints in C Debug work much like normal HDL breakpoints. You can set/delete and
enable/disable them with ModelSim commands (bp (CR-81), bd (CR-76), enablebp (CR-

163), disablebp (CR-153)) or via the Source window in the ModelSim GUI (see "Setting file-
line breakpoints from the GUI" (UM-391)). Some differences do exist:

• The Breakpoints dialog in the ModelSim GUI doesn’t list C breakpoints.

• C breakpoint id numbers require a "c." prefix when referenced in a command.

• When using the bp command (CR-81) to set a breakpoint in a C file, you must use the -c
argument.

Here are some example commands:

bp -c *0x400188d4

Sets a C breakpoint at the hex address 400188d4. Note the ’*’ prefix for the hex address.

bp -c or_checktf

Sets a C breakpoint at the entry to function or_checktf.

bp -c or.c 91

Sets a C breakpoint at line 91 of or.c.

enablebp c.1

Enables C breakpoint number 1.

The graphic below shows a C file with one enabled breakpoint (on line 40) and one disabled
breakpoint (on line 59).
Sim SE User’s Manual

Setting breakpoints UM-477
Clicking the red diamonds with your right (third) mouse button pops up a menu with
commands for removing or enabling/disabling the breakpoints

Note: The gdb debugger has a known bug that makes it impossible to set breakpoints
reliably in constructors or destructors. Do not set breakpoints in constructors of SystemC
objects; it may crash the debugger.
ModelSim SE User’s Manual

UM-478 14 - C Debug

Model
Stepping in C Debug

Stepping in C Debug works much like you would expect. You use the same buttons and
commands that you use when working with an HDL-only design.

Known problems with stepping in C Debug

The following are known limitations which relate to problems with gdb:

• The gdb debugger has a known bug that makes it impossible to set breakpoints reliably
in constructors or destructors. Be careful while stepping through code which may end up
calling constructors of SystemC objects; it may crash the debugger.

• With some platform and compiler versions, step may actually behave like run -continue
when in a C file. This is a gdb quirk that results from not having any debugging
information when in an internal function to VSIM (i.e., any FLI or VPI function). In these
situations, use step -over to move line-by-line.

Button Menu equivalent Other equivalents

Step
steps the current simulation to
the next statement; if the next
statement is a call to a C function
that was compiled with debug
info, ModelSim will step into the
function

Tools > C Debug > Run
> Step

use the step command at the
CDBG> prompt

see: step (CR-264) command

Step Over
statements are executed but
treated as simple statements
instead of entered and traced
line-by-line; C functions are not
stepped into unless you have an
enabled breakpoint in the C file

Tools > C Debug > Run
> Step -Over

use the step -over command at the
CDBG> prompt

see: step (CR-264) command

Continue Run
continue the current simulation
run until the end of the specified
run length or until it hits a
breakpoint or specified break
event

Tools > C Debug > Run
> Continue

use the run -continue command at
the CDBG> prompt

see: run (CR-246)
Sim SE User’s Manual

Finding function entry points with Auto find bp UM-479
Finding function entry points with Auto find bp

ModelSim can automatically locate and set breakpoints at all currently known function
entry points (i.e., PLI/VPI system tasks and functions and callbacks; and FLI subprograms
and callbacks and processes created with mti_CreateProcess). Select Tools > C Debug >
Auto find bp to invoke this feature.

The Auto find bp command provides a "snapshot" of your design when you invoke the
command. If additional callbacks get registered later in the simulation, ModelSim will not
identify these new function entry points unless you re-execute the Auto find bp command.
If you want functions to be identified regardless of when they are registered, use
"Identifying all registered function calls" (UM-480) instead.

The Auto find bp command sets breakpoints in an enabled state and doesn’t toggle that
state to account for step-over or run-continue commands. This may result in unexpected
behavior. For example, say you have invoked the Auto find bp command and you are
currently stopped on a line of code that calls a C function. If you execute a step -over or
run -continue command, ModelSim will stop on the breakpoint set in the called C file.
ModelSim SE User’s Manual

UM-480 14 - C Debug

Model
Identifying all registered function calls

Auto step mode automatically identifies and sets breakpoints at registered function calls
(i.e., PLI/VPI system tasks and functions and callbacks; and FLI subprograms and
callbacks and processes created with mti_CreateProcess). Auto step mode is helpful when
you are not entirely familiar with a design and its associated C routines. As you step
through the design, ModelSim steps into and displays the associated C file when you hit a
C function call in your HDL code. If you execute a step -over or run -continue command,
ModelSim does not step into the C code.

When you first enable Auto step mode, ModelSim scans your design and sets enabled
breakpoints at all currently known function entry points. As you step through the
simulation, Auto step continues looking for newly registered callbacks and sets enabled
breakpoints at any new entry points it identifies. Once you execute a step -over or
run -continue command, Auto step disables the breakpoints it set, and the simulation
continues running. The next time you execute a step command, the automatic breakpoints
are re-enabled and Auto step sets breakpoints on any new entry points it identifies.

Note that Auto step does not disable user-set breakpoints.

Enabling Auto step mode

To enable Auto step mode, follow these steps:

1 Configure C Debug as described in "Setting up C Debug" (UM-475).

2 Select Tools > C Debug > Enable auto step (Main window).

3 Load and run your design.
Sim SE User’s Manual

Identifying all registered function calls UM-481
Example

The graphic below shows a simulation that has stopped at a user-set breakpoint on a PLI
system task.

Because Auto step mode is enabled, ModelSim automatically sets a breakpoint in the
underlying xor_gate.c file. If you click the step button at this point, ModelSim will step into
that file.
ModelSim SE User’s Manual

UM-482 14 - C Debug

Model
Auto find bp versus Auto step mode

As noted in "Finding function entry points with Auto find bp" (UM-479), the Auto find bp
command also locates and sets breakpoints at function entry points. Note the following
differences between Auto find bp and Auto step mode:

• Auto find bp provides a "snapshot" of currently known function entry points at the time
you invoke the command. Auto step mode continues to locate and set automatic
breakpoints in newly registered function calls as the simulation continues. In other
words, Auto find bp is static while Auto step mode is dynamic.

• Auto find bp sets automatic breakpoints in an enabled state and doesn’t change that state
to account for step-over or run-continue commands. Auto step mode enables and disables
automatic breakpoints depending on how you step through the design. In cases where you
invoke both features, Auto step mode takes precedence over Auto find bp. In other words,
even if Auto find bp has set enabled breakpoints, if you then invoke Auto step mode, it
will toggle those breakpoints to account for step-over and run-continue commands.
Sim SE User’s Manual

Debugging functions during elaboration UM-483
Debugging functions during elaboration

Initialization mode allows you to examine and debug functions that are called during
elaboration (i.e., while your design is in the process of loading). When you select this mode,
ModelSim sets special breakpoints for foreign architectures and PLI/VPI modules that
allow you to set breakpoints in the initialization functions. When the design finishes
loading, the special breakpoints are automatically deleted, and any breakpoints that you set
are disabled (unless you specify Keep user init bps in the C debug setup dialog).

To run C Debug in initialization mode, follow these steps:

1 Start C Debug by selecting Tools > C Debug > Start C Debug before loading your
design.

2 Select Tools > C Debug > Init mode.

3 Load your design.

As the design loads, ModelSim prints to the Transcript the names and/or hex addresses of
called functions. For example the Transcript below shows a function pointer to a foreign
architecture:

To set a breakpoint on that function, you would type:

bp -c *0x4001b514

or

bp -c and_gate_init
ModelSim SE User’s Manual

UM-484 14 - C Debug

Model
ModelSim in turn reports that it has set a breakpoint at line 37 of the and_gate.c file. As
you continue through the design load using run -continue, ModelSim hits that breakpoint
and displays the file and associated line in the Source window.

FLI functions in initialization mode

There are two kinds of FLI functions that you may encounter in initialization mode. The
first is a foreign architecture which was shown above. The second is a foreign function.
ModelSim produces a Transcript message like the following when it encounters a foreign
function during initialization:

Shared object file './all.sl'
Function name 'in_params'
Function ptr '0x4001a950'. Foreign function.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()

You can set a breakpoint on the function using either the function name
(i.e., bp -c in_params) or the function pointer (i.e., bp -c *0x4001a950). Note, however, that
foreign functions aren’t called during initialization. You would hit the breakpoint only
during runtime and then only if you enabled the breakpoint after initialization was complete
or had specified Keep user init bps in the C debug setup dialog.

PLI functions in initialization mode

There are two methods for registering callback functions in the PLI: 1) using a veriusertfs
array to define all usertf entries; and 2) adding an init_usertfs function to explicitly register
each usertfs entry (see "Registering PLI applications" (UM-155) for more details). The
messages ModelSim produces in initialization mode vary depending on which method you
use.
Sim SE User’s Manual

Debugging functions during elaboration UM-485
ModelSim produces a Transcript message like the following when it encounters a
veriusertfs array during initialization:

vsim -pli ./veriuser.sl mux_tb
Loading ./veriuser.sl
Shared object file './veriuser.sl'
veriusertfs array - registering calltf
Function ptr '0x40019518'. $or_c.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()
cont
Shared object file './veriuser.sl'
veriusertfs array - registering checktf
Function ptr '0x40019570'. $or_c.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()
cont
Shared object file './veriuser.sl'
veriusertfs array - registering sizetf
Function ptr '0x0'. $or_c.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()
cont
Shared object file './veriuser.sl'
veriusertfs array - registering misctf
Function ptr '0x0'. $or_c.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()

You can set breakpoints on non-null callbacks using the function pointer
(e.g., bp -c *0x40019570). You cannot set breakpoints on null functions. The sizetf and
misctf entries in the example above are null (the function pointer is '0x0').

ModelSim reports the entries in multiples of four with at least one entry each for calltf,
checktf, sizetf, and misctf. Checktf and sizetf functions are called during initialization but
calltf and misctf are not called until runtime.

The second registration method uses init_usertfs functions for each usertfs entry.
ModelSim produces a Transcript message like the following when it encounters an
init_usertfs function during initialization:

Shared object file './veriuser.sl'
Function name 'init_usertfs'
Function ptr '0x40019bec'. Before first call of init_usertfs.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()

You can set a breakpoint on the function using either the function name
(i.e., bp -c init_usertfs) or the function pointer (i.e., bp -c *0x40019bec). ModelSim will hit
this breakpoint as you continue through initialization.
ModelSim SE User’s Manual

UM-486 14 - C Debug

Model
VPI functions in initialization mode

VPI functions are registered via routines placed in a table named vlog_startup_routines (see
"Registering VPI applications" (UM-157) for more details). ModelSim produces a Transcript
message like the following when it encounters a vlog_startup_routines table during
initialization:

Shared object file './vpi_test.sl'
vlog_startup_routines array
Function ptr '0x4001d310'. Before first call using function pointer.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()

You can set a breakpoint on the function using the function pointer
(i.e., bp -c *0x4001d310). ModelSim will hit this breakpoint as you continue through
initialization.

Completing design load

If you are through looking at the initialization code you can select Tools > C Debug >
Complete load at any time, and ModelSim will continue loading the design without
stopping. The one exception to this is if you have set a breakpoint in a LoadDone callback
and also specified Keep user init bps in the C Debug Setup dialog (see "C Debug dialog
reference" (UM-490)).
Sim SE User’s Manual

Debugging functions when quitting simulation UM-487
Debugging functions when quitting simulation

Stop on quit mode allows you to debug functions that are called when the simulator exits.
Such functions include those referenced by an mti_AddQuitCB function in FLI code,
misctf functions called by a quit or $finish in PLI code, or cbEndofSimulation functions
called by a quit or $finish in VPI code.

To enable Stop on quit mode, follow these steps:

1 Start C Debug by selecting Tools > C Debug > Start C Debug.

2 Select Tools > C Debug > C Debug Setup.

3 Select Stop on quit in the C Debug setup dialog.

With this mode enabled, if you have set a breakpoint in a quit callback function, C Debug
will stop at the breakpoint after you issue the quit command in ModelSim. This allows you
to step and examine the code in the quit callback function.

Invoke run -continue when you are done looking at the C code.

Note that whether or not a C breakpoint was hit, when you return to the VSIM> prompt,
you’ll need to quit C Debug by selecting Tools > C Debug > Quit C Debug before finally
quitting the simulation.
ModelSim SE User’s Manual

UM-488 14 - C Debug

Model
C Debug menu reference

The following commands are available from the Tools > C Debug menu.

Start C Debug turns on C Debug so you can set breakpoints and step through C
code

C Debug setup specifies the location of your gdb installation

Enable auto step configures C Debug to run in "Identifying all registered function
calls" (UM-480)

Run provides access to step, step-over, run-continue, and run-finish
commands

Quit C Debug turns off C Debug; do this before exiting ModelSim

Init mode configures C Debug to run in "Debugging functions during
elaboration" (UM-483)

Complete load cancels "Debugging functions during elaboration" (UM-483) and
completes loading the rest of your design

Auto find bp sets breakpoints at all the FLI/PLI/VPI function entry points that
are known (registered) when you make this menu selection

Info bp lists all currently set breakpoints including the source file names,
line numbers, and breakpoint ids

Show shows the values of the local variables and arguments of the
current C function

Traceback if known, identifies the HDL source line from which the C
function was called; when running in "Debugging functions
during elaboration" (UM-483), no HDL information is available,
and this command will list only the gdb traceback stack

C Interrupt "re-activates" the C debugger when you are stopped in HDL code

Command entry opens a command prompt dialog so you can enter commands even
if the GUI prompt is inaccessible; the GUI prompt may become
inaccessible in certain situations (e.g., when debugging FLI
LoadDone callback functions)

Refresh reopens a C source file if you close the Source window
inadvertently while stopped in the C debugger
Sim SE User’s Manual

C Debug command reference UM-489
C Debug command reference

The table below provides a brief description of the commands that can be invoked when C
Debug is running. Follow the links to the ModelSim SE Command Reference for complete
command syntax.

Command Description Corresponding menu command

bd (CR-76) deletes a previously set C breakpoint right click breakpoint in Source
window and select Remove Breakpoint

bp (CR-81) -c sets a C breakpoint click the desired line number in the
Source window

change (CR-87) changes the value of a C variable none

describe (CR-152) prints the type information of a C
variable

select the C variable name in the Source
window and select Tools > Describe or
right click and select Describe.

disablebp (CR-153) disables a previously set C breakpoint right click breakpoint in Source
window and select Disable Breakpoint

enablebp (CR-163) enables a previously disabled C
breakpoint

right click breakpoint in Source
window and select Enable Breakpoint

examine (CR-167) prints the value of a C variable select the C variable name in the Source
window and select Tools > Examine or
right click and select Examine

gdb dir (CR-179) sets the source directory search path for
the C debugger

none

pop (CR-215) moves the specified number of call
frames up the C callstack

none

push (CR-231) moves the specified number of call
frames down the C callstack

none

run (CR-246) -continue continues running the simulation after
stopping

click the run -continue button on the
Main or Source window toolbar

run (CR-246) -finish continues running the simulation until
control returns to the calling function

Tools > C Debug > Run > Finish

show (CR-260) displays the names and types of the local
variables and arguments of the current C
function

Tools > C Debug > Show

step (CR-264) single step in the C debugger to the next
executable line of C code; step goes into
function calls, whereas step -over does
not

click the step or step -over button on the
Main or Source window toolbar

tb (CR-266) displays a stack trace of the C call
stack

Tools > C Debug > Traceback
ModelSim SE User’s Manual

UM-490 14 - C Debug

Model
C Debug dialog reference

This section describes C Debug dialogs.

C Debug setup dialog

Usage

Configuring C Debug

Field descriptions

• C debugger path
Specifies the path to the installed copy of gdb. Select "default" to point at the Model
Technology supplied gdb or "custom" to point at another installation of gdb. See
"Supported platforms and gdb versions" (UM-474) for the supported versions.

• Stop on quit
Allows you to debug functions that get called when the simulator is exiting. See
"Debugging functions when quitting simulation" (UM-487) for details.

• Keep user init bps
Leaves enabled any breakpoints you set while running in initialization mode (see
"Debugging functions during elaboration" (UM-483)). Normally breakpoints set during
initialization mode are disabled once the design is finished loading.

• Show source balloon
Enables name/value popup in the Source window when you hover your mouse pointer
over a variable name.
Sim SE User’s Manual

C Debug dialog reference UM-491
Command entry dialog

Usage

Entering debugging commands when the CDBG> prompt in the Main window is
unavailable

Field descriptions

• Enter command
Specify the debugging command to execute.
ModelSim SE User’s Manual

UM-492 14 - C Debug

Model
Sim SE User’s Manual

 UM-493
15 - PSL Assertions

Chapter contents
What are assertions? UM-495

Definition UM-495
Types of assertions UM-495
PSL assertion language UM-495

Using assertions in ModelSim UM-496
Assertion flow UM-496
Limitations UM-496

Embedding assertions in your code UM-498
Syntax UM-498
Restrictions UM-498
Example UM-498

Writing assertions in an external file UM-500
Syntax UM-500
Restrictions UM-500
Example UM-500

Understanding clock declarations UM-502
Default clock UM-502
Partially clocked properties UM-502

Understanding assertion names UM-504

General assertion writing guidelines UM-505

Compiling and simulating assertions UM-506
Embedded assertions UM-506
External assertions file UM-506
Making changes to assertions UM-506
Simulating assertions UM-506
VHDL code inside PSL statements UM-506

Managing assertions UM-507
Viewing assertions in the Assertion Browser UM-507
Hiding/showing fields in the Assertion Browser UM-509
Enabling/disabling failure and pass checking. UM-510
Enabling/disabling failure and pass logging UM-511
Setting failure and pass limits UM-512
Setting failure action UM-513

Reporting on assertions UM-514
Specifying an alternative output file for assertion messages . . UM-514

Viewing assertions in the Wave window UM-515
Assertion ’signals’. UM-515
ModelSim SE User’s Manual

UM-494 15 - PSL Assertions

Model
Example debugging session UM-516
How would you debug without assertions? UM-516
The example assertions file UM-516
Debugging the assertion failure UM-517

ModelSim assertion commands UM-521
Sim SE User’s Manual

What are assertions? UM-495
What are assertions?

Assertions have been around for a long time but have recently garnered heightened
attention due to the increasing importance of verification in most design flows.
Additionally, the recent introduction of new languages such as PSL have made assertions
more powerful than they have been in the past.

Definition

An assertion is a design property that is evaluated by a tool. A property is a statement about
a design that evaluates to true or false. Properties tell a tool what the design should do, what
it should not do, or what limits exist on its behavior. In effect we are saying, assert that this
property is true; if it is false, tell me.

Types of assertions

Broadly speaking there are three types of assertions: interface/system level assertions,
internal architecture assertions, and functional coverage assessment.

Interface/system-level assertions

Sometimes referred to as "black-box," these types of assertions are high-level properties of
a design that describe only the inputs of a module or system. The interfaces are generally
between major blocks of a design that are owned by different designers. The assertions are
typically placed in an external file and then attached to a design unit.

Verification engineers typically apply this use model. Many organizations prohibit the
verification team from touching synthesizable RTL code. Therefore, they cannot embed
assertions. Also, assertions that are defined in a separate file are easier to reuse at multiple
abstraction levels (architectural, RTL and gate) as the design objects that they reference are
very likely to exist at all levels.

Internal architecture assertions

Called "white-box" or "clear-box," these types of assertions are specific to the internals of
a module. Internal assertions are typically written directly in the HDL code, and the
property verification occurs as the simulation proceeds. The is the most typical use of
assertions and is done for block/module-level verification. Designers typically apply this
use model as it is easy and natural for them to include PSL assertions directly in the HDL
code as the code is being written.

The advantage to internal assertions is errors can be identified very early in a simulation.

PSL assertion language

ModelSim currently supports PSL assertions. PSL is an Accellera standard that was born
out of the Sugar language created at IBM. The syntax and semantics of PSL are described
in the Property Specification Language Reference Manual, Version 1.01, published April
25, 2003. We strongly encourage you to get a copy of this specification.

In the current implementation, ModelSim supports only the simple subset of PSL (refer to
Section 4.4.5, pg 25 of PSL LRM 1.01 for a description of this subset).
ModelSim SE User’s Manual

UM-496 15 - PSL Assertions

Model
Using assertions in ModelSim

Assertion flow

The following diagram gives a visual depiction of using assertions in ModelSim.

ModelSim lets you embed assertions within your VHDL code or supply them in a separate
file. If the assertions are embedded, vcom will compile them automatically. If the assertions
are in a separate file, you add the -pslfile argument to vcom. Once compilation is complete,
you invoke the simulator vsim on the design. The simulator automatically handles any
assertions that are present in the design. From there you run the simulation and debug any
assertion failures.

Limitations

The current release has some limitations. Most of these features will be added in future
releases.

• Only the simple subset of PSL is supported except ’within’ constructs. The PSL LRM
defines the simple subset in section 4.4.5 Pg 25 of PSL LRM 1.01.

• There is no Verilog support. PSL assertions can only be embedded inside VHDL code,
and external assertions can only be bound to a VHDL architecture.

• Vunits can only be bound to an entity or an architecture.

• A separate PSL file must be compiled with the entity or architecture to which it is bound.

• There is no support for verification unit inheritance–vunits cannot be derived from other
vunits.

• Embedded assertions cannot be placed inside VHDL generate statements.

• There is no support for replicated properties (i.e., PSL "forall" syntax).

• There is no support for endpoints.

VHDL with
embedded assertions

vcom

or VHDL assertions file

vsim

Wave
window

Assertion
Browser

vcom -pslfile
Sim SE User’s Manual

Using assertions in ModelSim UM-497
• There is no support for parameterized named sequences and properties. For example,
'sequence s0(boolean rb, clock; const n) =' is illegal.

• PSL limits vunits to a single default clock declaration. However, there are no restrictions
on the number of default clock declarations embedded within the HDL source.

• The @ clock expression operator is supported but can only be used for a single clock.
Multi-clock support is not yet available.

• There is no support for %for and %if preprocessor commands.

• There is no support for integer, structures, and union in the modeling layer. The only PSL
built-in functions currently supported are rose() and fell().

• Only "assert" and "assume" assertion directives are supported. "Assume" directives are
treated functionally the same as "assert" directives.

• There is no support for post-simulation run of assertions (i.e., users cannot run assertion
engine in post simulation mode). The Assertion Browser is not active in post-simulation
mode either.

• Checkpoint/restore isn’t currently supported with PSL assertions.

• Vprop and vmode in the PSL modeling layer are not supported.
ModelSim SE User’s Manual

UM-498 15 - PSL Assertions

Model
Embedding assertions in your code

One way of looking at assertions is as design documentation. In other words, anywhere you
would normally write a comment to capture pre-conditions, constraints or other
assumptions as well as to document the proper functionality of a module, process or
subprogram, use assertions to capture the information instead.

Syntax

PSL assertions are embedded using metacomments prefixed with 'psl'. For example:

-- psl sequence s0 is {b0; b1; b2};

The PSL statement can be multiline. For example:

-- psl sequence s0 is
-- {b0; b1; b2};

Note that the second line did not require a 'psl' prefix. Once in PSL context, the parser will
remain there until a PSL statement is terminated with a semicolon (';').

Restrictions

Embedded assertions have the following restriction as to where they can be embedded:

• Assertions can be embedded only in declarative and statement regions of an entity or
architecture body.

• Assertions cannot be embedded in generate statements.

• In a statement region, assertions can appear at places where concurrent statements may
appear. If they appear in a sequential statement, ModelSim will generate an error.

• Assertions cannot be embedded in VHDL procedures and functions.

Example
library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.numeric_std.all;
 use WORK.constants.all;
entity dram_control is
 generic (BUG : Boolean := TRUE);
 port (clk : IN std_logic;
 reset_n : IN std_logic;
 as_n : IN std_logic;
 addr_in : IN std_logic_vector(AIN-1 downto 0);
 addr_out: OUT std_logic_vector(AOUT-1 downto 0);
 rw : IN std_logic; -- 1 to read; 0 to write
 we_n : OUT std_logic;
 ras_n : OUT std_logic;
 cas_n : OUT std_logic;
 ack : OUT std_logic);
end entity dram_control;

architecture RTL of dram_control is

 type memory_state is (IDLE, MEM_ACCESS, SWITCH, RAS_CAS, OP_ACK, REF1,
REF2);
Sim SE User’s Manual

Embedding assertions in your code UM-499
 signal mem_state : memory_state := IDLE;

 signal col_out : std_logic; -- Output column address
 -- = 1 for column address
 -- = 0 for row address

 signal count : natural range 0 to 2; -- Cycle counter
 signal ref_count : natural range 0 to REF_CNT; -- Refresh counter
 signal refresh : std_logic; -- Refresh request

--psl default clock is rising_edge(clk);
-- Check the write cycle
-- psl property check_write is always {fell(as_n) and not rw} |=> {
-- [*0 to 5];
-- (ras_n = '0' and cas_n = '1' and (addr_out = addr_in(7 downto 4)));
-- (ras_n = '0' and cas_n = '1' and (addr_out = addr_in(3 downto 0)))[*2];
-- (ras_n = '0' and cas_n = '0')[*2];
-- ack};

--psl assert check_write;

begin
.
.
.

ModelSim SE User’s Manual

UM-500 15 - PSL Assertions

Model
Writing assertions in an external file

Assertions in an external file are grouped in vunits and bound to an architecture. The
external PSL statements are interpreted as if the text of the statement was inserted in the
architecture, immediately before the end of the architecture.

Syntax
vunit name (entity_name[(<arch_name>)])
{

default clock is <clock_decl>;
<assertions>;
...

}

name – The name of the vunit.

entity_name – The hierarchical path to the associated entity.

<arch_name> – The associated architecture.

<clock_decl> – The default clock declaration for the vunit.

<assertions> – Any number of verification directives or PSL statements.

Restrictions

The following restrictions exist when providing assertions in a separate file.

• The vunits can be bound only to an entity or architecture.

• The PSL file and its corresponding VHDL file must be compiled together.

Example

The following is an example with three assertions in one vunit.

vunit check_dram_controller(dram_control(RTL))
{

default clock is rising_edge(clk);

-- declare refresh sequence
sequence refresh_sequence is

{not cas_n and ras_n and we_n; [*1]; (not cas_n and not ras_n and
we_n)[*2]; cas_n and ras_n};

-- Make sure the first refresh happened in 24 cycles period after reset
property check_refresh_rate is always {

(not reset_n)[+]; -- reset_n active for one or more
rose(reset_n); -- reset_n deactivates
(rose(refresh))[->1 to inf]} -- wait for next refresh_start

|->
{[*18 to 32]; refresh_sequence};

assert check_refresh_rate;

-- Check the write cycle
property check_write is always {fell(as_n) and not rw} |=> {

[*0 to 5];
Sim SE User’s Manual

Writing assertions in an external file UM-501
(ras_n = '0' and cas_n = '1' and (addr_out = addr_in(7 downto 4)));
(ras_n = '0' and cas_n = '1' and (addr_out = addr_in(3 downto

0)))[*2];
(ras_n = '0' and cas_n = '0')[*2];
ack};

assert check_write;

-- check the read cycle
property check_read is always {fell(as_n) and rw} |=> {

[*0 to 5];
(ras_n = '0' and cas_n = '1' and (addr_out = addr_in(7 downto 4)));
(ras_n = '0' and cas_n = '1' and (addr_out = addr_in(3 downto

0)))[*2];
(ras_n = '0' and cas_n = '0')[*3];
ack};

assert check_read;
}

ModelSim SE User’s Manual

UM-502 15 - PSL Assertions

Model
Understanding clock declarations

All assertions in ModelSim must be associated with one and only one clock. Unclocked and
multiple clocked assertions are not currently supported.

Default clock

Any assertion that is not individually clocked will be clocked by the default clock. For
example:

default clock is rose(clk);
assert always sigb@rose(clk1)
assert always siga;

The first assertion is sensitive to clk1. The second assertion is sensitive to clk (the default
clock).

When using embedded assertions, if you declare an unclocked assertion before defining
default clock, ModelSim produces an error. For example, the following code will produce
an error, assuming there is no other default clock statement above the assertion:

assert always siga;
default clock is rose(clk);

This is not true in the case of assertions located in an external file. The default clock applies
to all unclocked statements regardless of their order within the file.

As noted earlier in "Limitations" (UM-496), default clock declarations are associated with
directives not with named properties or sequences. For example:

default clock is clk1
property p0 is always a->b
default clock is clk2
assert p0

The property p0 is evaluated at every clk2.

Partially clocked properties

The default clock also applies to partially clocked properties. For example:

default clock is rose(clk);
assert always (b0 |-> (b1@rose(clk1)))

In this case, only the RHS of the implication(|->) expression is clocked. The outermost
property is unclocked, so default clock applies to this assertion. However, that makes the
property multiple clocked, which we do not currently support. ModelSim emits a warning
in such cases and only considers the outermost clock. So ModelSim will behave as if the
property was written like this:

assert always (b0 |-> b1)@rose(clk)

The warning produced will look something like this:

** Warning: [11] ./src/multiclk/test.vhd(34): The PSL expression possibly
contains multiple clock domains. Multiple clock domains are not supported.
The outermost clock domain will overide the inner clock domains
Sim SE User’s Manual

Understanding clock declarations UM-503
Also, the complete assertion property must be clocked. For example, if you have the
following assertion:

assert always (b0 |-> (b1@rose(clk1)))

and no default clock preceding it, then since part of the property is unclocked, ModelSim
will produce an error.
ModelSim SE User’s Manual

UM-504 15 - PSL Assertions

Model
Understanding assertion names

PSL does not provide a method for naming directives. ModelSim must generate an
assertion name for reporting information about the assertion. If you want ModelSim to
generate predictable names, you should always assert on a named property. For example:

property p0 is always a -> b;
assert p0;

The name generated for this assertion statement will be assert__p0. Generically, the syntax
of the generated name is:

assert__<property name>.

However, if you write the same assertion in this manner:

assert always a -> b;

there is no property name, so ModelSim will generate a name like assert__0 (i.e., a number
appended to "assert__").
Sim SE User’s Manual

General assertion writing guidelines UM-505
General assertion writing guidelines

Assertion writing can become complicated and confusing. If not written correctly,
assertions can also impact simulator performance. This section offers suggestions for how
to write assertions that are easy to debug and don’t slow down your simulation unduly.

• Keep directives simple. Create named assertions that you then reference from the
directive (e.g., assert check1).

• Keep properties and sequences simple too. Build complex assertions out of simple, short
assertions/sequences.

• Do not use implication with never directives. You will rarely get what you want if you
use implication with a never.

• Create named sequences so you can reuse them in multiple assertions.

• Be aware of "unexpected matches." For example, the following assertion:

assert always a->next(b)->next(c);

will match all of the following conditions (as well as others):

• Keep time ranges specified in sequences as short as possible according to the actual
design property being specified. Avoid long time ranges as this increases the number of
concurrent 'in-flight' checks of the same property and thereby impacts performance.

Understanding operator precedence and curly braces

VHDL and PSL have conflicting operator precedence rules that necessitate the use of curly
braces in some cases.

Rule

In general, whenever a PSL operation expects a PSL sequence as an operand, that PSL
sequence must appear within curly braces.

Exceptions

The following are exceptions to the above rule:

• The always, never, and eventually! operators can accept a named sequence as an operand
without the requisite curly-braces (e.g., "always myseq;" is equivalent to "always
{myseq};").

• The "trigger" operand of the within* operators can also accept a named sequence as an
operand without the requisite curly-braces (e.g., "within(myseq, bool){myseq};" is
equivalent to "within({myseq}, bool){myseq};").

a

b

c

a

b

c

a

b

c

ModelSim SE User’s Manual

UM-506 15 - PSL Assertions

Model
Compiling and simulating assertions

Embedded assertions

Embedded assertions are compiled automatically by default. If you have embedded
assertions that you don’t want to compile, use the -nopsl argument to the vcom command
(CR-303).

External assertions file

To compile assertions in an external file, invoke the compiler with the -pslfile argument
and specify the assertions file name. For example:

vcom tadder.vhd adder.vhd -pslfile adder.psl

The design and its associated assertions file must be compiled in the same invocation.

Making changes to assertions

After making any changes to embedded assertions, you need to re-compile the design unit.
After making changes in separate file assertions, you need to compile both the separate file
and the design unit file to which the vunit binds in the same vcom invocation.

Simulating assertions

If any assertions were compiled, the vsim command (CR-357) automatically invokes the
assertion engine at runtime. If you do not want to simulate the compiled assertions, use the
-nopsl argument.

VHDL code inside PSL statements

VHDL statements may be placed in either embedded PSL metacomments or in external
vunits. For example, the following code is legal:

--psl process(reg)
--psl ...
--psl end process
--psl assert always p0;

The VHDL statements are parsed along with the PSL statements when you compile the
design with vcom. If you compile the design using vcom -nopsl, then neither the VHDL
statements nor the PSL statements are parsed.
Sim SE User’s Manual

Managing assertions UM-507
Managing assertions

You can manage your assertions via the GUI or by entering commands at the VSIM>
prompt.

Viewing assertions in the Assertion Browser

The Assertion Browser provides a convenient interface to all of the assertions in the current
simulation. To open the Assertion Browser, select View > Assertion Browser.

The Assertions Browser lists all embedded and external assertions that were successfully
compiled and simulated during the current session. The plus sign (’+’) to the left of the
Name field lets you expand the assertion hierarchy to show its elements (properties,
sequences, clocks, and HDL signals).

The window displays five fields by default, as detailed below. See "Hiding/showing fields
in the Assertion Browser" (UM-509) for details on how to hide or show fields.

The Assertions Browser includes the following fields:

• The Name field lists the PSL statement or vunit name you specified in the assertion code.
For vunits the individual assertion names are listed under the vunit name. Also, any
signal referenced in an assertion will be part of the hierarchy as well. See "Understanding
assertion names" (UM-504) for more details on assertion names.

• The Design Unit field identifies the design unit to which the assertion is bound. Not
displayed by default.

• The Design Unit Type field lists the HDL type of the design unit. Not displayed by
default.

• The Failure field shows "enabled" when failure checking is enabled on the assertion. If
the field shows "disabled", ModelSim isn’t checking that assertion's failures.

• The Pass field shows "enabled" when pass checking is enabled on the assertion. If the
field shows disabled, ModelSim isn’t tracking that assertion's checking.
ModelSim SE User’s Manual

UM-508 15 - PSL Assertions

Model
• The Failure Count field counts the total number of times the assertion has failed in the
current simulation. These counts are maintained between runs unless you reset the count
for the assertion.

• The Pass Count field counts the total number of times the assertions has passed in the
current simulation. These counts are maintained between runs unless you reset the count
for the assertion.

• The Attempted field shows a green checkmark when an assertion has triggered and a red
’X’ when it has not triggered. Not displayed by default.

• The Failure Action field lists the action that ModelSim takes when the assertion passes
or fails. Not displayed by default.

• The Failure Log field shows "enabled" when failure messages will be logged to the
transcript. The field shows "disabled" when failure messages will not be logged to the
transcript. Not displayed by default.

• The Pass Log field shows "enabled" when pass messages will be logged to the transcript.
The field shows "disabled" when pass messages will not be logged to the transcript. Not
displayed by default.

• The Failure Limit field shows the number of times ModelSim will respond to a failure
event on an assertion. Not displayed by default.

• The Pass Limit field shows the number of times ModelSim will respond to a failure event
on an assertion. Not displayed by default.

You can also view this same information in textual format using the assertion report
command (CR-73).
Sim SE User’s Manual

Managing assertions UM-509
Hiding/showing fields in the Assertion Browser

You can hide or show any of the fields in the Assertion Browser. Click the drop-down
arrow on the left-hand side of the dialog and select a field name.

The selection acts as a toggle. Select it once to hide a field; select it again to show the field.

Click here
to hide or
show a
field
ModelSim SE User’s Manual

UM-510 15 - PSL Assertions

Model
Enabling/disabling failure and pass checking

To enable or disable an assertion’s failure or pass checking from the GUI, right-click an
assertion in the Assertion Browser and select Failure Checking or Pass Checking (or use
the Settings menu on the menu bar). The selection acts as a toggle.

To gain greater control over enabling and disabling, right-click an assertion and select
Change. This opens the Change Settings dialog.

In this dialog, you can enable/disable failure or pass checking for the selected assertion, all
assertions, or the assertions in a particular instance. Select Recursive when enabling/
disabling by instance to search for assertions in subregions of the instance.

Select Enable or Disable from the Checking drop downs in the middle of the dialog and
then click OK.

You can also enable or disable failure and pass checking using the assertion fail command
(CR-69) or the assertion pass command (CR-71), respectively.

Click here
to enable/
disable
failure or
pass
checking
Sim SE User’s Manual

Managing assertions UM-511
Enabling/disabling failure and pass logging

To enable or disable an assertion’s failure or pass logging from the GUI, right-click an
assertion in the Assertion Browser and select Failure Log or Pass Log (or use the Settings
menu on the menu bar). The selection acts as a toggle.

To gain greater control over logging, right-click an assertion and select Change. This opens
the Change Settings dialog.

In this dialog, you can enable/disable failure or pass logging for the selected assertion, all
assertions, or the assertions in a particular instance. Select Recursive when enabling/
disabling by instance to search for assertions in subregions of the instance.

Select Enable or Disable from the Logging drop downs in the middle of the dialog and
then click OK.

You can also enable or disable failure and pass logging using the assertion fail command
(CR-69) or the assertion pass command (CR-71), respectively.

Click here
to enable/
disable
failure or
pass
logging
ModelSim SE User’s Manual

UM-512 15 - PSL Assertions

Model
Setting failure and pass limits

The failure and pass limits determines how many times ModelSim processes an assertion
before disabling it for the duration of the simulation. By default the number is one for both
failure and pass limits. In other words, once an assertion passes or fails, ModelSim disables
for the duration of the simulation.

If you want to see more than one assertion failure or pass, right-click the assertion in the
Assertion Browser and select Change. This opens the Change Settings dialog.

You can set the failure and pass limits for the selected assertion, all assertions, or the
assertions in a particular instance. Select Recursive when setting by instance to search for
assertions in subregions of the instance.

Select Limited or Unlimited from the Limit drop downs at the bottom of the dialog. If you
select Limited, enter an integer in the field below the drop down and then click OK.

Once the limit is reached, ModelSim disables that assertion. ModelSim continues to
respond to others if their limit has not been reached. The limit applies to the entire
simulation session and not to any single simulation run command.

You can also set failure and pass limits using the assertion fail command (CR-69) or the
assertion pass command (CR-71), respectively.

Click here
to set
failure and
pass limits
Sim SE User’s Manual

Managing assertions UM-513
Setting failure action

ModelSim can take one of three actions when an assertion fails: it can log the failure in the
transcript and continue the simulation; it can break (pause) the simulation; or it can stop and
exit the simulation. By default the failure action is "continue."

To set assertion action in the GUI, right-click an assertion in the Assertion Browser and
select Failure Action and then Continue, Break, or Exit (or use the Settings menu on the
menu bar).

To gain greater control over setting failure action, right-click an assertion and select
Change. This opens the Change Settings dialog.

You can set the action for the selected assertion, all assertions, or the assertions in a
particular instance. Select Recursive when setting by instance to search for assertions in
subregions of the instance.

Select Continue, Break, or Exit from the Action drop down in the bottom left corner of
the dialog and then click OK.

You can also set failure action using the assertion fail command (CR-69).

Click here
to select
failure
action
ModelSim SE User’s Manual

UM-514 15 - PSL Assertions

Model
Reporting on assertions

You can use the assertion report command (CR-73) to print to the transcript a variety of
information about assertions in the current design.

Specifying an alternative output file for assertion messages

You can specify an alternative output file for recording assertion messages. To do this,
invoke vsim with the -assertfile <filename> argument. By default assertion messages are
output to the file specified by the TranscriptFile variable in the modelsim.ini file. You can
set a permanent default for the alternative output file using the AssertFile (UM-621) variable
in the modelsim.ini file.
Sim SE User’s Manual

Viewing assertions in the Wave window UM-515
Viewing assertions in the Wave window

You can view assertions in the Wave window just like any other signal in your design.
Simply drag an assertion from the Assertion Browser and drop it in the Wave window or
right-click an assertion in the Assertion Browser and select Add Wave.

Assertion ’signals’

ModelSim represents assertions as waveforms in the Wave window. The picture below
shows several assertions in a Wave window.

Assertion items are represented by a magenta triangle. The name of each assertion comes
from the assertion code. The plus sign (’+’) to the left of the name indicates that an assertion
is a composite trace and can be expanded to show its elements (properties, sequences,
clocks, and HDL signals).

The value in the value pane is determined by the active cursor in the waveform pane. The
value will be one of "ACTIVE", "INACTIVE", "PASS" or "FAIL".

The waveform for an assertion represents both continuous and instantaneous information.
The continuous information is whether or not the assertion is active. The assertion is active
anytime it matches the first element in the directive. When active, the trace is raised and
painted green; when inactive it is lowered and painted blue. The instantaneous information
is a pass or fail event on the assertion. These are shown as filled circles above the trace at
the time of the event. A pass is a green circle and a fail is a red circle.

Graphic element Meaning

blue line assertion is inactive

green line assertion is active

green dot assertion passed

red dot assertion failed
ModelSim SE User’s Manual

UM-516 15 - PSL Assertions

Model
Example debugging session

The following example shows a typical debugging session for an assertion failure. The
example is based on a DRAM controller with a DRAM behavioral model and a
self-checking testbench (i.e., it writes to memory addresses and reads back the values to
compare to what was written). The design has a bug somewhere that we need to locate.

The files for this example are included in <install_dir>/modeltech/examples/psl.

How would you debug without assertions?

If you didn’t add assertions to the design, the first indication of a problem would come
when the testbench found a difference between a write and a read. In the example design,
this error occurs at time 267,400 ns. Either a wrong value was written to memory or the
memory location was corrupted after it was written.

To debug the error, you might first examine simulation waveforms and look for all writes
to the memory location and check the data on the bus and the actual memory contents at the
location after each write. If that didn’t identify the problem, you might then check all
refresh cycles to determine if a refresh corrupted the memory location.

Quite possibly, both debugging activities would be required depending on one's skill (or
luck) in determining the most likely cause of the error. Anyway you look at it, it’s a tedious
exercise.

The example assertions file

Adding assertions to the design can ease the debugging task significantly. Here is the
assertions file that we will compile and simulate with the design:

vunit check_top_unit(tb)
{
 default clock is rose(clk);

 // Check for reset
 sequence reset_state is {[*]; fell(reset); ras_n and cas_n and not ack};
 assert always reset_state;

// check for memory response
sequence test_read_response is {[*]; rose(as) and rw; [*5 to 12]; ack};
sequence test_write_response is {[*]; rose(as) and not rw; [*5 to 12];

ack};

 assert always test_read_response;
 assert always test_write_response;

 // Check if address strobe is deasserted after acknowledge from memory
 sequence check_as_deasserts is {[*]; rose(as); [*5 to 12]; ack; not as};
 assert always check_as_deasserts;

}

vunit check_dram_controller(tb.cntrl)
{
 default clock is rose(clk);

 // declare refresh sequence
 sequence refresh_sequence is
Sim SE User’s Manual

Example debugging session UM-517
 {not cas_n and ras_n and we_n; [*1]; (not cas_n and not ras_n and /
we_n)[*2]; cas_n and ras_n};

 // Check if the refresh_sequence repeats in 24 to 30 cycles
 property check_refresh_rate is {
 (not reset_n)[+]; // reset_n active for one or more
 rose(reset_n); // reset_n deactivates
 (rose(not cas_n and ras_n and we_n))[->0..]} // wait for next
refresh_start
 |->
 {[*18..32]; refresh_sequence};

 assert always check_refresh_rate;

 // Check the write cycle
 property check_write is {fell(as_n) and not rw} |=> {
 [*0..5];
 not ras_n and cas_n and addr_out = addr_in[7 downto 4];
 (not ras_n and cas_n and (addr_out = addr_in[3 downto 0]))[*2];
 (not ras_n and not cas_n)[*2];
 ack};

 assert always check_write;

 // check the read cycle
 property check_read is {fell(as_n) and rw} |=> {
 [*0..5];
 not ras_n and cas_n and addr_out = addr_in[7 downto 4];
 (not ras_n and cas_n and (addr_out = addr_in[3 downto 0]))[*2];
 (not ras_n and not cas_n)[*3];
 ack};
 assert always check_read;
}

Debugging the assertion failure

Here are the steps to debug the assertion failure:

1 Once you compile and simulate the design with the assertions file, select Setting >
Action from the Assertion Browser and set the assertion action to break on failures.

2 Execute run -all and observe the error message in the transcript:

VSIM> run -all
** Error: Assertion tb.cntrl.assert_check_refresh_rate
(File:assertions.psl Line:38) failed at 3400 for startTime 100

Time: 3400 ns Iteration: 1 Region: /tb File: dramcon_sim.v
Simulation stop requested.

Notice that we caught the problem much earlier in the simulation than when we simulated
without assertions. We also know that the problem has something to do with the refresh
rate.
ModelSim SE User’s Manual

UM-518 15 - PSL Assertions

Model
3 When the failure occurs, the assertions file automatically opens in the Source window
with the line marker on the failed assertion.

Looking at the property definition in the Source window (lines 31-36), we see that if reset
has completed and a refresh cycle has been detected, then refresh must successfully
complete every 18 to 32 clock cycles.

property check_refresh_rate is {
 (not reset_n)[+]; // reset_n active for one or more
 rose(reset_n); // reset_n deactivates
 (rose(not cas_n and ras_n and we_n))[->0..]} // wait for next
refresh_start
 |->
 {[*18 to 32]; refresh_sequence};

The refresh_sequence (the last line of the property) is defined on lines 27 and 28:

// declare refresh sequence
sequence refresh_sequence is
{not cas_n and ras_n and we_n; [*1]; (not cas_n and not ras_n and we_n)[*2];
cas_n and ras_n};

The key part of the refresh protocol is that we_n must be held high (write enable not
active) for the entire refresh cycle. Let’s check we_n in the Wave window to see if it
actually holds for the entire cycle.
Sim SE User’s Manual

Example debugging session UM-519
4 Right click the check_refresh_rate assertion in the Assertions Browser and select Add
Wave.

Virtual signal my_mem_state shows the refresh cycle. By dragging that signal so it is next
to the assertion, we can easily see that we_n is high during REF1 only and not REF2.
Because we_n is supposed to be high through the entire refresh cycle, the assertion failed.

Next we need to access the source code for we_n to fix the problem. The easiest way to
do this is via the Dataflow window.
ModelSim SE User’s Manual

UM-520 15 - PSL Assertions

Model
5 Double-click on the we_n wave to open the Dataflow window.

6 Scroll if necessary to find the component in the Dataflow pane and select the signal
assignment. The source code is now displayed in the Source window.

The bug is that the logic assigning we_n is wrong as it does not account for the REF2
state. If we fix the logic to account for REF2, the assertion will pass.
Sim SE User’s Manual

ModelSim assertion commands UM-521
ModelSim assertion commands

The table below provides a brief description of the compare commands. See the ModelSim
Command Reference for complete command details.

Command Description

assertion fail (CR-69) configures simulator response to an assertion failure

assertion pass (CR-71) configures simulator response to an assertion pass

assertion report (CR-73) produces textual summary of assertion results from a simulation
ModelSim SE User’s Manual

UM-522 15 - PSL Assertions

Model
Sim SE User’s Manual

 UM-523
16 - Signal Spy

Chapter contents
Introduction UM-524

Designed for testbenches UM-524

init_signal_driver UM-525

init_signal_spy UM-528

signal_force UM-530

signal_release UM-532

$init_signal_driver UM-534

$init_signal_spy UM-537

$signal_force UM-539

$signal_release UM-541

This chapter describes the Signal SpyTM procedures and system tasks. These allow you to
monitor, drive, force, and release hierarchical items in VHDL or mixed designs.
ModelSim SE User’s Manual

UM-524 16 - Signal Spy

Model
Introduction

The Verilog language allows access to any signal from any other hierarchical block without
having to route it via the interface. This means you can use hierarchical notation to either
assign or determine the value of a signal in the design hierarchy from a testbench. This
capability fails when a Verilog testbench attempts to reference a signal in a VHDL block
or reference a signal in a Verilog block through a VHDL level of hierarchy.

This limitation exists because VHDL does not allow hierarchical notation. In order to
reference internal hierarchical signals, you have to resort to defining signals in a global
package and then utilize those signals in the hierarchical blocks in question. But, this
requires that you keep making changes depending on the signals that you want to reference.

The Signal Spy procedures and system tasks overcome the aforementioned limitations.
They allow you to monitor (spy), drive, force, or release hierarchical objects in a VHDL or
mixed design.

The VHDL procedures are provided via the "Util package" (UM-94) within the modelsim_lib
library. To access the procedures you would add lines like the following to your VHDL
code:

library modelsim_lib;
use modelsim_lib.util.all;

The Verilog tasks are available as built-in "System tasks" (UM-144). The table below shows
the VHDL procedures and their corresponding Verilog system tasks.

Designed for testbenches

Signal Spy limits the portability of your code. HDL code with Signal Spy procedures or
tasks works only in ModelSim, not other simulators. We therefore recommend using Signal
Spy only in testbenches, where portability is less of a concern, and the need for such a tool
is more applicable.

VHDL procedures Verilog system tasks

init_signal_driver (UM-525) $init_signal_driver (UM-534)

init_signal_spy (UM-528) $init_signal_spy (UM-537)

signal_force (UM-530) $signal_force (UM-539)

signal_release (UM-532) $signal_release (UM-541)
Sim SE User’s Manual

init_signal_driver UM-525
init_signal_driver

The init_signal_driver() procedure drives the value of a VHDL signal or Verilog net (called
the src_object) onto an existing VHDL signal or Verilog net (called the dest_object). This
allows you to drive signals or nets at any level of the design hierarchy from within a VHDL
architecture (e.g., a testbench).

The init_signal_driver procedure drives the value onto the destination signal just as if the
signals were directly connected in the HDL code. Any existing or subsequent drive or force
of the destination signal, by some other means, will be considered with the
init_signal_driver value in the resolution of the signal.

Call only once

The init_signal_driver procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_driver only once for a particular
pair of signals. Once init_signal_driver is called, any change on the source signal will be
driven on the destination signal until the end of the simulation.

Thus, we recommend that you place all init_signal_driver calls in a VHDL process. You
need to code the VHDL process correctly so that it is executed only once. The VHDL
process should not be sensitive to any signals and should contain only init_signal_driver
calls and a simple wait statement. The process will execute once and then wait forever. See
the example below.

Syntax
init_signal_driver(src_object, dest_object, delay, delay_type, verbose)

Returns

Nothing
ModelSim SE User’s Manual

UM-526 16 - Signal Spy

Model
Arguments

Related procedures

init_signal_spy (UM-528), signal_force (UM-530), signal_release (UM-532)

Limitations

• When driving a Verilog net, the only delay_type allowed is inertial. If you set the delay
type to mti_transport, the setting will be ignored and the delay type will be mti_inertial.

• Any delays that are set to a value less than the simulator resolution will be rounded to the
nearest resolution unit; no special warning will be issued.

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog net. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.

delay time Optional. Specifies a delay relative to the time
at which the src_object changes. The delay
can be an inertial or transport delay. If no
delay is specified, then a delay of zero is
assumed.

delay_type del_mode Optional. Specifies the type of delay that will
be applied. The value must be either
mti_inertial or mti_transport. The default is
mti_inertial.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object is
driving the dest_object. Default is 0, no
message.
Sim SE User’s Manual

init_signal_driver UM-527
Example
library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
signal clk0 : std_logic;

begin

gen_clk0 : process
begin

clk0 <= '1' after 0 ps, '0' after 20 ps;
wait for 40 ps;

end process gen_clk0;

drive_sig_process : process
begin

init_signal_driver("clk0", "/testbench/uut/blk1/clk", open, open, 1);
init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100 ps,

mti_transport);
wait;

end process drive_sig_process;

...

end;

The above example creates a local clock (clk0) and connects it to two clocks within the
design hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed.
The open entries allow the default delay and delay_type while setting the verbose
parameter to a 1. The .../blk2/clk will match the local clk0 but be delayed by 100 ps.
ModelSim SE User’s Manual

UM-528 16 - Signal Spy

Model
init_signal_spy

The init_signal_spy() procedure mirrors the value of a VHDL signal or Verilog register/net
(called the src_object) onto an existing VHDL signal or Verilog register/net (called the
dest_object). This allows you to reference signals, registers, or nets at any level of hierarchy
from within a VHDL architecture (e.g., a testbench).

The init_signal_spy procedure only sets the value onto the destination signal and does not
drive or force the value. Any existing or subsequent drive or force of the destination signal,
by some other means, will override the value that was set by init_signal_spy.

Call only once

The init_signal_spy procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_spy once for a particular pair of
signals. Once init_signal_spy is called, any change on the source signal will mirror on the
destination signal until the end of the simulation.

Thus, we recommend that you place all init_signal_spy calls in a VHDL process. You need
to code the VHDL process correctly so that it is executed only once. The VHDL process
should not be sensitive to any signals and should contain only init_signal_spy calls and a
simple wait statement. The process will execute once and then wait forever, which is the
desired behavior. See the example below.

Syntax
init_signal_spy(src_object, dest_object, verbose)

Returns

Nothing

Arguments

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.
Sim SE User’s Manual

init_signal_spy UM-529
Related functions

init_signal_driver (UM-525), signal_force (UM-530), signal_release (UM-532)

Limitations

• When mirroring the value of a Verilog register/net onto a VHDL signal, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Verilog memories (arrays of registers) are not supported.

Example
library ieee, modelsim_lib;
use ieee.std_logic_1164.all
use modelsim_lib.util.all;
entity top is
end;

architecture only of top is
signal top_sig1 : std_logic;

begin
...
spy_process : process
begin

init_signal_spy("/top/uut/inst1/sig1","/top_sig1",1);
wait;

end process spy_process;
...

end;

In this example, the value of /top/uut/inst1/sig1 will be mirrored onto /top_sig1.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register. Use
the path separator to which your simulation is
set (i.e., "/" or "."). A full hierarchical path
must begin with a "/" or ".". The path must be
contained within double quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object’s value
is mirrored onto the dest_object. Default is 0,
no message.

Name Type Description
ModelSim SE User’s Manual

UM-530 16 - Signal Spy

Model
signal_force

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net (called the dest_object). This allows you to force signals, registers,
or nets at any level of the design hierarchy from within a VHDL architecture (e.g., a
testbench).

A signal_force works the same as the force command (CR-176) with the exception that you
cannot issue a repeating force. The force will remain on the signal until a signal_release, a
force or release command, or a subsequent signal_force is issued. Signal_force can be
called concurrently or sequentially in a process.

Syntax
signal_force(dest_object, value, rel_time, force_type, cancel_period,
verbose)

Returns

Nothing

Arguments

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

value string Required. Specifies the value to which the
dest_object is to be forced. The specified
value must be appropriate for the type.

rel_time time Optional. Specifies a time relative to the
current simulation time for the force to occur.
The default is 0.

force_type forcetype Optional. Specifies the type of force that will
be applied. The value must be one of the
following; default, deposit, drive, or freeze.
The default is "default" (which is "freeze" for
unresolved objects or "drive" for resolved
objects). See the force command (CR-176) for
further details on force type.
Sim SE User’s Manual

signal_force UM-531
Related functions

init_signal_driver (UM-525), init_signal_spy (UM-528), signal_release (UM-532)

Limitations

You cannot force bits or slices of a register; you can force only the entire register.

Example
library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
begin

force_process : process
begin

signal_force("/testbench/uut/blk1/reset", "1", 0 ns, freeze, open, 1);
signal_force("/testbench/uut/blk1/reset", "0", 40 ns, freeze, 2 ms, 1);
wait;

end process force_process;

...

end;

The above example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced
to a "0", 2 ms after the second signal_force call was executed.

If you want to skip parameters so that you can specify subsequent parameters, you need to
use the keyword "open" as a placeholder for the skipped parameter(s). The first
signal_force procedure illustrates this, where an "open" for the cancel_period parameter
means that the default value of -1 ms is used.

cancel_period time Optional. Cancels the signal_force command
after the specified period of time units.
Cancellation occurs at the last simulation
delta cycle of a time unit. A value of zero
cancels the force at the end of the current time
period. Default is -1 ms. A negative value
means that the force will not be cancelled.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the value is being
forced on the dest_object at the specified time.
Default is 0, no message.

Name Type Description
ModelSim SE User’s Manual

UM-532 16 - Signal Spy

Model
signal_release

The signal_release() procedure releases any force that was applied to an existing VHDL
signal or Verilog register/net (called the dest_object). This allows you to release signals,
registers or nets at any level of the design hierarchy from within a VHDL architecture (e.g.,
a testbench).

A signal_release works the same as the noforce command (CR-204). Signal_release can be
called concurrently or sequentially in a process.

Syntax
signal_release(dest_object, verbose)

Returns

Nothing

Arguments

Related functions

init_signal_driver (UM-525), init_signal_spy (UM-528), signal_force (UM-530)

Limitations

• You cannot release a bit or slice of a register; you can release only the entire register.

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the signal is being
released and the time of the release. Default is
0, no message.
Sim SE User’s Manual

signal_release UM-533
Example
library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is

signal release_flag : std_logic;

begin

stim_design : process
begin

...
wait until release_flag = '1';
signal_release("/testbench/dut/blk1/data", 1);
signal_release("/testbench/dut/blk1/clk", 1);
...

end process stim_design;

...

end;

The above example releases any forces on the signals data and clk when the signal
release_flag is a "1". Both calls will send a message to the transcript stating which signal
was released and when.
ModelSim SE User’s Manual

UM-534 16 - Signal Spy

Model
$init_signal_driver

The $init_signal_driver() system task drives the value of a VHDL signal or Verilog net
(called the src_object) onto an existing VHDL signal or Verilog register/net (called the
dest_object). This allows you to drive signals or nets at any level of the design hierarchy
from within a Verilog module (e.g., a testbench).

The $init_signal_driver system task drives the value onto the destination signal just as if
the signals were directly connected in the HDL code. Any existing or subsequent drive or
force of the destination signal, by some other means, will be considered with the
$init_signal_driver value in the resolution of the signal.

Call only once

The $init_signal_driver system task creates a persistent relationship between the source and
destination signals. Hence, you need to call $init_signal_driver only once for a particular
pair of signals. Once $init_signal_driver is called, any change on the source signal will be
driven on the destination signal until the end of the simulation.

Thus, we recommend that you place all $init_signal_driver calls in a Verilog initial block.
See the example below.

Syntax
$init_signal_driver(src_object, dest_object, delay, delay_type, verbose)

Returns

Nothing

Arguments

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog net. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.
Sim SE User’s Manual

$init_signal_driver UM-535
Related procedures

$init_signal_spy (UM-537), $signal_force (UM-539), $signal_release (UM-541)

Limitations

• When driving a Verilog net, the only delay_type allowed is inertial. If you set the delay
type to 1 (transport), the setting will be ignored, and the delay type will be inertial.

• Any delays that are set to a value less than the simulator resolution will be rounded to the
nearest resolution unit; no special warning will be issued.

• Verilog memories (arrays of registers) are not supported.

delay integer, real, or
time

Optional. Specifies a delay relative to the time
at which the src_object changes. The delay
can be an inertial or transport delay. If no
delay is specified, then a delay of zero is
assumed.

delay_type integer Optional. Specifies the type of delay that will
be applied. The value must be either 0
(inertial) or 1 (transport). The default is 0.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object is
driving the dest_object. Default is 0, no
message.

Name Type Description
ModelSim SE User’s Manual

UM-536 16 - Signal Spy

Model
Example
`timescale 1 ps / 1 ps

module testbench;

reg clk0;

initial begin
clk0 = 1;
forever begin
#20 clk0 = ~clk0;

end
end

initial begin
$init_signal_driver("clk0", "/testbench/uut/blk1/clk", , , 1);
$init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100, 1);

end

...

endmodule

The above example creates a local clock (clk0) and connects it to two clocks within the
design hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed.
The .../blk2/clk will match the local clk0 but be delayed by 100 ps. For the second call to
work, the .../blk2/clk must be a VHDL based signal, because if it were a Verilog net a 100
ps inertial delay would consume the 40 ps clock period. Verilog nets are limited to only
inertial delays and thus the setting of 1 (transport delay) would be ignored.
Sim SE User’s Manual

$init_signal_spy UM-537
$init_signal_spy

The $init_signal_spy() system task mirrors the value of a VHDL signal or Verilog register/
net (called the src_object) onto an existing VHDL signal or Verilog register/net (called the
dest_object). This allows you to reference signals, registers, or nets at any level of hierarchy
from within a Verilog module (e.g., a testbench).

The $init_signal_spy system task only sets the value onto the destination signal and does
not drive or force the value. Any existing or subsequent drive or force of the destination
signal, by some other means, will override the value set by $init_signal_spy.

Call only once

The $init_signal_spy system task creates a persistent relationship between the source and
the destination signal. Hence, you need to call $init_signal_spy only once for a particular
pair of signals. Once $init_signal_spy is called, any change on the source signal will mirror
on the destination signal until the end of the simulation. Thus, we recommend that you
place all $init_signal_spy calls in a Verilog initial block. See the example below.

Syntax
$init_signal_spy(src_object, dest_object, verbose)

Returns

Nothing

Arguments

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.
ModelSim SE User’s Manual

UM-538 16 - Signal Spy

Model
Related tasks

$init_signal_driver (UM-534), $signal_force (UM-539), $signal_release (UM-541)

Limitations

• When mirroring the value of a VHDL signal onto a Verilog register, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Verilog memories (arrays of registers) are not supported.

Example
module testbench;
...
reg top_sig1;
...
initial

begin
$init_signal_spy("/top/uut/inst1/sig1","/top_sig1", 1);

end
...
endmodule

In this example, the value of /top/uut/inst1/sig1 will be mirrored onto /top_sig1.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
Verilog register or VHDL signal. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object’s value
is mirrored onto the dest_object. Default is 0,
no message.

Name Type Description
Sim SE User’s Manual

$signal_force UM-539
$signal_force

The $signal_force() system task forces the value specified onto an existing VHDL signal
or Verilog register/net (called the dest_object). This allows you to force signals, registers,
or nets at any level of the design hierarchy from within a Verilog module (e.g., a testbench).

A $signal_force works the same as the force command (CR-176) with the exception that you
cannot issue a repeating force. The force will remain on the signal until a $signal_release,
a force or release command, or a subsequent $signal_force is issued. $signal_force can be
called concurrently or sequentially in a process.

Syntax
$signal_force(dest_object, value, rel_time, force_type, cancel_period,
verbose)

Returns

Nothing

Arguments

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

value string Required. Specifies the value to which the
dest_object is to be forced. The specified
value must be appropriate for the type.

rel_time integer, real, or
time

Optional. Specifies a time relative to the
current simulation time for the force to occur.
The default is 0.

force_type integer Optional. Specifies the type of force that will
be applied. The value must be one of the
following; 0 (default), 1 (deposit), 2 (drive),
or 3 (freeze). The default is "default" (which is
"freeze" for unresolved objects or "drive" for
resolved objects). See the force command
(CR-176) for further details on force type.
ModelSim SE User’s Manual

UM-540 16 - Signal Spy

Model
Related functions

$init_signal_driver (UM-534), $init_signal_spy (UM-537), $signal_release (UM-541)

Limitations

• You cannot force bits or slices of a register; you can force only the entire register.

• Verilog memories (arrays of registers) are not supported.

Example
`timescale 1 ns / 1 ns

module testbench;

initial
begin
$signal_force("/testbench/uut/blk1/reset", "1", 0, 3, , 1);
$signal_force("/testbench/uut/blk1/reset", "0", 40, 3, 200000, 1);

end

...

endmodule

The above example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced
to a "0", 200000 ns after the second $signal_force call was executed.

cancel_period integer, real, time Optional. Cancels the $signal_force command
after the specified period of time units.
Cancellation occurs at the last simulation
delta cycle of a time unit. A value of zero
cancels the force at the end of the current time
period. Default is -1. A negative value means
that the force will not be cancelled.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the value is being
forced on the dest_object at the specified time.
Default is 0, no message.

Name Type Description
Sim SE User’s Manual

$signal_release UM-541
$signal_release

The $signal_release() system task releases any force that was applied to an existing VHDL
signal or Verilog register/net (called the dest_object). This allows you to release signals,
registers, or nets at any level of the design hierarchy from within a Verilog module (e.g., a
testbench).

A $signal_release works the same as the noforce command (CR-204). $signal_release can
be called concurrently or sequentially in a process.

Syntax
$signal_release(dest_object, verbose)

Returns

Nothing

Arguments

Related functions

$init_signal_driver (UM-534), $init_signal_spy (UM-537), $signal_force (UM-539)

Limitations

• You cannot release a bit or slice of a register; you can release only the entire register.

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the signal is being
released and the time of the release. Default is
0, no message.
ModelSim SE User’s Manual

UM-542 16 - Signal Spy

Model
Example
module testbench;

reg release_flag;

always @(posedge release_flag) begin
$signal_release("/testbench/dut/blk1/data", 1);
$signal_release("/testbench/dut/blk1/clk", 1);

end

...

endmodule

The above example releases any forces on the signals data and clk when the register
release_flag transitions to a "1". Both calls will send a message to the transcript stating
which signal was released and when.
Sim SE User’s Manual

 UM-543
17 - Standard Delay Format (SDF) Timing Annotation

Chapter contents
Specifying SDF files for simulation UM-544

Instance specification UM-544
SDF specification with the GUI UM-545
Errors and warnings UM-545

VHDL VITAL SDF UM-546
SDF to VHDL generic matching UM-546
Resolving errors UM-547

Verilog SDF UM-548
The $sdf_annotate system task UM-548
SDF to Verilog construct matching UM-549
Optional edge specifications UM-552
Optional conditions UM-553
Rounded timing values UM-553

SDF for mixed VHDL and Verilog designs UM-554

Interconnect delays. UM-555

Disabling timing checks UM-555

Troubleshooting UM-556
Specifying the wrong instance UM-556
Mistaking a component or module name for an instance label . UM-557
Forgetting to specify the instance UM-557

This chapter discusses ModelSim’s implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’s built-in SDF annotator. ASIC and FPGA vendors usually provide tools that
create SDF files for use with their cell libraries. Refer to your vendor’s documentation for
details on creating SDF files for your library. Many vendors also provide instructions on
using their SDF files and libraries with ModelSim.

The SDF specification was originally created for Verilog designs, but it has also been
adopted for VHDL VITAL designs. In general, the designer does not need to be familiar
with the details of the SDF specification because the cell library provider has already
supplied tools that create SDF files that match their libraries.

Note: ModelSim will read SDF files that were compressed using gzip. Other
compression formats (e.g., Unix zip) are not supported.
ModelSim SE User’s Manual

UM-544 17 - Standard Delay Format (SDF) Timing Annotation

Model
Specifying SDF files for simulation

ModelSim supports SDF versions 1.0 through 3.0. The simulator’s built-in SDF annotator
automatically adjusts to the version of the file. Use the following vsim (CR-357) command-
line options to specify the SDF files, the desired timing values, and their associated design
instances:

-sdfmin [<instance>=]<filename>
-sdftyp [<instance>=]<filename>
-sdfmax [<instance>=]<filename>

Any number of SDF files can be applied to any instance in the design by specifying one of
the above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical,
and -sdfmax to select maximum timing values from the SDF file.

Instance specification

The instance paths in the SDF file are relative to the instance to which the SDF is applied.
Usually, this instance is an ASIC or FPGA model instantiated under a testbench. For
example, to annotate maximum timing values from the SDF file myasic.sdf to an instance
u1 under a top-level named testbench, invoke the simulator as follows:

vsim -sdfmax /testbench/u1=myasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. This is usually
incorrect because in most cases the model is instantiated under a testbench or within a
larger system level simulation. In fact, the design can have several models, each having its
own SDF file. In this case, specify an SDF file for each instance. For example,

vsim -sdfmax /system/u1=asic1.sdf -sdfmax /system/u2=asic2.sdf system
Sim SE User’s Manual

Specifying SDF files for simulation UM-545
SDF specification with the GUI

As an alternative to the command-line options, you can specify SDF files in the Simulate
dialog box under the SDF tab.

You can access this dialog by invoking the simulator without any arguments or by selecting
Simulate > Simulate (Main window). See the GUI chapter for a description of this dialog.

For Verilog designs, you can also specify SDF files by using the $sdf_annotate system
task. See "The $sdf_annotate system task" (UM-548) for more details.

Errors and warnings

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Use the -sdfnoerror option with vsim (CR-357) to
change SDF errors to warnings so that the simulation can continue. Warning messages can
be suppressed by using vsim with either the -sdfnowarn or +nosdfwarn options.

Another option is to use the SDF tab from the Simulate dialog box (shown above). Select
Disable SDF warnings (-sdfnowarn +nosdfwarn) to disable warnings, or select Reduce
SDF errors to warnings (-sdfnoerror) to change errors to warnings.

See "Troubleshooting" (UM-556) for more information on errors and warnings and how to
avoid them.
ModelSim SE User’s Manual

UM-546 17 - Standard Delay Format (SDF) Timing Annotation

Model
VHDL VITAL SDF

VHDL SDF annotation works on VITAL cells only. The IEEE 1076.4 VITAL ASIC
Modeling Specification describes how cells must be written to support SDF annotation.
Once again, the designer does not need to know the details of this specification because the
library provider has already written the VITAL cells and tools that create compatible SDF
files. However, the following summary may help you understand simulator error messages.
For additional VITAL specification information, see "VITAL specification and source
code" (UM-91).

SDF to VHDL generic matching

An SDF file contains delay and timing constraint data for cell instances in the design. The
annotator must locate the cell instances and the placeholders (VHDL generics) for the
timing data. Each type of SDF timing construct is mapped to the name of a generic as
specified by the VITAL modeling specification. The annotator locates the generic and
updates it with the timing value from the SDF file. It is an error if the annotator fails to find
the cell instance or the named generic. The following are examples of SDF constructs and
their associated generic names:

SDF construct Matching VHDL generic name

(IOPATH a y (3)) tpd_a_y

(IOPATH (posedge clk) q (1) (2)) tpd_clk_q_posedge

(INTERCONNECT u1/y u2/a (5)) tipd_a

(SETUP d (posedge clk) (5)) tsetup_d_clk_noedge_posedge

(HOLD (negedge d) (posedge clk) (5)) thold_d_clk_negedge_posedge

(SETUPHOLD d clk (5) (5)) tsetup_d_clk & thold_d_clk

(WIDTH (COND (reset==1’b0) clk) (5)) tpw_clk_reset_eq_0
Sim SE User’s Manual

VHDL VITAL SDF UM-547
Resolving errors

If the simulator finds the cell instance but not the generic then an error message is issued.
For example,

** Error (vsim-SDF-3240) myasic.sdf(18):
Instance ’/testbench/dut/u1’ does not have a generic named ’tpd_a_y’

In this case, make sure that the design is using the appropriate VITAL library cells. If it is,
then there is probably a mismatch between the SDF and the VITAL cells. You need to find
the cell instance and compare its generic names to those expected by the annotator. Look
in the VHDL source files provided by the cell library vendor.

If none of the generic names look like VITAL timing generic names, then perhaps the
VITAL library cells are not being used. If the generic names do look like VITAL timing
generic names but don’t match the names expected by the annotator, then there are several
possibilities:

• The vendor’s tools are not conforming to the VITAL specification.

• The SDF file was accidentally applied to the wrong instance. In this case, the simulator
also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

• The vendor’s library and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim (CR-357) with
the -vital2.2b option:

vsim -vital2.2b -sdfmax /testbench/u1=myasic.sdf testbench

For more information on resolving errors see "Troubleshooting" (UM-556).
ModelSim SE User’s Manual

UM-548 17 - Standard Delay Format (SDF) Timing Annotation

Model
Verilog SDF

Verilog designs can be annotated using either the simulator command-line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The
command-line options annotate the design immediately after it is loaded, but before any
simulation events take place. The $sdf_annotate task annotates the design at the time it is
called in the Verilog source code. This provides more flexibility than the command-line
options.

The $sdf_annotate system task

The syntax for $sdf_annotate is:

Syntax

$sdf_annotate
(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"],
["<mtm_spec>"], ["<scale_factor>"], ["<scale_type>"]);

Arguments

"<sdffile>"

String that specifies the SDF file. Required.

<instance>

Hierarchical name of the instance to be annotated. Optional. Defaults to the instance
where the $sdf_annotate call is made.

"<config_file>"

String that specifies the configuration file. Optional. Currently not supported, this
argument is ignored.

"<log_file>"

String that specifies the logfile. Optional. Currently not supported, this argument is
ignored.

"<mtm_spec>"

String that specifies the delay selection. Optional. The allowed strings are "minimum",
"typical", "maximum", and "tool_control". Case is ignored and the default is
"tool_control". The "tool_control" argument means to use the delay specified on the
command line by +mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

"<scale_factor>"

String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier is a real number that is used to
scale the corresponding delay in the SDF file.

"<scale_type>"

String that overrides the <mtm_spec> delay selection. Optional. The <mtm_spec>
delay selection is always used to select the delay scaling factor, but if a <scale_type> is
specified, then it will determine the min/typ/max selection from the SDF file. The
allowed strings are "from_min", "from_minimum", "from_typ", "from_typical",
"from_max", "from_maximum", and "from_mtm". Case is ignored, and the default is
"from_mtm", which means to use the <mtm_spec> value.
Sim SE User’s Manual

Verilog SDF UM-549
Examples

Optional arguments can be omitted by using commas or by leaving them out if they are at
the end of the argument list. For example, to specify only the SDF file and the instance to
which it applies:

$sdf_annotate("myasic.sdf", testbench.u1);

To also specify maximum delay values:

$sdf_annotate("myasic.sdf", testbench.u1, , , "maximum");

SDF to Verilog construct matching

The annotator matches SDF constructs to corresponding Verilog constructs in the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each
SDF construct, the annotator locates the cell instance and updates each specify path delay
or timing check that matches. An SDF construct can have multiple matches, in which case
each matching specify statement is updated with the SDF timing value. SDF constructs are
matched to Verilog constructs as follows:

IOPATH is matched to specify path delays or primitives:

The IOPATH construct usually annotates path delays. If the module contains no path
delays, then all primitives that drive the specified output port are annotated.

INTERCONNECT and PORT are matched to input ports:

Both of these constructs identify a module input or inout port and create an internal net that
is a delayed version of the port. This is called a Module Input Port Delay (MIPD). All
primitives, specify path delays, and specify timing checks connected to the original port are
reconnected to the new MIPD net.

PATHPULSE and GLOBALPATHPULSE are matched to specify path delays:

If the input and output ports are omitted in the SDF, then all path delays are matched in the
cell.

SDF Verilog

(IOPATH (posedge clk) q (3) (4)) (posedge clk => q) = 0;

(IOPATH a y (3) (4)) buf u1 (y, a);

SDF Verilog

(INTERCONNECT u1.y u2.a (5)) input a;

(PORT u2.a (5)) inout a;

SDF Verilog

(PATHPULSE a y (5) (10)) (a => y) = 0;

(GLOBALPATHPULSE a y (30) (60)) (a => y) = 0;
ModelSim SE User’s Manual

UM-550 17 - Standard Delay Format (SDF) Timing Annotation

Model
DEVICE is matched to primitives or specify path delays:

If the SDF cell instance is a primitive instance, then that primitive’s delay is annotated. If
it is a module instance, then all specify path delays are annotated that drive the output port
specified in the DEVICE construct (all path delays are annotated if the output port is
omitted). If the module contains no path delays, then all primitives that drive the specified
output port are annotated (or all primitives that drive any output port if the output port is
omitted).

SETUP is matched to $setup and $setuphold:

HOLD is matched to $hold and $setuphold:

SETUPHOLD is matched to $setup, $hold, and $setuphold:

RECOVERY is matched to $recovery:

REMOVAL is matched to $removal:

SDF Verilog

(DEVICE y (5)) and u1(y, a, b);

(DEVICE y (5)) (a => y) = 0; (b => y) = 0;

SDF Verilog

(SETUP d (posedge clk) (5)) $setup(d, posedge clk, 0);

(SETUP d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);

(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(RECOVERY (negedge reset) (posedge clk) (5)) $recovery(negedge reset, posedge clk, 0);

SDF Verilog

(REMOVAL (negedge reset) (posedge clk) (5)) $removal(negedge reset, posedge clk, 0);
Sim SE User’s Manual

Verilog SDF UM-551
RECREM is matched to $recovery, $removal, and $recrem:

SKEW is matched to $skew:

WIDTH is matched to $width:

PERIOD is matched to $period:

NOCHANGE is matched to $nochange:

SDF Verilog

(RECREM (negedge reset) (posedge clk) (5) (5)) $recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5)) $removal(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5)) $recrem(negedge reset, posedge clk, 0);

SDF Verilog

(SKEW (posedge clk1) (posedge clk2) (5)) $skew(posedge clk1, posedge clk2, 0);

SDF Verilog

(WIDTH (posedge clk) (5)) $width(posedge clk, 0);

SDF Verilog

(PERIOD (posedge clk) (5)) $period(posedge clk, 0);

SDF Verilog

(NOCHANGE (negedge write) addr (5) (5)) $nochange(negedge write, addr, 0, 0);
ModelSim SE User’s Manual

UM-552 17 - Standard Delay Format (SDF) Timing Annotation

Model
Optional edge specifications

Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

• A match occurs if the SDF port does not have an edge.

• A match occurs if the specify port does not have an edge.

• A match occurs if the SDF port edge is identical to the specify port edge.

• A match occurs if explicit edge transitions in the specify port edge overlap with the SDF
port edge.

These rules allow SDF annotation to take place even if there is a difference between the
number of edge-specific constructs in the SDF file and the Verilog specify block. For
example, the Verilog specify block may contain separate setup timing checks for a falling
and rising edge on data with respect to clock, while the SDF file may contain only a single
setup check for both edges:

In this case, the cell accommodates more accurate data than can be supplied by the tool that
created the SDF file, and both timing checks correctly receive the same value.

Likewise, the SDF file may contain more accurate data than the model can accommodate.

In this case, both SDF constructs are matched and the timing check receives the value from
the last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF file is limited to posedge and negedge. For example,

The explicit edge specifiers are 01, 0x, 10, 1x, x0, and x1. The set of [01, 0x, x1] is
equivalent to posedge, while the set of [10, 1x, x0] is equivalent to negedge. A match occurs
if any of the explicit edges in the specify port match any of the explicit edges implied by
the SDF port.

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(posedge data, posedge clk, 0);

(SETUP data (posedge clock) (5)) $setup(negedge data, posedge clk, 0);

SDF Verilog

(SETUP (posedge data) (posedge clock) (4)) $setup(data, posedge clk, 0);

(SETUP (negedge data) (posedge clock) (6)) $setup(data, posedge clk, 0);

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(data, edge[01, 0x] clk, 0);
Sim SE User’s Manual

Verilog SDF UM-553
Optional conditions

Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

• A match occurs if the SDF does not have a condition.

• A match occurs for a timing check if the SDF port condition is semantically equivalent
to the specify port condition.

• A match occurs for a path delay if the SDF condition is lexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

The annotator does not match the second condition above because the order of r1 and r2 are
reversed.

Rounded timing values

The SDF TIMESCALE construct specifies time units of values in the SDF file. The
annotator rounds timing values from the SDF file to the time precision of the module that
is annotated. For example, if the SDF TIMESCALE is 1ns and a value of .016 is annotated
to a path delay in a module having a time precision of 10ps (from the timescale directive),
then the path delay receives a value of 20ps. The SDF value of 16ps is rounded to 20ps.
Interconnect delays are rounded to the time precision of the module that contains the
annotated MIPD.

SDF Verilog

(SETUP data (COND (reset!=1) (posedge clock)) (5)) $setup(data, posedge clk &&& (reset==0), 0);

SDF Verilog

(COND (r1 || r2) (IOPATH clk q (5))) if (r1 || r2) (clk => q) = 5; // matches

(COND (r1 || r2) (IOPATH clk q (5))) if (r2 || r1) (clk => q) = 5; // does not match
ModelSim SE User’s Manual

UM-554 17 - Standard Delay Format (SDF) Timing Annotation

Model
SDF for mixed VHDL and Verilog designs

Annotation of a mixed VHDL and Verilog design is very flexible. VHDL VITAL cells and
Verilog cells can be annotated from the same SDF file. This flexibility is available only by
using the simulator’s SDF command-line options. The Verilog $sdf_annotate system task
can annotate Verilog cells only. See the vsim command (CR-357) for more information on
SDF command-line options.
Sim SE User’s Manual

Interconnect delays UM-555
Interconnect delays

An interconnect delay represents the delay from the output of one device to the input of
another. ModelSim can model single interconnect delays or multisource interconnect
delays for Verilog, VHDL/VITAL, or mixed designs. See the vsim command for more
information on the relevant command-line arguments.

Timing checks are performed on the interconnect delayed versions of input ports. This may
result in misleading timing constraint violations, because the ports may satisfy the
constraint while the delayed versions may not. If the simulator seems to report incorrect
violations, be sure to account for the effect of interconnect delays.

Disabling timing checks

ModelSim offers a number of options for disabling timing checks on a "global" or
individual basis. The table below provides a summary of those options. See the command
and argument descriptions in the ModelSim Command Reference for more details.

Command and argument Effect

tcheck_set (CR-267) modifies reporting or X generation status on one or more timing
checks

tcheck_status (CR-269) prints to the Transcript the current status of one or more timing checks

vlog +notimingchecks disables timing check system tasks for all instances in the specified
Verilog design

vlog +nospecify disables specify path delays and timing checks for all instances in the
specified Verilog design

vsim +no_neg_tchk disables negative timing check limits by setting them to zero for all
instances in the specified design

vsim +no_notifier disables the toggling of the notifier register argument of the timing
check system tasks for all instances in the specified design

vsim +no_tchk_msg disables error messages issued by timing check system tasks when
timing check violations occur for all instances in the specified design

vsim +notimingchecks disables Verilog and VITAL timing checks for all instances in the
specified design
ModelSim SE User’s Manual

UM-556 17 - Standard Delay Format (SDF) Timing Annotation

Model
Troubleshooting

Specifying the wrong instance

By far, the most common mistake in SDF annotation is to specify the wrong instance to the
simulator’s SDF options. The most common case is to leave off the instance altogether,
which is the same as selecting the top-level design unit. This is generally wrong because
the instance paths in the SDF are relative to the ASIC or FPGA model, which is usually
instantiated under a top-level testbench. See "Instance specification" (UM-544) for an
example.

A common example for both VHDL and Verilog testbenches is provided below. For
simplicity, the test benches do nothing more than instantiate a model that has no ports.

VHDL testbench

entity testbench is end;

architecture only of testbench is
component myasic
end component;

begin
dut : myasic;

end;

Verilog testbench

module testbench;
myasic dut();

endmodule

The name of the model is myasic and the instance label is dut. For either testbench, an
appropriate simulator invocation might be:

vsim -sdfmax /testbench/dut=myasic.sdf testbench

Optionally, you can leave off the name of the top-level:

vsim -sdfmax /dut=myasic.sdf testbench

The important thing is to select the instance for which the SDF is intended. If the model is
deep within the design hierarchy, an easy way to find the instance name is to first invoke
the simulator without SDF options, open the structure window, navigate to the model
instance, select it, and enter the environment command (CR-166). This command displays
the instance name that should be used in the SDF command-line option.
Sim SE User’s Manual

Troubleshooting UM-557
Mistaking a component or module name for an instance label

Another common error is to specify the component or module name rather than the instance
label. For example, the following invocation is wrong for the above testbenches:

vsim -sdfmax /testbench/myasic=myasic.sdf testbench

This results in the following error message:

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/myasic’.

Forgetting to specify the instance

If you leave off the instance altogether, then the simulator issues a message for each
instance path in the SDF that is not found in the design. For example,

vsim -sdfmax myasic.sdf testbench

Results in:

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u1’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u2’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u3’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u4’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u5’

** Warning (vsim-SDF-3432) myasic.sdf:
This file is probably applied to the wrong instance.

** Warning (vsim-SDF-3432) myasic.sdf:
Ignoring subsequent missing instances from this file.

After annotation is done, the simulator issues a summary of how many instances were not
found and possibly a suggestion for a qualifying instance:

** Warning (vsim-SDF-3440) myasic.sdf:
Failed to find any of the 358 instances from this file.

** Warning (vsim-SDF-3442) myasic.sdf:
Try instance ’/testbench/dut’. It contains all instance paths from this
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see "Resolving errors" (UM-547) for specific VHDL VITAL SDF troubleshooting.
ModelSim SE User’s Manual

UM-558 17 - Standard Delay Format (SDF) Timing Annotation

Model
Sim SE User’s Manual

 UM-559
18 - Value Change Dump (VCD) Files

Chapter contents
Creating a VCD file UM-560

Flow for four-state VCD file UM-560
Flow for extended VCD file UM-560
Case sensitivity UM-560
Checkpoint/restore and writing VCD files UM-561

Using extended VCD as stimulus UM-562
Simulating with input values from a VCD file UM-562
Replacing instances with output values from a VCD file . . . UM-563

ModelSim VCD commands and VCD tasks UM-565
Compressing files with VCD tasks UM-566

A VCD file from source to output UM-567
VHDL source code UM-567
VCD simulator commands UM-567
VCD output UM-568

Capturing port driver data UM-571
Supported TSSI states UM-571
Strength values UM-572
Port identifier code UM-572
Example VCD output from vcd dumpports UM-573

This chapter describes how to use VCD files in ModelSim. The VCD file format is
specified in the IEEE 1364 standard. It is an ASCII file containing header information,
variable definitions, and variable value changes. VCD is in common use for Verilog
designs, and is controlled by VCD system task calls in the Verilog source code. ModelSim
provides command equivalents for these system tasks and extends VCD support to VHDL
designs. The ModelSim commands can be used on VHDL, Verilog, or mixed designs.

If you need vendor-specific ASIC design-flow documentation that incorporates VCD,
please contact your ASIC vendor.
ModelSim SE User’s Manual

UM-560 18 - Value Change Dump (VCD) Files

Model
Creating a VCD file

There are two flows in ModelSim for creating a VCD file. One flow produces a four-state
VCD file with variable changes in 0, 1, x, and z with no strength information; the other
produces an extended VCD file with variable changes in all states and strength information
and port driver data.

Both flows will also capture port driver changes unless filtered out with optional
command-line arguments.

Flow for four-state VCD file

First, compile and load the design:

% cd ~/modeltech/examples
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

Next, with the design loaded, specify the VCD file name with the vcd file command (CR-

294) and add items to the file with the vcd add command (CR-284):

VSIM 1> vcd file myvcdfile.vcd
VSIM 2> vcd add /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be a VCD file in the working directory.

Flow for extended VCD file

First, compile and load the design:

% cd ~/modeltech/examples
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

Next, with the design loaded, specify the VCD file name and items to add with the vcd
dumpports command (CR-287):

VSIM 1> vcd dumpports -file myvcdfile.vcd /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be an extended VCD file in the working directory.

Case sensitivity

VHDL is not case sensitive so ModelSim converts all signal names to lower case when it
produces a VCD file. Conversely, Verilog designs are case sensitive so ModelSim
maintains case when it produces a VCD file.
Sim SE User’s Manual

Creating a VCD file UM-561
Checkpoint/restore and writing VCD files

ModelSim versions 5.7d and later support checkpoint/restore while reading or writing a
VCD file. If a checkpoint occurs while ModelSim is writing a VCD file, the entire VCD
file is copied into the checkpoint file. Since VCD files can be very large, it is possible that
disk space problems may occur. Consequently, ModelSim issues a warning in this
situation.
ModelSim SE User’s Manual

UM-562 18 - Value Change Dump (VCD) Files

Model
Using extended VCD as stimulus

You can use an extended VCD file as stimulus to re-simulate your design. There are two
ways to do this: 1) simulate the top level of a design unit with the input values from an
extended VCD file; and 2) specify one or more instances in a design to be replaced with the
output values from the associated VCD file.

Simulating with input values from a VCD file

When simulating with inputs from an extended VCD file, you can simulate only one design
unit at a time. In other words, you can apply the VCD file inputs only to the top level of the
design unit for which you captured port data.

The general procedure includes two steps:

1 Create a VCD file for a single design unit using the vcd dumpports command (CR-287).

2 Resimulate the single design unit using the -vcdstim argument to vsim (CR-357). Note
that -vcdstim works only with VCD files that were created by a ModelSim simulation.

Example 1 — Verilog counter

First, create the VCD file for the single instance using vcd dumpports:

% cd ~/modeltech/examples
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter
VSIM 1> vcd dumpports -file counter.vcd /test_counter/dut/*
VSIM 2> run
VSIM 3> quit -f

Next, rerun the counter without the testbench, using the -vcdstim argument:

% vsim -vcdstim counter.vcd counter
VSIM 1> add wave /*
VSIM 2> run 200

Example 2 — VHDL adder

First, create the VCD file using vcd dumpports:

% cd ~/modeltech/examples
% vlib work
% vcom gates.vhd adder.vhd stimulus.vhd
% vsim testbench2
VSIM 1> vcd dumpports -file addern.vcd /testbench2/uut/*
VSIM 2> run 1000
VSIM 3> quit -f

Next, rerun the adder without the testbench, using the -vcdstim argument:

% vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"
Sim SE User’s Manual

Using extended VCD as stimulus UM-563
Example 3 — Mixed-HDL design

First, create three VCD files, one for each module:

% cd ~/modeltech/examples/mixedHDL
% vlib work
% vlog cache.v memory.v proc.v
% vcom util.vhd set.vhd top.vhd
% vsim top
VSIM 1> vcd dumpports -file proc.vcd /top/p/*
VSIM 2> vcd dumpports -file cache.vcd /top/c/*
VSIM 3> vcd dumpports -file memory.vcd /top/m/*
VSIM 4> run 1000
VSIM 5> quit -f

Next, rerun each module separately, using the captured VCD stimulus:

% vsim -vcdstim proc.vcd proc -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim cache.vcd cache -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim memory.vcd memory -do "add wave /*; run 1000"
VSIM 1> quit -f

Replacing instances with output values from a VCD file

Replacing instances with output values from a VCD file lets you simulate without the
instance’s source or even the compiled object. The general procedure includes two steps:

1 Create VCD files for one or more instances in your design using the vcd dumpports
command (CR-287). If necessary, use the -vcdstim switch to handle port order problems
(see below).

2 Re-simulate your design using the -vcdstim <instance>=<filename> argument to vsim
(CR-357). Note that this works only with VCD files that were created by a ModelSim
simulation.

Example

In the following example, the three instances /top/p, /top/c, and /top/m are replaced in
simulation by the output values found in the corresponding VCD files.

First, create VCD files for all instances you want to replace:

vcd dumpports -vcdstim -file proc.vcd /top/p/*
vcd dumpports -vcdstim -file cache.vcd /top/c/*
vcd dumpports -vcdstim -file memory.vcd /top/m/*
run 1000

Next, simulate your design and map the instances to the VCD files you created:

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd
-vcdstim /top/m=memory.vcd
ModelSim SE User’s Manual

UM-564 18 - Value Change Dump (VCD) Files

Model
Port order issues

The -vcdstim argument to the vcd dumpports command ensures the order that port names
appear in the VCD file matches the order that they are declared in the instance’s module or
entity declaration. Consider the following module declaration:

module proc(clk, addr, data, rw, strb, rdy);
input clk, rdy;
output addr, rw, strb;
inout data;

The order of the ports in the module line (clk, addr, data, ...) does not match the order
of those ports in the input, output, and inout lines (clk, rdy, addr, ...). In this case the
-vcdstim argument to the vcd dumpports command needs to be used.

In cases where the order is the same, you do not need to use the -vcdstim argument to vcd
dumpports. Also, module declarations of the form:

module proc(input clk, output addr, inout data, ...)

do not require use of the argument.
Sim SE User’s Manual

ModelSim VCD commands and VCD tasks UM-565
ModelSim VCD commands and VCD tasks

ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the
VCD file along with the results of those commands. The table below maps the VCD
commands to their associated tasks.

ModelSim versions 5.5 and later also support extended VCD (dumpports system tasks).
The table below maps the VCD dumpports commands to their associated tasks.

ModelSim supports multiple VCD files. This functionality is an extension of the IEEE Std
1364 specification. The tasks behave the same as the IEEE equivalent tasks such as
$dumpfile, $dumpvar, etc. The difference is that $fdumpfile can be called multiple times
to create more than one VCD file, and the remaining tasks require a filename argument to
associate their actions with a specific file.

VCD commands VCD system tasks

vcd add (CR-284) $dumpvars

vcd checkpoint (CR-285) $dumpall

vcd file (CR-294) $dumpfile

vcd flush (CR-298) $dumpflush

vcd limit (CR-299) $dumplimit

vcd off (CR-300) $dumpoff

vcd on (CR-301) $dumpon

VCD dumpports commands VCD system tasks

vcd dumpports (CR-287) $dumpports

vcd dumpportsall (CR-289) $dumpportsall

vcd dumpportsflush (CR-290) $dumpportsflush

vcd dumpportslimit (CR-291) $dumpportslimit

vcd dumpportsoff (CR-292) $dumpportsoff

vcd dumpportson (CR-293) $dumpportson

VCD commands VCD system tasks

vcd add (CR-284) -file <filename> $fdumpvars

vcd checkpoint (CR-285) <filename> $fdumpall

vcd files (CR-296) <filename> $fdumpfile

vcd flush (CR-298) <filename> $fdumpflush
ModelSim SE User’s Manual

UM-566 18 - Value Change Dump (VCD) Files

Model
Compressing files with VCD tasks

ModelSim can produce compressed VCD files using the gzip compression algorithm.
Since we cannot change the syntax of the system tasks, we act on the extension of the output
file name. If you specify a .gz extension on the filename, ModelSim will compress the
output.

vcd limit (CR-299) <filename> $fdumplimit

vcd off (CR-300) <filename> $fdumpoff

vcd on (CR-301) <filename> $fdumpon

Important: Note that two commands (vcd file and vcd files) are available to specify a
filename and state mapping for a VCD file. Vcd file allows for only one VCD file and
exists for backwards compatibility with ModelSim versions prior to 5.5. Vcd files allows
for creation of multiple VCD files and is the preferred command to use in ModelSim
versions 5.5 and later.

VCD commands VCD system tasks
Sim SE User’s Manual

A VCD file from source to output UM-567
A VCD file from source to output

The following example shows the VHDL source, a set of simulator commands, and the
resulting VCD output.

VHDL source code

The design is a simple shifter device represented by the following VHDL source code:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity SHIFTER_MOD is
port (CLK, RESET, data_in : IN STD_LOGIC;

Q : INOUT STD_LOGIC_VECTOR(8 downto 0));
END SHIFTER_MOD ;

architecture RTL of SHIFTER_MOD is
begin

process (CLK,RESET)
begin

if (RESET = '1') then
Q <= (others => '0') ;

elsif (CLK'event and CLK = '1') then
Q <= Q(Q'left - 1 downto 0) & data_in ;

end if ;
end process ;

end ;

VCD simulator commands

At simulator time zero, the designer executes the following commands:

vcd file output.vcd
vcd add -r *
force reset 1 0
force data_in 0 0
force clk 0 0
run 100
force clk 1 0, 0 50 -repeat 100
run 100
vcd off
force reset 0 0
force data_in 1 0
run 100
vcd on
run 850
force reset 1 0
run 50
vcd checkpoint
quit -sim
ModelSim SE User’s Manual

UM-568 18 - Value Change Dump (VCD) Files

Model
VCD output

The VCD file created as a result of the preceding scenario would be called output.vcd. The
following pages show how it would look.

VCD output

$date
Thu Sep 18 11:07:43 2003

$end
$version

ModelSim Version 5.8
$end
$timescale

1ns
$end
$scope module shifter_mod $end
$var wire 1 ! clk $end
$var wire 1 " reset $end
$var wire 1 # data_in $end
$var wire 1 $ q [8] $end
$var wire 1 % q [7] $end
$var wire 1 & q [6] $end
$var wire 1 ' q [5] $end
$var wire 1 (q [4] $end
$var wire 1) q [3] $end
$var wire 1 * q [2] $end
$var wire 1 + q [1] $end
$var wire 1 , q [0] $end
$upscope $end
$enddefinitions $end
#0
$dumpvars
0!
1"
0#
0$
0%
0&
0'
0(
0)
0*
0+
0,
$end
#100
1!
#150
0!
#200
1!
$dumpoff
x!
x"
x#
x$
x%
x&
x'
x(
Sim SE User’s Manual

A VCD file from source to output UM-569
x)
x*
x+
x,
$end
#300
$dumpon
1!
0"
1#
0$
0%
0&
0'
0(
0)
0*
0+
1,
$end
#350
0!
#400
1!
1+
#450
0!
#500
1!
1*
#550
0!
#600
1!
1)
#650
0!
#700
1!
1(
#750
0!
#800
1!
1'
#850
0!
#900
1!
1&
#950
0!
#1000
1!
1%
#1050
0!
#1100
1!
1$
#1150
ModelSim SE User’s Manual

UM-570 18 - Value Change Dump (VCD) Files

Model
0!
1"
0,
0+
0*
0)
0(
0'
0&
0%
0$
#1200
1!
$dumpall
1!
1"
1#
0$
0%
0&
0'
0(
0)
0*
0+
0,
$end
Sim SE User’s Manual

Capturing port driver data UM-571
Capturing port driver data

Some ASIC vendors’ toolkits read a VCD file format that provides details on port drivers.
This information can be used, for example, to drive a tester. See the ASIC vendor’s
documentation for toolkit specific information.

In ModelSim use the vcd dumpports command (CR-287) to create a VCD file that captures
port driver data.

Port driver direction information is captured as TSSI states in the VCD file. Each time an
external or internal port driver changes values, a new value change is recorded in the VCD
file with the following format:

 p<TSSI state> <0 strength> <1 strength> <identifier_code>

Supported TSSI states

The supported <TSSI states> are:

Input (testfixture) Output (dut)

D low L low

U high H high

N unknown X unknown

Z tri-state T tri-state

d low (two or more
drivers active)

l low (two or more
drivers active)

u high (two or more
drivers active)

h high (two or more
drivers active)

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

? unknown (both input and output are driving unknown)

F three-state (input and output unconnected)

A unknown (input driving low and output driving high)

a unknown (input driving low and output driving unknown)

B unknown (input driving high and output driving low)

b unknown (input driving high and output driving unknown)

C unknown (input driving unknown and output driving low)

c unknown (input driving unknown and output driving high)
ModelSim SE User’s Manual

UM-572 18 - Value Change Dump (VCD) Files

Model
Strength values

The <strength> values are based on Verilog strengths:

Port identifier code

The <identifier_code> is an integer preceded by < that starts at zero and is incremented for
each port in the order the ports are specified. Also, the variable type recorded in the VCD
header is "port".

f unknown (input and output three-stated)

Unknown direction

Strength VHDL std_logic mappings

0 highz ’Z’

1 small

2 medium

3 weak

4 large

5 pull ’W’,’H’,’L’

6 strong ’U’,’X’,’0’,’1’,’-’

 7 supply
Sim SE User’s Manual

Capturing port driver data UM-573
Example VCD output from vcd dumpports

The following is an example VCD file created with the vcd dumpports command.

$comment
File created using the following command:

vcd file myvcdfile.vcd -dumpports
$end
$date

Thu Sep 18 07:35:58 2003
$end
$version

dumpports ModelSim Version 5.8
$end
$timescale

1ns
$end
$scope module test_counter $end
$scope module dut $end
$var port 1 <0 count [7] $end
$var port 1 <1 count [6] $end
$var port 1 <2 count [5] $end
$var port 1 <3 count [4] $end
$var port 1 <4 count [3] $end
$var port 1 <5 count [2] $end
$var port 1 <6 count [1] $end
$var port 1 <7 count [0] $end
$var port 1 <8 clk $end
$var port 1 <9 reset $end
$upscope $end
$upscope $end
$enddefinitions $end
#0
$dumpports
pX 6 6 <7
pX 6 6 <6
pX 6 6 <5
pX 6 6 <4
pX 6 6 <3
pX 6 6 <2
pX 6 6 <1
pX 6 6 <0
pD 6 0 <9
pD 6 0 <8
$end
#5
pU 0 6 <9
#8
pL 6 0 <7
pL 6 0 <6
pL 6 0 <5
pL 6 0 <4
pL 6 0 <3
pL 6 0 <2
pL 6 0 <1
pL 6 0 <0
#9
pD 6 0 <9
#10
pU 0 6 <8
#12
ModelSim SE User’s Manual

UM-574 18 - Value Change Dump (VCD) Files

Model
pH 0 6 <7
#20
pD 6 0 <8
#30
pU 0 6 <8
#32
pL 6 0 <7
pH 0 6 <6
#40
pD 6 0 <8
#50
pU 0 6 <8
#52
pH 0 6 <7
#60
pD 6 0 <8
#70
pU 0 6 <8
#72
pL 6 0 <7
pL 6 0 <6
pH 0 6 <5
#80
pD 6 0 <8
#90
pU 0 6 <8
#92
pH 0 6 <7
#100
pD 6 0 <8
$vcdclose
#100
$end
Sim SE User’s Manual

 UM-575
19 - Logic Modeling SmartModels

Chapter contents
VHDL SmartModel interface UM-576

Creating foreign architectures with sm_entity UM-577
Vector ports UM-579
Command channel. UM-580
SmartModel Windows UM-581
Memory arrays UM-582

Verilog SmartModel interface UM-583
Linking the LMTV interface to the simulator. UM-583

The Logic Modeling SWIFT-based SmartModel library can be used with ModelSim VHDL and
Verilog. The SmartModel library is a collection of behavioral models supplied in binary form
with a procedural interface that is accessed by the simulator. This chapter describes how to use
the SmartModel library with ModelSim.

The SmartModel library must be obtained from Logic Modeling along with the
documentation that describes how to use it. This chapter only describes the specifics of
using the library with ModelSim.

A 32-bit SmartModel will not run with a 64-bit version of SE. When trying to load the
operating system specific 32-bit library into the 64-bit executable, the pointer sizes will be
incorrect.
ModelSim SE User’s Manual

UM-576 19 - Logic Modeling SmartModels

Model
VHDL SmartModel interface

ModelSim VHDL interfaces to a SmartModel through a foreign architecture. The foreign
architecture contains a foreign attribute string that associates a specific SmartModel with
the architecture. On elaboration of the foreign architecture, the simulator automatically
loads the SmartModel library software and establishes communication with the specific
SmartModel.

The ModelSim software locates the SmartModel interface software based on entries in the
modelsim.ini initialization file. The simulator and the sm_entity tool (for creating foreign
architectures) both depend on these entries being set correctly. These entries are found
under the [lmc] section of the default modelsim.ini file located in the ModelSim installation
directory. The default settings are as follows:

[lmc]
; ModelSim's interface to Logic Modeling's SmartModel SWIFT software
libsm = $MODEL_TECH/libsm.sl
; ModelSim's interface to Logic Modeling's SmartModel SWIFT software (Windows
NT)
; libsm = $MODEL_TECH/libsm.dll
; Logic Modeling's SmartModel SWIFT software (HP 9000 Series 700)
; libswift = $LMC_HOME/lib/hp700.lib/libswift.sl
; Logic Modeling's SmartModel SWIFT software (IBM RISC System/6000)
; libswift = $LMC_HOME/lib/ibmrs.lib/swift.o
; Logic Modeling's SmartModel SWIFT software (Sun4 Solaris)
; libswift = $LMC_HOME/lib/sun4Solaris.lib/libswift.so
; Logic Modeling's SmartModel SWIFT software (Windows NT)
; libswift = $LMC_HOME/lib/pcnt.lib/libswift.dll
; Logic Modeling's SmartModel SWIFT software (Linux)
; libswift = $LMC_HOME/lib/x86_linux.lib/libswift.so

The libsm entry points to the ModelSim dynamic link library that interfaces the foreign
architecture to the SmartModel software. The libswift entry points to the Logic Modeling
dynamic link library software that accesses the SmartModels. The simulator automatically
loads both the libsm and libswift libraries when it elaborates a SmartModel foreign
architecture.

By default, the libsm entry points to the libsm.sl supplied in the ModelSim installation
directory indicated by the MODEL_TECH environment variable. ModelSim
automatically sets the MODEL_TECH environment variable to the appropriate directory
containing the executables and binaries for the current operating system. If you are running
the Windows operating system, then you must comment out the default libsm entry
(precede the line with the ";" character) and uncomment the libsm entry for the Windows
operating system.

Uncomment the appropriate libswift entry for your operating system. The LMC_HOME
environment variable must be set to the root of the SmartModel library installation
directory. Consult Logic Modeling's documentation for details.
Sim SE User’s Manual

VHDL SmartModel interface UM-577
Creating foreign architectures with sm_entity

The ModelSim sm_entity tool automatically creates entities and foreign architectures for
SmartModels. Its usage is as follows:

Syntax

sm_entity
[-] [-xe] [-xa] [-c] [-all] [-v] [-93] [<SmartModelName>...]

Arguments

-

Read SmartModel names from standard input.

-xe

Do not generate entity declarations.

-xa

Do not generate architecture bodies.

-c

Generate component declarations.

-all

Select all models installed in the SmartModel library.

-v

Display progress messages.

-93

Use extended identifiers where needed.

<SmartModelName>

Name of a SmartModel (see the SmartModel library documentation for details on
SmartModel names).

By default, the sm_entity tool writes an entity and foreign architecture to stdout for each
SmartModel name listed on the command line. Optionally, you can include the component
declaration (-c), exclude the entity (-xe), and exclude the architecture (-xa).

The simplest way to prepare SmartModels for use with ModelSim VHDL is to generate the
entities and foreign architectures for all installed SmartModels, and compile them into a
library named lmc. This is easily accomplished with the following commands:

% sm_entity -all > sml.vhd
% vlib lmc
% vcom -work lmc sml.vhd

To instantiate the SmartModels in your VHDL design, you also need to generate
component declarations for the SmartModels. Add these component declarations to a
package named sml (for example), and compile the package into the lmc library:

% sm_entity -all -c -xe -xa > smlcomp.vhd
ModelSim SE User’s Manual

UM-578 19 - Logic Modeling SmartModels

Model
Edit the resulting smlcomp.vhd file to turn it into a package of SmartModel component
declarations as follows:

library ieee;
use ieee.std_logic_1164.all;
package sml is

<component declarations go here>
end sml;

Compile the package into the lmc library:

% vcom -work lmc smlcomp.vhd

The SmartModels can now be referenced in your design by adding the following library
and use clauses to your code:

library lmc;
use lmc.sml.all;

The following is an example of an entity and foreign architecture created by sm_entity for
the cy7c285 SmartModel.

library ieee;
use ieee.std_logic_1164.all;

entity cy7c285 is
generic (TimingVersion : STRING := "CY7C285-65";

DelayRange : STRING := "Max";
MemoryFile : STRING := "memory");

port (A0 : in std_logic;
A1 : in std_logic;
A2 : in std_logic;
A3 : in std_logic;
A4 : in std_logic;
A5 : in std_logic;
A6 : in std_logic;
A7 : in std_logic;
A8 : in std_logic;
A9 : in std_logic;
A10 : in std_logic;
A11 : in std_logic;
A12 : in std_logic;
A13 : in std_logic;
A14 : in std_logic;
A15 : in std_logic;
CS : in std_logic;
O0 : out std_logic;
O1 : out std_logic;
O2 : out std_logic;
O3 : out std_logic;
O4 : out std_logic;
O5 : out std_logic;
O6 : out std_logic;
O7 : out std_logic;
WAIT_PORT : inout std_logic);

end;

architecture SmartModel of cy7c285 is
attribute FOREIGN : STRING;
attribute FOREIGN of SmartModel : architecture is

"sm_init $MODEL_TECH/libsm.sl ; cy7c285";
begin
end SmartModel;
Sim SE User’s Manual

VHDL SmartModel interface UM-579
Entity details

• The entity name is the SmartModel name (you can manually change this name if you
like).

• The port names are the same as the SmartModel port names (these names must not be
changed). If the SmartModel port name is not a valid VHDL identifier, then sm_entity
automatically converts it to a valid name. If sm_entity is invoked with the -93 option,
then the identifier is converted to an extended identifier, and the resulting entity must also
be compiled with the -93 option. If the -93 option had been specified in the example
above, then WAIT would have been converted to \WAIT\. Note that in this example the
port WAIT was converted to WAIT_PORT because wait is a VHDL reserved word.

• The port types are std_logic. This data type supports the full range of SmartModel logic
states.

• The DelayRange, TimingVersion, and MemoryFile generics represent the SmartModel
attributes of the same name. Consult your SmartModel library documentation for a
description of these attributes (and others). Sm_entity creates a generic for each attribute
of the particular SmartModel. The default generic value is the default attribute value that
the SmartModel has supplied to sm_entity.

Architecture details

• The first part of the foreign attribute string (sm_init) is the same for all SmartModels.

• The second part ($MODEL_TECH/libsm.sl) is taken from the libsm entry in the
initialization file, modelsim.ini.

• The third part (cy7c285) is the SmartModel name. This name correlates the architecture
with the SmartModel at elaboration.

Vector ports

The entities generated by sm_entity only contain single-bit ports, never vectored ports.
This is necessary because ModelSim correlates entity ports with the SmartModel SWIFT
interface by name. However, for ease of use in component instantiations, you may want to
create a custom component declaration and component specification that groups ports into
vectors. You can also rename and reorder the ports in the component declaration. You can
also reorder the ports in the entity declaration, but you can't rename them!

The following is an example component declaration and specification that groups the
address and data ports of the CY7C285 SmartModel:

component cy7c285
generic (TimingVersion : STRING := "CY7C285-65";

DelayRange : STRING := "Max";
MemoryFile : STRING := "memory");

port (A : in std_logic_vector (15 downto 0);
CS : in std_logic;
O : out std_logic_vector (7 downto 0);
WAIT_PORT : inout std_logic);

end component;

for all: cy7c285
use entity work.cy7c285
port map (A0 => A(0),

A1 => A(1),
ModelSim SE User’s Manual

UM-580 19 - Logic Modeling SmartModels

Model
A2 => A(2),
A3 => A(3),
A4 => A(4),
A5 => A(5),
A6 => A(6),
A7 => A(7),
A8 => A(8),
A9 => A(9),
A10 => A(10),
A11 => A(11),
A12 => A(12),
A13 => A(13),
A14 => A(14),
A15 => A(15),
CS => CS,
O0 => O(0),
O1 => O(1),
O2 => O(2),
O3 => O(3),
O4 => O(4),
O5 => O(5),
O6 => O(6),
O7 => O(7),
WAIT_PORT => WAIT_PORT);

Command channel

The command channel is a SmartModel feature that lets you invoke SmartModel specific
commands. These commands are documented in the SmartModel library documentation
from Synopsys. ModelSim provides access to the Command Channel from the command
line. The form of a SmartModel command is:

lmc <instance_name>|-all "<SmartModel command>"

The instance_name argument is either a full hierarchical name or a relative name of a
SmartModel instance. A relative name is relative to the current environment setting (see
environment command (CR-166)). For example, to turn timing checks off for SmartModel
/top/u1:

lmc /top/u1 "SetConstraints Off"

Use -all to apply the command to all SmartModel instances. For example, to turn timing
checks off for all SmartModel instances:

lmc -all "SetConstraints Off"

There are also some SmartModel commands that apply globally to the current simulation
session rather than to models. The form of a SmartModel session command is:

lmcsession "<SmartModel session command>"
Sim SE User’s Manual

VHDL SmartModel interface UM-581
SmartModel Windows

Some models in the SmartModel library provide access to internal registers with a feature
called SmartModel Windows. Refer to Logic Modeling’s SmartModel library
documentation (available on Synopsys’ web site) for details on this feature. The simulator
interface to this feature is described below.

Window names that are not valid VHDL or Verilog identifiers are converted to VHDL
extended identifiers. For example, with a window named z1I10.GSR.OR, ModelSim will
treat the name as \z1I10.GSR.OR\ (for all commands including lmcwin, add wave, and
examine). You must then use that name in all commands. For example,

add wave /top/swift_model/\z1I10.GSR.OR\

Extended identifiers are case sensitive.

ReportStatus

The ReportStatus command displays model information, including the names of window
registers. For example,

lmc /top/u1 ReportStatus

SmartModel Windows description:

WA "Read-Only (Read Only)"
WB "1-bit"
WC "64-bit"

This model contains window registers named wa, wb, and wc. These names can be used in
subsequent window (lmcwin) commands.

SmartModel lmcwin commands

The following window commands are supported:

• lmcwin read <window_instance> [-<radix>]

• lmcwin write <window_instance> <value>

• lmcwin enable <window_instance>

• lmcwin disable <window_instance>

• lmcwin release <window_instance>

Each command requires a window instance argument that identifies a specific model
instance and window name. For example, /top/u1/wa refers to window wa in model
instance /top/u1.

lmcwin read

The lmcwin read command displays the current value of a window. The optional radix
argument is -binary, -decimal, or -hexadecimal (these names can be abbreviated). The
default is to display the value using the std_logic characters. For example, the following
command displays the 64-bit window wc in hexadecimal:

lmcwin read /top/u1/wc -h
ModelSim SE User’s Manual

UM-582 19 - Logic Modeling SmartModels

Model
lmcwin write

The lmcwin write command writes a value into a window. The format of the value
argument is the same as used in other simulator commands that take value arguments. For
example, to write 1 to window wb, and all 1’s to window wc:

lmcwin write /top/u1/wb 1
lmcwin write /top/u1/wc X"FFFFFFFFFFFFFFFF"

lmcwin enable

The lmcwin enable command enables continuous monitoring of a window. The specified
window is added to the model instance as a signal (with the same name as the window) of
type std_logic or std_logic_vector. This signal's values can then be referenced in simulator
commands that read signal values, such as the add list command (CR-55) shown below. The
window signal is continuously updated to reflect the value in the model. For example, to
list window wa:

lmcwin enable /top/u1/wa
add list /top/u1/wa

lmcwin disable

The lmcwin disable command disables continuous monitoring of a window. The window
signal is not deleted, but it no longer is updated when the model’s window register changes
value. For example, to disable continuous monitoring of window wa:

lmcwin disable /top/u1/wa

lmcwin release

Some windows are actually nets, and the lmcwin write command behaves more like a
continuous force on the net. The lmcwin release command disables the effect of a previous
lmcwin write command on a window net.

Memory arrays

A memory model usually makes the entire register array available as a window. In this case,
the window commands operate only on a single element at a time. The element is selected
as an array reference in the window instance specification. For example, to read element 5
from the window memory mem:

lmcwin read /top/u2/mem(5)

Omitting the element specification defaults to element 0. Also, continuous monitoring is
limited to a single array element. The associated window signal is updated with the most
recently enabled element for continuous monitoring.
Sim SE User’s Manual

Verilog SmartModel interface UM-583
Verilog SmartModel interface

The SWIFT SmartModel library, beginning with release r40b, provides an optional library
of Verilog modules and a PLI application that communicates between a simulator's PLI and
the SWIFT simulator interface. The Logic Modeling documentation refers to this as the
Logic Models to Verilog (LMTV) interface. To install this option, you must select the
simulator type "Verilog" when you run Logic Modeling’s SmartInstall program.

Linking the LMTV interface to the simulator

Synopsys provides a dynamically loadable library that links ModelSim to the LMTV
interface. See chapter 5, "Using MTI Verilog with Synopsys Models," in the "Simulator
Configuration Guide for Synopsys Models" (available on Synopsys’ web site) for
directions on how to link to this library.
ModelSim SE User’s Manual

UM-584 19 - Logic Modeling SmartModels

Model
Sim SE User’s Manual

 UM-585
20 - Logic Modeling hardware models

Chapter contents
VHDL hardware model interface UM-586

Creating foreign architectures with hm_entity UM-587
Vector ports UM-589
Hardware model commands UM-590

Logic Modeling hardware models can be used with ModelSim VHDL and Verilog. A
hardware model allows simulation of a device using the actual silicon installed as a
hardware model in one of Logic Modeling's hardware modeling systems. The hardware
modeling system is a network resource with a procedural interface that is accessed by the
simulator. This chapter describes how to use Logic Modeling hardware models with
ModelSim.

Note: Please refer to Logic Modeling documentation from Synopsys for details on using
the hardware modeler. This chapter only describes the specifics of using hardware
models with ModelSim SE.
ModelSim SE User’s Manual

UM-586 20 - Logic Modeling hardware models

Model
VHDL hardware model interface

ModelSim VHDL interfaces to a hardware model through a foreign architecture. The
foreign architecture contains a foreign attribute string that associates a specific hardware
model with the architecture. On elaboration of the foreign architecture, the simulator
automatically loads the hardware modeler software and establishes communication with
the specific hardware model.

The ModelSim software locates the hardware modeler interface software based on entries
in the modelsim.ini initialization file. The simulator and the hm_entity tool (for creating
foreign architectures) both depend on these entries being set correctly. These entries are
found under the [lmc] section of the default modelsim.ini file located in the ModelSim
installation directory. The default settings are as follows:

[lmc]
; ModelSim's interface to Logic Modeling's hardware modeler SFI software
libhm = $MODEL_TECH/libhm.sl
; ModelSim's interface to Logic Modeling's hardware modeler SFI software
(Windows NT)
; libhm = $MODEL_TECH/libhm.dll
; Logic Modeling's hardware modeler SFI software (HP 9000 Series 700)
; libsfi = <sfi_dir>/lib/hp700/libsfi.sl
; Logic Modeling's hardware modeler SFI software (IBM RISC System/6000)
; libsfi = <sfi_dir>/lib/rs6000/libsfi.a
; Logic Modeling's hardware modeler SFI software (Sun4 Solaris)
; libsfi = <sfi_dir>/lib/sun4.solaris/libsfi.so
; Logic Modeling's hardware modeler SFI software (Window NT)
; libsfi = <sfi_dir>/lib/pcnt/lm_sfi.dll
; Logic Modeling's hardware modeler SFI software (Linux)
; libsfi = <sfi_dir>/lib/linux/libsfi.so

The libhm entry points to the ModelSim dynamic link library that interfaces the foreign
architecture to the hardware modeler software. The libsfi entry points to the Logic
Modeling dynamic link library software that accesses the hardware modeler. The simulator
automatically loads both the libhm and libsfi libraries when it elaborates a hardware model
foreign architecture.

By default, the libhm entry points to the libhm.sl supplied in the ModelSim installation
directory indicated by the MODEL_TECH environment variable. ModelSim automatically
sets the MODEL_TECH environment variable to the appropriate directory containing the
executables and binaries for the current operating system. If you are running the Windows
operating system, then you must comment out the default libhm entry (precede the line
with the ";" character) and uncomment the libhm entry for the Windows operating system.

Uncomment the appropriate libsfi entry for your operating system, and replace <sfi_dir>
with the path to the hardware modeler software installation directory. In addition, you must
set the LM_LIB and LM_DIR environment variables as described in Logic Modeling
documentation from Synopsys.
Sim SE User’s Manual

VHDL hardware model interface UM-587
Creating foreign architectures with hm_entity

The ModelSim hm_entity tool automatically creates entities and foreign architectures for
hardware models. Its usage is as follows:

Syntax

hm_entity
[-xe] [-xa] [-c] [-93] <shell software filename>

Arguments

-xe

Do not generate entity declarations.

-xa

Do not generate architecture bodies.

-c

Generate component declarations.

-93

Use extended identifiers where needed.

<shell software filename>

Hardware model shell software filename (see Logic Modeling documentation from
Synopsys for details on shell software files)

By default, the hm_entity tool writes an entity and foreign architecture to stdout for the
hardware model. Optionally, you can include the component declaration (-c), exclude the
entity (-xe), and exclude the architecture (-xa).

Once you have created the entity and foreign architecture, you must compile it into a
library. For example, the following commands compile the entity and foreign architecture
for a hardware model named LMTEST:

% hm_entity LMTEST.MDL > lmtest.vhd
% vlib lmc
% vcom -work lmc lmtest.vhd

To instantiate the hardware model in your VHDL design, you will also need to generate a
component declaration. If you have multiple hardware models, you may want to add all of
their component declarations to a package so that you can easily reference them in your
design. The following command writes the component declaration to stdout for the
LMTEST hardware model.

% hm_entity -c -xe -xa LMTEST.MDL

Paste the resulting component declaration into the appropriate place in your design or into
a package.

The following is an example of the entity and foreign architecture created by hm_entity for
the CY7C285 hardware model:

library ieee;
use ieee.std_logic_1164.all;

entity cy7c285 is
generic (DelayRange : STRING := "Max");
port (A0 : in std_logic;
ModelSim SE User’s Manual

UM-588 20 - Logic Modeling hardware models

Model
A1 : in std_logic;
A2 : in std_logic;
A3 : in std_logic;
A4 : in std_logic;
A5 : in std_logic;
A6 : in std_logic;
A7 : in std_logic;
A8 : in std_logic;
A9 : in std_logic;
A10 : in std_logic;
A11 : in std_logic;
A12 : in std_logic;
A13 : in std_logic;
A14 : in std_logic;
A15 : in std_logic;
CS : in std_logic;
O0 : out std_logic;
O1 : out std_logic;
O2 : out std_logic;
O3 : out std_logic;
O4 : out std_logic;
O5 : out std_logic;
O6 : out std_logic;
O7 : out std_logic;
W : inout std_logic);

end;

architecture Hardware of cy7c285 is
attribute FOREIGN : STRING;
attribute FOREIGN of Hardware : architecture is

"hm_init $MODEL_TECH/libhm.sl ; CY7C285.MDL";
begin
end Hardware;

Entity details

• The entity name is the hardware model name (you can manually change this name if you
like).

• The port names are the same as the hardware model port names (these names must not be
changed). If the hardware model port name is not a valid VHDL identifier, then
hm_entity issues an error message. If hm_entity is invoked with the -93 option, then the
identifier is converted to an extended identifier, and the resulting entity must also be
compiled with the -93 option. Another option is to create a pin-name mapping file.
Consult the Logic Modeling documentation from Synopsys for details.

• The port types are std_logic. This data type supports the full range of hardware model
logic states.

• The DelayRange generic selects minimum, typical, or maximum delay values. Valid
values are "min", "typ", or "max" (the strings are not case-sensitive). The default is
"max".
Sim SE User’s Manual

VHDL hardware model interface UM-589
Architecture details

• The first part of the foreign attribute string (hm_init) is the same for all hardware models.

• The second part ($MODEL_TECH/libhm.sl) is taken from the libhm entry in the
initialization file, modelsim.ini.

• The third part (CY7C285.MDL) is the shell software filename. This name correlates the
architecture with the hardware model at elaboration.

Vector ports

The entities generated by hm_entity only contain single-bit ports, never vectored ports.
However, for ease of use in component instantiations, you may want to create a custom
component declaration and component specification that groups ports into vectors. You can
also rename and reorder the ports in the component declaration. You can also reorder the
ports in the entity declaration, but you can't rename them!

The following is an example component declaration and specification that groups the
address and data ports of the CY7C285 hardware model:

component cy7c285
generic (DelayRange : STRING := "Max");
port (A : in std_logic_vector (15 downto 0);

CS : in std_logic;
O : out std_logic_vector (7 downto 0);
WAIT_PORT : inout std_logic);

end component;

for all: cy7c285
use entity work.cy7c285
port map (A0 => A(0),

A1 => A(1),
A2 => A(2),
A3 => A(3),
A4 => A(4),
A5 => A(5),
A6 => A(6),
A7 => A(7),
A8 => A(8),
A9 => A(9),
A10 => A(10),
A11 => A(11),
A12 => A(12),
A13 => A(13),
A14 => A(14),
A15 => A(15),
CS => CS,
O0 => O(0),
O1 => O(1),
O2 => O(2),
O3 => O(3),
O4 => O(4),
O5 => O(5),
O6 => O(6),
O7 => O(7),
WAIT_PORT => W);
ModelSim SE User’s Manual

UM-590 20 - Logic Modeling hardware models

Model
Hardware model commands

The following simulator commands are available for hardware models. Refer to the Logic
Modeling documentation from Synopsys for details on these operations.

lm_vectors on|off <instance_name> [<filename>]

Enable/disable test vector logging for the specified hardware model.

lm_measure_timing on|off <instance_name> [<filename>]

Enable/disable timing measurement for the specified hardware model.

lm_timing_checks on|off <instance_name>

Enable/disable timing checks for the specified hardware model.

lm_loop_patterns on|off <instance_name>

Enable/disable pattern looping for the specified hardware model.

lm_unknowns on|off <instance_name>

Enable/disable unknown propagation for the specified hardware model.
Sim SE User’s Manual

 UM-591
21 - Tcl and macros (DO files)

Chapter contents
Tcl features within ModelSim UM-592

Tcl References UM-592

Tcl commands UM-593

Tcl command syntax UM-594
if command syntax UM-596
set command syntax UM-597
Command substitution UM-598
Command separator UM-598
Multiple-line commands UM-598
Evaluation order UM-598
Tcl relational expression evaluation UM-598
Variable substitution UM-599
System commands. UM-599

List processing UM-600

ModelSim Tcl commands UM-600

ModelSim Tcl time commands UM-601

Tcl examples UM-603

Macros (DO files) UM-607
Creating DO files UM-607
Using Parameters with DO files UM-607
Making macro parameters optional UM-608
Useful commands for handling breakpoints and errors . . . UM-609
Error action in DO files UM-609

This chapter provides an overview of Tcl (tool command language) as used with
ModelSim. Macros in ModelSim are simply Tcl scripts that contain ModelSim and,
optionally, Tcl commands.

Tcl is a scripting language for controlling and extending ModelSim. Within ModelSim you
can develop implementations from Tcl scripts without the use of C code. Because Tcl is
interpreted, development is rapid; you can generate and execute Tcl scripts on the fly
without stopping to recompile or restart ModelSim. In addition, if ModelSim does not
provide the command you need, you can use Tcl to create your own commands.
ModelSim SE User’s Manual

UM-592 21 - Tcl and macros (DO files)

Model
Tcl features within ModelSim

Using Tcl with ModelSim gives you these features:

• command history (like that in C shells)

• full expression evaluation and support for all C-language operators

• a full range of math and trig functions

• support of lists and arrays

• regular expression pattern matching

• procedures

• the ability to define your own commands

• command substitution (that is, commands may be nested)

• robust scripting language for macros

Tcl References

Two books about Tcl are Tcl and the Tk Toolkit by John K. Ousterhout, published by
Addison-Wesley Publishing Company, Inc., and Practical Programming in Tcl and Tk by
Brent Welch published by Prentice Hall. You can also consult the following online
references:

• Select Help > Tcl Man Pages (Main window).

• The Model Technology web site lists a variety of Tcl resources:
www.model.com/resources/tcltk.asp
Sim SE User’s Manual

http://www.model.com/resources/tcltk.asp

Tcl commands UM-593
Tcl commands

For complete information on Tcl commands, select Help > Tcl Man Pages (Main
window). Also see "Preference variables located in Tcl files" (UM-631) for information on
Tcl variables.

ModelSim command names that conflict with Tcl commands have been renamed or have
been replaced by Tcl commands. See the list below:

Previous ModelSim
command

Command changed to (or replaced by)

continue run (CR-246) with the -continue option

format list | wave write format (CR-389) with either list or wave specified

if replaced by the Tcl if command, see "if command syntax" (UM-

596) for more information

list add list (CR-55)

nolist | nowave delete (CR-151) with either list or wave specified

set replaced by the Tcl set command, see "set command syntax"
(UM-597) for more information

source vsource (CR-374)

wave add wave (CR-64)
ModelSim SE User’s Manual

UM-594 21 - Tcl and macros (DO files)

Model
Tcl command syntax

The following eleven rules define the syntax and semantics of the Tcl language. Additional
details on if command syntax (UM-596) and set command syntax (UM-597) follow.

1 A Tcl script is a string containing one or more commands. Semi-colons and newlines are
command separators unless quoted as described below. Close brackets ("]") are
command terminators during command substitution (see below) unless quoted.

2 A command is evaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a command procedure
to carry out the command, then all of the words of the command are passed to the
command procedure. The command procedure is free to interpret each of its words in
any way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.

3 Words of a command are separated by white space (except for newlines, which are
command separators).

4 If the first character of a word is a double-quote (""") then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backslash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.

5 If the first character of a word is an open brace ("{") then the word is terminated by the
matching close brace ("}"). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
the word is quoted with a backslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themselves.

6 If a word contains an open bracket ("[") then Tcl performs command substitution. To do
this it invokes the Tcl interpreter recursively to process the characters following the open
bracket as a Tcl script. The script may contain any number of commands and must be
terminated by a close bracket ("]"). The result of the script (i.e. the result of its last
command) is substituted into the word in place of the brackets and all of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.
Sim SE User’s Manual

Tcl command syntax UM-595
7 If a word contains a dollar-sign ("$") then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of a variable.
Variable substitution may take any of the following forms:

$name

Name is the name of a scalar variable; the name is terminated by any character that isn't
a letter, digit, or underscore.

$name(index)

Name gives the name of an array variable and index gives the name of an element within
that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on the
characters of index.

${name}

Name is the name of a scalar variable. It may contain any characters whatsoever except
for close braces.

There may be any number of variable substitutions in a single word. Variable substitution
is not performed on words enclosed in braces.

8 If a backslash ("\") appears within a word then backslash substitution occurs. In all cases
but those described below the backslash is dropped and the following character is treated
as an ordinary character and included in the word. This allows characters such as double
quotes, close brackets, and dollar signs to be included in words without triggering special
processing. The following table lists the backslash sequences that are handled specially,
along with the value that replaces each sequence.

\a Audible alert (bell) (0x7).

\b Backspace (0x8).

\f Form feed (0xc).

\n Newline (0xa).

\r Carriage-return (0xd).

\t Tab (0x9).

\v Vertical tab (0xb).

\<newline>whiteSpace A single space character replaces the backslash, newline, and all
spaces and tabs after the newline. This backslash sequence is
unique in that it is replaced in a separate pre-pass before the
command is actually parsed. This means that it will be replaced
even when it occurs between braces, and the resulting space will
be treated as a word separator if it isn't in braces or quotes.

\\ Backslash ("\").

\ooo The digits ooo (one, two, or three of them) give the octal value
of the character.
ModelSim SE User’s Manual

UM-596 21 - Tcl and macros (DO files)

Model
Backslash substitution is not performed on words enclosed in braces, except for
backslash-newline as described above.

9 If a hash character ("#") appears at a point where Tcl is expecting the first character of
the first word of a command, then the hash character and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The comment character
only has significance when it appears at the beginning of a command.

10 Each character is processed exactly once by the Tcl interpreter as part of creating the
words of a command. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value is inserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by the recursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.

11 Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even
if the variable's value contains spaces.

if command syntax

The Tcl if command executes scripts conditionally. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description

The if command evaluates expr1 as an expression. The value of the expression must be a
boolean (a numeric value, where 0 is false and anything else is true, or a string value such
as true or yes for true and false or no for false); if it is true then body1 is executed by
passing it to the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is
true then body2 is executed, and so on. If none of the expressions evaluates to true then
bodyN is executed. The then and else arguments are optional "noise words" to make the
command easier to read. There may be any number of elseif clauses, including zero. BodyN
may also be omitted as long as else is omitted too. The return value from the command is
the result of the body script that was executed, or an empty string if none of the expressions
was non-zero and there was no bodyN.

\xhh The hexadecimal digits hh give the hexadecimal value of the
character. Any number of digits may be present.
Sim SE User’s Manual

Tcl command syntax UM-597
set command syntax

The Tcl set command reads and writes variables. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

set varName ?value?

Description

Returns the value of variable varName. If value is specified, then sets the value of varName
to value, creating a new variable if one doesn't already exist, and returns its value. If
varName contains an open parenthesis and ends with a close parenthesis, then it refers to
an array element: the characters before the first open parenthesis are the name of the array,
and the characters between the parentheses are the index within the array. Otherwise
varName refers to a scalar variable. Normally, varName is unqualified (does not include
the names of any containing namespaces), and the variable of that name in the current
namespace is read or written. If varName includes namespace qualifiers (in the array name
if it refers to an array element), the variable in the specified namespace is read or written.

If no procedure is active, then varName refers to a namespace variable (global variable if
the current namespace is the global namespace). If a procedure is active, then varName
refers to a parameter or local variable of the procedure unless the global command was
invoked to declare varName to be global, or unless a Tcl variable command was invoked
to declare varName to be a namespace variable.

Command substitution

Placing a command in square brackets [] will cause that command to be evaluated first and
its results returned in place of the command. An example is:

set a 25
set b 11
set c 3
echo "the result is [expr ($a + $b)/$c]"

will output:

"the result is 12"

This feature allows VHDL variables and signals, and Verilog nets and registers to be
accessed using:

[examine -<radix> name]

The %name substitution is no longer supported. Everywhere %name could be used, you
now can use [examine -value -<radix> name] which allows the flexibility of specifying
command options. The radix specification is optional.
ModelSim SE User’s Manual

UM-598 21 - Tcl and macros (DO files)

Model
Command separator

A semicolon character (;) works as a separator for multiple commands on the same line. It
is not required at the end of a line in a command sequence.

Multiple-line commands

With Tcl, multiple-line commands can be used within macros and on the command line.
The command line prompt will change (as in a C shell) until the multiple-line command is
complete.

In the example below, note the way the opening brace ’{’ is at the end of the if and else
lines. This is important because otherwise the Tcl scanner won't know that there is more
coming in the command and will try to execute what it has up to that point, which won't be
what you intend.

if { [exa sig_a] == "0011ZZ"} {
echo "Signal value matches"
do macro_1.do

} else {
echo "Signal value fails"
do macro_2.do

}

Evaluation order

An important thing to remember when using Tcl is that anything put in curly brackets {} is
not evaluated immediately. This is important for if-then-else statements, procedures, loops,
and so forth.

Tcl relational expression evaluation

When you are comparing values, the following hints may be useful:

• Tcl stores all values as strings, and will convert certain strings to numeric values when
appropriate. If you want a literal to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...

The following will also work:

if {[exa var_1] == "345"}...

• However, if a literal cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001Z}...

will give an error.

if {[exa var_2] == "001Z"}...

will work okay.

• Don't quote single characters in single quotes:

if {[exa var_3] == 'X'}...

will give an error

if {[exa var_3] == "X"}...

will work okay.
Sim SE User’s Manual

Tcl command syntax UM-599
• For the equal operator, you must use the C operator "==". For not-equal, you must use
the C operator "!=".

Variable substitution

When a $<var_name> is encountered, the Tcl parser will look for variables that have been
defined either by ModelSim or by you, and substitute the value of the variable.

To access environment variables, use the construct:

$env(<var_name>)
echo My user name is $env(USER)

Environment variables can also be set using the env array:

set env(SHELL) /bin/csh

See "Simulator state variables" (UM-634) for more information about ModelSim-defined
variables.

System commands

To pass commands to the UNIX shell or DOS window, use the Tcl exec command:

echo The date is [exec date]

Note: Tcl is case sensitive for variable names.
ModelSim SE User’s Manual

UM-600 21 - Tcl and macros (DO files)

Model
List processing

In Tcl a "list" is a set of strings in curly braces separated by spaces. Several Tcl commands
are available for creating lists, indexing into lists, appending to lists, getting the length of
lists and shifting lists. These commands are:

Two other commands, lsearch and lsort, are also available for list manipulation. See the
Tcl man pages (Help > Tcl Man Pages) for more information on these commands.

See also the ModelSim Tcl command: lecho (CR-184)

ModelSim Tcl commands

These additional commands enhance the interface between Tcl and ModelSim. Only brief
descriptions are provided here; for more information and command syntax see the
ModelSim Command Reference.

Command syntax Description

lappend var_name val1 val2 ... appends val1, val2, etc. to list var_name

lindex list_name index returns the index-th element of list_name; the first element is 0

linsert list_name index val1 val2 ... inserts val1, val2, etc. just before the index-th element of list_name

list val1, val2 ... returns a Tcl list consisting of val1, val2, etc.

llength list_name returns the number of elements in list_name

lrange list_name first last returns a sublist of list_name, from index first to index last; first or
last may be "end", which refers to the last element in the list

lreplace list_name first last val1, val2, ... replaces elements first through last with val1, val2, etc.

Command Description

alias (CR-68) creates a new Tcl procedure that evaluates the specified commands;
used to create a user-defined alias

find (CR-172) locates incrTcl classes and objects

lecho (CR-184) takes one or more Tcl lists as arguments and pretty-prints them to the
Main window

lshift (CR-189) takes a Tcl list as argument and shifts it in-place one place to the left,
eliminating the 0th element

lsublist (CR-190) returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

printenv (CR-220) echoes to the Main window the current names and values of all
environment variables
Sim SE User’s Manual

ModelSim Tcl time commands UM-601
ModelSim Tcl time commands

ModelSim Tcl time commands make simulator-time-based values available for use within
other Tcl procedures.

Time values may optionally contain a units specifier where the intervening space is also
optional. If the space is present, the value must be quoted (e.g. 10ns, "10 ns"). Time values
without units are taken to be in the UserTimeScale. Return values are always in the current
Time Scale Units. All time values are converted to a 64-bit integer value in the current Time
Scale. This means that values smaller than the current Time Scale will be truncated to 0.

Conversions

Relations

All relation operations return 1 or 0 for true or false respectively and are suitable return
values for TCL conditional expressions. For example,

if {[eqTime $Now 1750ns]} {
...

}

Command Description

 intToTime <intHi32> <intLo32> converts two 32-bit pieces (high and low
order) into a 64-bit quantity (Time in
ModelSim is a 64-bit integer)

 RealToTime <real> converts a <real> number to a 64-bit integer
in the current Time Scale

scaleTime <time> <scaleFactor> returns the value of <time> multiplied by the
<scaleFactor> integer

Command Description

eqTime <time> <time> evaluates for equal

neqTime <time> <time> evaluates for not equal

gtTime <time> <time> evaluates for greater than

gteTime <time> <time> evaluates for greater than or equal

ltTime <time> <time> evaluates for less than

lteTime <time> <time> evaluates for less than or equal
ModelSim SE User’s Manual

UM-602 21 - Tcl and macros (DO files)

Model
Arithmetic

Command Description

addTime <time> <time> add time

divTime <time> <time> 64-bit integer divide

mulTime <time> <time> 64-bit integer multiply

subTime <time> <time> subtract time
Sim SE User’s Manual

Tcl examples UM-603
Tcl examples

This is an example of using the Tcl while loop to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b [list]
set i [expr {[llength $a] - 1}]
while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}

This example uses the Tcl for command to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b [list]
for {set i [expr {[llength $a] - 1}]} {$i >= 0} {incr i -1} {

lappend b [lindex $a $i]
}

This example uses the Tcl foreach command to copy a list from variable a to variable b,
reversing the order of the elements along the way (the foreach command iterates over all of
the elements of a list):

set b [list]
foreach i $a { set b [linsert $b 0 $i] }

This example shows a list reversal as above, this time aborting on a particular element using
the Tcl break command:

set b [list]
foreach i $a {

if {$i = "ZZZ"} break
set b [linsert $b 0 $i]

}

This example is a list reversal that skips a particular element by using the Tcl continue
command:

set b [list]
foreach i $a {

if {$i = "ZZZ"} continue
set b [linsert $b 0 $i]

}

The next example works in UNIX only. In a Windows environment, the Tcl exec command
will execute compiled files only, not system commands.) The example shows how you can
access system information and transfer it into VHDL variables or signals and Verilog nets
or registers. When a particular HDL source breakpoint occurs, a Tcl function is called that
gets the date and time and deposits it into a VHDL signal of type STRING. If a particular
environment variable (DO_ECHO) is set, the function also echoes the new date and time
to the transcript file by examining the VHDL variable.

(in VHDL source):

signal datime : string(1 to 28) := " ";# 28 spaces
ModelSim SE User’s Manual

UM-604 21 - Tcl and macros (DO files)

Model
(on VSIM command line or in macro):

proc set_date {} {
global env
set do_the_echo [set env(DO_ECHO)]
set s [clock format [clock seconds]]
force -deposit datime $s
if {do_the_echo} {

echo "New time is [examine -value datime]"
}

}

bp src/waveadd.vhd 133 {set_date; continue}
 --sets the breakpoint to call set_date

This next example shows a complete Tcl script that restores multiple Wave windows to
their state in a previous simulation, including signals listed, geometry, and screen position.
It also adds buttons to the Main window toolbar to ease management of the wave files.

This file contains procedures to manage multiple wave files.
Source this file from the command line or as a startup script.
source <path>/wave_mgr.tcl

add_wave_buttons
Add wave management buttons to the main toolbar (new, save and load)

new_wave
Dialog box creates a new wave window with the user provided name

named_wave <name>
Creates a new wave window with the specified title

save_wave <file-root>
Saves name, window location and contents for all open windows

wave windows
Creates <file-root><n>.do file for each window where <n> is 1
to the number of windows. Default file-root is "wave". Also
creates windowSet.do file that contains title and geometry info.

load_wave <file-root>
Opens and loads wave windows for all files matching <file-root><n>.do
where <n> are the numbers from 1-9. Default <file-root> is "wave".
Also runs windowSet.do file if it exists.

Add wave management buttons to the main toolbar

proc add_wave_buttons {} {
_add_menu main controls right SystemMenu SystemWindowFrame {Load Waves} \
load_wave
_add_menu main controls right SystemMenu SystemWindowFrame {Save Waves} \
save_wave
_add_menu main controls right SystemMenu SystemWindowFrame {New Wave} \
new_wave
}
Simple Dialog requests name of new wave window. Defaults to Wave<n>

proc new_wave {} {
global vsimPriv
set defaultName "Wave[llength $vsimPriv(WaveWindows)]"
set windowName [GetValue . "Create Named Wave Window:" $defaultName]
Sim SE User’s Manual

Tcl examples UM-605
if {$windowName == ""} {
Dialog canceled
abort operation
return

}
Debug
puts "Window name: $windowName\n"
if {$windowName == "{}"} {

set windowName ""
}
if {$windowName != ""} {

named_wave $windowName
} else {

named_wave $defaultName
}

}

Creates a new wave window with the provided name (defaults to "Wave")

proc named_wave {{name "Wave"}} {
set newWave [view -new wave]
if {[string length $name] > 0} {

wm title $newWave $name
}

}

Writes out format of all wave windows, stores geometry and title info in
windowSet.do file. Removes any extra files with the same fileroot.
Default file name is wave<n> starting from 1.

proc save_wave {{fileroot "wave"}} {
global vsimPriv
set n 1
if {[catch {open windowSet_$fileroot.do w 755} fileId]} {

error "Open failure for $fileroot ($fileId)"
}
foreach w $vsimPriv(WaveWindows) {

echo "Saving: [wm title $w]"
set filename $fileroot$n.do
if {[file exists $filename]} {

Use different file
set n2 0
while {[file exists ${fileroot}${n}${n2}.do]} {

incr n2
}
set filename ${fileroot}${n}${n2}.do

}
write format wave -window $w $filename
puts $fileId "wm title $w \"[wm title $w]\""
puts $fileId "wm geometry $w [wm geometry $w]"
puts $fileId "mtiGrid_colconfig $w.grid name -width \

[mtiGrid_colcget $w.grid name -width]"
puts $fileId "mtiGrid_colconfig $w.grid value -width \

[mtiGrid_colcget $w.grid value -width]"
flush $fileId
incr n

}

foreach f [lsort [glob -nocomplain $fileroot\[$n-9\].do]] {
echo "Removing: $f"
exec rm $f
ModelSim SE User’s Manual

UM-606 21 - Tcl and macros (DO files)

Model
}
}

}

Provide file root argument and load_wave restores all saved windows.
Default file root is "wave".

proc load_wave {{fileroot "wave"}} {
foreach f [lsort [glob -nocomplain $fileroot\[1-9\].do]] {

echo "Loading: $f"
view -new wave
do $f

}
if {[file exists windowSet_$fileroot.do]} {

do windowSet_$fileroot.do
}

}

...

This next example specifies the compiler arguments and lets you compile any number of
files.

set Files [list]
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

set lappend Files $1
shift

}
eval vcom -93 -explicit -noaccel $Files

This example is an enhanced version of the last one. The additional code determines
whether the files are VHDL or Verilog and uses the appropriate compiler and arguments
depending on the file type. Note that the macro assumes your VHDL files have a .vhd file
extension.

set vhdFiles [list]
set vFiles [list]
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

if {[string match *.vhd $1]} {
lappend vhdFiles $1

} else {
lappend vFiles $1

}
shift

}
if {[llength $vhdFiles] > 0} {

eval vcom -93 -explicit -noaccel $vhdFiles
}
if {[llength $vFiles] > 0} {

eval vlog $vFiles
}

Sim SE User’s Manual

Macros (DO files) UM-607
Macros (DO files)

ModelSim macros (also called DO files) are simply scripts that contain ModelSim and,
optionally, Tcl commands. You invoke these scripts with the Tools > Execute Macro
(Main window) menu selection or the do command (CR-156).

Creating DO files

You can create DO files, like any other Tcl script, by typing the required commands in any
editor and saving the file. Alternatively, you can save the Main window transcript as a DO
file (see "Saving the Main window transcript file" (UM-264)).

The following is a simple DO file that was saved from the Main window transcript. It is
used in the dataset exercise in the ModelSim Tutorial. This DO file adds several signals to
the Wave window, provides stimulus to those signals, and then advances the simulation.

add wave ld
add wave rst
add wave clk
add wave d
add wave q
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force ld 0
force d 1010
run 1700
force ld 1
run 100
force ld 0
run 400
force rst 1
run 200
force rst 0 10
run 1500

Using Parameters with DO files

You can increase the flexibility of DO files by using parameters. Parameters specify values
that are passed to the corresponding parameters $1 through $9 in the macro file. For
example say the macro "testfile" contains the line bp $1 $2. The command below would
place a breakpoint in the source file named design.vhd at line 127:

do testfile design.vhd 127

There is no limit on the number of parameters that can be passed to macros, but only nine
values are visible at one time. You can use the shift command (CR-259) to see the other
parameters.
ModelSim SE User’s Manual

UM-608 21 - Tcl and macros (DO files)

Model
Making macro parameters optional

If you want to make macro parameters optional (i.e., be able to specify fewer parameter
values with the do command than the number of parameters referenced in the macro), you
must use the argc (UM-634) simulator state variable. The argc simulator state variable
returns the number of parameters passed. The examples below show several ways of using
argc.

Example 1

This macro specifies the files to compile and handles 0-2 compiler arguments as
parameters. If you supply more arguments, ModelSim generates a message.

switch $argc {
0 {vcom file1.vhd file2.vhd file3.vhd }
1 {vcom $1 file1.vhd file2.vhd file3.vhd }
2 {vcom $1 $2 file1.vhd file2.vhd file3.vhd }
default {echo Too many arguments. The macro accepts 0-2 args. }

}

Example 2

This macro specifies the compiler arguments and lets you compile any number of files.

variable Files ""
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

set Files [concat $Files $1]
shift

}
eval vcom -93 -explicit -noaccel $Files

Example 3

This macro is an enhanced version of the one shown in example 2. The additional code
determines whether the files are VHDL or Verilog and uses the appropriate compiler and
arguments depending on the file type. Note that the macro assumes your VHDL files have
a .vhd file extension.

variable vhdFiles ""
variable vFiles ""
set nbrArgs $argc
set vhdFilesExist 0
set vFilesExist 0
for {set x 1} {$x <= $nbrArgs} {incr x} {

if {[string match *.vhd $1]} {
set vhdFiles [concat $vhdFiles $1]
set vhdFilesExist 1

} else {
set vFiles [concat $vFiles $1]
set vFilesExist 1

}
shift

}
if {$vhdFilesExist == 1} {

eval vcom -93 -explicit -noaccel $vhdFiles
}
if {$vFilesExist == 1} {

eval vlog -fast -forcecode $vFiles
}

Sim SE User’s Manual

Macros (DO files) UM-609
Useful commands for handling breakpoints and errors

If you are executing a macro when your simulation hits a breakpoint or causes a run-time
error, ModelSim interrupts the macro and returns control to the command line. The
following commands may be useful for handling such events. (Any other legal command
may be executed as well.)

Error action in DO files

If a command in a macro returns an error, ModelSim does the following:

1 If an onerror (CR-212) command has been set in the macro script, ModelSim executes
that command.

2 If no onerror command has been specified in the script, ModelSim checks the
OnErrorDefaultAction Tcl variable. If the variable is defined, it’s action will be
invoked.

3 If neither 1 or 2 is true, the macro aborts.

command result

run (CR-246) -continue continue as if the breakpoint had not been executed, completes the run (CR-246) that
was interrupted

resume (CR-243) continue running the macro

onbreak (CR-210) specify a command to run when you hit a breakpoint within a macro

onElabError (CR-211) specify a command to run when an error is encountered during elaboration

onerror (CR-212) specify a command to run when an error is encountered within a macro

status (CR-263) get a traceback of nested macro calls when a macro is interrupted

abort (CR-51) terminate a macro once the macro has been interrupted or paused

pause (CR-213) cause the macro to be interrupted; the macro can be resumed by entering a resume
command (CR-243) via the command line

transcript (CR-278) control echoing of macro commands to the Main window transcript

Note: You can also set the OnErrorDefaultAction Tcl variable (see "Preference variables
located in Tcl files" (UM-631)) in the pref.tcl file to dictate what action ModelSim takes
when an error occurs.
ModelSim SE User’s Manual

UM-610 21 - Tcl and macros (DO files)

Model
Using the Tcl source command with DO files

Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the source command, the DO file is executed exactly as if the commands in it were
typed in by hand at the prompt. Each time a breakpoint is hit the Source window is updated
to show the breakpoint. This behavior could be inconvenient with a large DO file
containing many breakpoints.

When a do command is interrupted by an error or breakpoint, it does not update any
windows, and keeps the DO file "locked". This keeps the Source window from flashing,
scrolling, and moving the arrow when a complex DO file is executed. Typically an
onbreak resume command is used to keep the macro running as it hits breakpoints. Add
an onbreak abort command to the DO file if you want to exit the macro and update the
Source window.
Sim SE User’s Manual

 UM-611
A - ModelSim variables

Appendix contents
Variable settings report UM-612

Personal preferences UM-612

Returning to the original ModelSim defaults UM-613

Environment variables UM-613
Creating environment variables in Windows UM-615
Referencing environment variables within ModelSim . . . UM-616
Removing temp files (VSOUT) UM-616

Preference variables located in INI files UM-617
[Library] library path variables UM-617
[vlog] Verilog compiler control variables. UM-618
[vcom] VHDL compiler control variables UM-619
[sccom] SystemC compiler control variables UM-620
[vsim] simulator control variables UM-621
[lmc] Logic Modeling variables UM-627
Reading variable values from the INI file. UM-627
Commonly used INI variables UM-628

Preference variables located in Tcl files UM-631

Variable precedence UM-633

Simulator state variables UM-634
Referencing simulator state variables UM-634
Special considerations for the now variable UM-635

This appendix documents the following types of ModelSim variables:

• environment variables
Variables referenced and set according to operating system conventions. Environment
variables prepare the ModelSim environment prior to simulation.

• ModelSim preference variables
Variables used to control compiler or simulator functions and modify the appearance of
the ModelSim GUI.

• simulator state variables
Variables that provide feedback on the state of the current simulation.
ModelSim SE User’s Manual

UM-612 A - ModelSim variables

Model
Variable settings report

The report command (CR-238) returns a list of current settings for either the simulator state,
or simulator control variables. Use the following commands at either the ModelSim or
VSIM prompt:

report simulator state
report simulator control

The simulator control variables reported by the report simulator control command can be
set interactively using the Tcl set command (UM-597).

Personal preferences

There are several preferences stored by ModelSim on a personal basis, independent of
modelsim.ini or modelsim.tcl files. These preferences are stored in $(HOME)/.modelsim on
UNIX and in the Windows Registry under HKEY_CURRENT_USER\Software\Model
Technology Incorporated\ModelSim. Among these preferences are:

• mti_ask_LBViewTypes, mti_ask_LBViewPath, mti_ask_LBViewLoadable
Settings for the Customize Library View dialog. Determine the view of the Library tab
in the Main window workspace.

• mti_pane_cnt, mti_pane_size, pane_#, pane_percent
Determine layout of various panes in the Main window.

• open_workspace
Setting for whether or not to display the Main window workspace.

• pinit
Project Initialization state (one of: Welcome | OpenLast | NoWelcome). This determines
whether the Welcome To ModelSim dialog box appears when you invoke the tool.

• project_history
Project History.

• printersetup
All setup parameters related to Printing (i.e., current printer, etc.).

• transcriptpercent
The size of the Main window transcript pane. Expressed as a percentage of the width of
the Main window.

The HKEY_CURRENT_USER key is unique for each user Login on Windows NT.
Sim SE User’s Manual

Returning to the original ModelSim defaults UM-613
Returning to the original ModelSim defaults

If you would like to return ModelSim’s interface to its original state, simply rename or
delete the existing modelsim.tcl and modelsim.ini files. ModelSim will use pref.tcl for GUI
preferences and make a copy of <install_dir>/modeltech/modelsim.ini to use the next time
ModelSim is invoked without an existing project (if you start a new project the new MPF
file will use the settings in the new modelsim.ini file).

Environment variables

Before compiling or simulating, several environment variables may be set to provide the
functions described in the table below. The variables are in the autoexec.bat file on
Windows 98/Me machines, and set through the System control panel on NT/2000/XP
machines. For UNIX, the variables are typically found in the .login script. The
LM_LICENSE_FILE variable is required; all others are optional.

Variable Description

DOPATH used by ModelSim to search for DO files (macros); consists of a colon-separated
(semi-colon for Windows) list of paths to directories; this environment variable
can be overridden by the DOPATH Tcl preference variable

The DOPATH environment variable isn’t accessible when you invoke vsim from
a Unix shell or from a Windows command prompt. It is accessible once ModelSim
or vsim is invoked. If you need to invoke from a shell or command line and use
the DOPATH environment variable, use the following syntax:

vsim -do "do <dofile_name>" <design_unit>

EDITOR specifies the editor to invoke with the edit command (CR-162)

HOME used by ModelSim to look for an optional graphical preference file and optional
location map file; see: "Preference variables located in INI files" (UM-617)

LM_LICENSE_FILE used by the ModelSim license file manager to find the location of the license file;
may be a colon-separated (semi-colon for Windows) set of paths, including paths
to other vendor license files; REQUIRED

MODEL_TECH set by all ModelSim tools to the directory in which the binary executable resides;
DO NOT SET THIS VARIABLE!

MODEL_TECH_TCL used by ModelSim to find Tcl libraries for Tcl/Tk 8.3 and vsim; may also be used
to specify a startup DO file; defaults to /modeltech/../tcl; may be set to an alternate
path

MGC_LOCATION_MAP used by ModelSim tools to find source files based on easily reallocated "soft"
paths; optional; see the Tcl variables: SourceDir and SourceMap
ModelSim SE User’s Manual

UM-614 A - ModelSim variables

Model
MODELSIM used by all ModelSim tools to find the modelsim.ini file; consists of a path
including the file name. An alternative use of this variable is to set it to the path of
a project file (<Project_Root_Dir>/<Project_Name>.mpf). This allows you to
use project settings with command line tools. However, if you do this, the .mpf
file will replace modelsim.ini as the initialization file for all ModelSim tools.

MODELSIM_TCL used by ModelSim to look for an optional graphical preference file; can be a
colon-separated (UNIX) or semi-colon separated (Windows) list of file paths

MTI_COSIM_TRACE creates an mti_trace_cosim file containing debugging information about FLI/PLI/
VPI function calls; set to any value before invoking the simulator.

MTI_TF_LIMIT limits the size of the VSOUT temp file (generated by the ModelSim kernel); the
value of the variable is the size of k-bytes; TMPDIR (below) controls the location
of this file, STDOUT controls the name; default = 10, 0 = no limit; does not
control the size of the transcript file

MTI_USELIB_DIR specifies the directory into which object libraries are compiled when using the
-compile_uselibs argument to the vlog command (CR-345)

NOMMAP if set to 1, disables memory mapping in ModelSim; this should be used only when
running on Linux 7.1; it will decrease the speed with which ModelSim reads files

PLIOBJS used by ModelSim to search for PLI object files for loading; consists of a
space-separated list of file or path names

STDOUT the VSOUT temp file (generated by the simulator kernel) is deleted when the
simulator exits; the file is not deleted if you specify a filename for VSOUT with
STDOUT; specifying a name and location (use TMPDIR) for the VSOUT file will
also help you locate and delete the file in event of a crash (an unnamed VSOUT
file is not deleted after a crash either)

TMPDIR (Unix)
TMP (Windows)

specifies the path to a tempnam() generated file (VSOUT) containing all stdout
from the simulation kernel

Variable Description
Sim SE User’s Manual

Environment variables UM-615
Creating environment variables in Windows

In addition to the predefined variables shown above, you can define your own environment
variables. This example shows a user-defined library path variable that can be referenced
by the vmap command to add library mapping to the modelsim.ini file.

Using Windows 98/Me

Open and edit the autoexec.bat file by adding this line:

set MY_PATH=\temp\work

Restart Windows to initialize the new variable.

Using Windows NT/2000/XP

Right-click the My Computer icon and select Properties, then select the Environment
tab (in Windows 2000/XP select the Advanced tab and then Environment Variables). Add
the new variable with this data—Variable:MY_PATH and Value:\temp\work.

Click Set and Apply to initialize the variable.

Library mapping with environment variables

Once the MY_PATH variable is set, you can use it with the vmap command (CR-356) to
add library mappings to the current modelsim.ini file.

 If you’re using the vmap command from a DOS prompt type:

vmap MY_VITAL %MY_PATH%

 If you’re using vmap from the ModelSim/VSIM prompt type:

vmap MY_VITAL \$MY_PATH

If you used DOS vmap, this line will be added to the modelsim.ini:

MY_VITAL = c:\temp\work

If vmap is used from the ModelSim/VSIM prompt, the modelsim.ini file will be modified
with this line:

 MY_VITAL = $MY_PATH

You can easily add additional hierarchy to the path. For example,

vmap MORE_VITAL %MY_PATH%\more_path\and_more_path

vmap MORE_VITAL \$MY_PATH\more_path\and_more_path

The "$" character in the examples above is Tcl syntax that precedes a variable. The "\"
character is an escape character that keeps the variable from being evaluated during the
execution of vmap.
ModelSim SE User’s Manual

UM-616 A - ModelSim variables

Model
Referencing environment variables within ModelSim

There are two ways to reference environment variables within ModelSim. Environment
variables are allowed in a FILE variable being opened in VHDL. For example,

use std.textio.all;
entity test is end;
architecture only of test is
begin

process
FILE in_file : text is in "$ENV_VAR_NAME";

begin
wait;

end process;
end;

Environment variables may also be referenced from the ModelSim command line or in
macros using the Tcl env array mechanism:

echo "$env(ENV_VAR_NAME)"

Removing temp files (VSOUT)

The VSOUT temp file is the communication mechanism between the simulator kernel and
the ModelSim GUI. In normal circumstances the file is deleted when the simulator exits. If
ModelSim crashes, however, the temp file must be deleted manually. Specifying the
location of the temp file with TMPDIR (above) will help you locate and remove the file.

Note: Environment variable expansion does not occur in files that are referenced via the
-f argument to vcom, vlog, or vsim.
Sim SE User’s Manual

Preference variables located in INI files UM-617
Preference variables located in INI files

ModelSim initialization (INI) files contain control variables that specify reference library
paths and compiler and simulator settings. The default initialization file is modelsim.ini and
is located in your install directory.

To set these variables, edit the initialization file directly with any text editor. The syntax for
variables in the file is:

<variable> = <value>

Comments within the file are preceded with a semicolon (;).

The following tables list the variables by section, and in order of their appearance within
the INI file:

[Library] library path variables

INI file sections

[Library] library path variables (UM-617)

[vlog] Verilog compiler control variables (UM-618)

[vcom] VHDL compiler control variables (UM-619)

[sccom] SystemC compiler control variables (UM-620)

[vsim] simulator control variables (UM-621)

[lmc] Logic Modeling variables (UM-627)

Variable name Value range Purpose

ieee any valid path; may include
environment variables

sets the path to the library containing IEEE and
Synopsys arithmetic packages; the default is
$MODEL_TECH/../ieee

modelsim_lib any valid path; may include
environment variables

sets the path to the library containing Model
Technology VHDL utilities such as Signal Spy;
the default is $MODEL_TECH/../modelsim_lib

std any valid path; may include
environment variables

sets the path to the VHDL STD library; the default
is $MODEL_TECH/../std

std_developerskit any valid path; may include
environment variables

sets the path to the libraries for MGC standard
developer’s kit; the default is
$MODEL_TECH/../std_developerskit

synopsys any valid path; may include
environment variables

sets the path to the accelerated arithmetic
packages; the default is $MODEL_TECH/../
synopsys
ModelSim SE User’s Manual

UM-618 A - ModelSim variables

Model
[vlog] Verilog compiler control variables

verilog any valid path; may include
environment variables

sets the path to the library containing VHDL/
Verilog type mappings; the default is
$MODEL_TECH/../verilog

vital2000 any valid path; may include
environment variables

sets the path to the VITAL 2000 library; the
default is $MODEL_TECH/../vital2000

others any valid path; may include
environment variables

points to another modelsim.ini file whose library
path variables will also be read; the pathname
must include "modelsim.ini"; only one others
variable can be specified in any modelsim.ini file.

Variable name Value
range

Purpose Default

Hazard 0, 1 if 1, turns on Verilog hazard checking (order-
dependent accessing of global variables)

off (0)

Incremental 0, 1 if 1, turns on incremental compilation of modules off (0)

NoDebug 0, 1 if 1, turns off inclusion of debugging info within
design units

off (0)

Protect 0, 1 if 1, enables `protect directive processing; see
"ModelSim compiler directives" (UM-152) for details

off (0)

Quiet 0, 1 if 1, turns off "loading..." messages off (0)

Show_Lint 0, 1 if 1, turns on lint-style checking off (0)

ScalarOpts 0, 1 if 1, activates optimizations on expressions that don’t
involve signals, waits, or function/procedure/task
invocations

off (0)

Show_BadOptionWarning 0, 1 if 1, generates a warning whenever an unknown plus
argument is encountered

off (0)

Show_source 0, 1 if 1, shows source line containing error off (0)

vlog95compat 0, 1 if 1, disables System Verilog and Verilog 2001
support and makes compiler compatible with IEEE
Std 1364-1995

off (0)

UpCase 0, 1 if 1, turns on converting regular Verilog identifiers to
uppercase. Allows case insensitivity for module
names; see also "Verilog-XL compatible compiler
arguments" (UM-113)

off (0)

Variable name Value range Purpose
Sim SE User’s Manual

Preference variables located in INI files UM-619
[vcom] VHDL compiler control variables

Variable name Value
range

Purpose Default

CheckSynthesis 0, 1 if 1, turns on limited synthesis rule compliance
checking; checks only signals used (read) by a
process; also, understands only combinational
logic, not clocked logic

off (0)

Explicit 0, 1 if 1, turns on resolving of ambiguous function
overloading in favor of the "explicit" function
declaration (not the one automatically created by
the compiler for each type declaration)

on (1)

IgnoreVitalErrors 0, 1 if 1, ignores VITAL compliance checking errors off (0)

NoCaseStaticError 0, 1 if 1, changes case statement static errors to warnings off (0)

NoDebug 0, 1 if 1, turns off inclusion of debugging info within
design units

off (0)

NoIndexCheck 0, 1 if 1, run time index checks are disabled off (0)

NoOthersStaticError 0, 1 if 1, disables errors caused by aggregates that are
not locally static

off (0)

NoRangeCheck 0, 1 if 1, disables run time range checking off (0)

NoVital 0, 1 if 1, turns off acceleration of the VITAL packages off (0)

NoVitalCheck 0, 1 if 1, turns off VITAL compliance checking off (0)

Optimize_1164 0, 1 if 0, turns off optimization for the IEEE
std_logic_1164 package

on (1)

PedanticErrors 0, 1 if 1, overrides NoCaseStaticError and
NoOthersStaticError

off(0)

Quiet 0, 1 if 1, turns off "loading..." messages off (0)

RequireConfigForAllDefault
Binding

0, 1 if 1, instructs the compiler not to generate a default
binding during compilation

off (0)

ScalarOpts 0, 1 if 1, activates optimizations on expressions that
don’t involve signals, waits, or function/procedure/
task invocations

off (0)

Show_source 0, 1 if 1, shows source line containing error off (0)

Show_VitalChecksWarnings 0, 1 if 0, turns off VITAL compliance-check warnings on (1)

Show_Warning1 0, 1 if 0, turns off unbound-component warnings on (1)

Show_Warning2 0, 1 if 0, turns off process-without-a-wait-statement
warnings

on (1)
ModelSim SE User’s Manual

UM-620 A - ModelSim variables

Model
[sccom] SystemC compiler control variables

Show_Warning3 0, 1 if 0, turns off null-range warnings on (1)

Show_Warning4 0, 1 if 0, turns off no-space-in-time-literal warnings on (1)

Show_Warning5 0, 1 if 0, turns off multiple-drivers-on-unresolved-signal
warnings

on (1)

VHDL93 0, 1, 2 if 0, enables support for VHDL-1987; if 1, enables
support for VHDL-1993; if 2, enables support for
VHDL-2002

2

Variable name Value
range

Purpose Default

NoNameBind 0, 1 if 1, disables name binding during compilation; see
"Name association (binding)" (UM-204) and "-
nonamebind" (CR-249) for details

off (0)

UseScv 0, 1 if 1, turns on use of SCV include files and library;
see"-scv" (CR-249) for details

off (0)

SccomVerbose 0, 1 if 1, turns on verbose messages from sccom (CR-248)
: see "-verbose" (CR-249) for details

off (0)

CppOptions any valid
C+++
compiler
options

adds any specified C++ compiler options to the
sccom command line at the time of invocation

none

CppPath C++
compiler
path

If used, variables should point directly to the location
of the g++ executable, such as:
% CppPath /usr/bin/g++

This variable is not required when running SystemC
designs. By default, you should install and use the
built-in g++ compiler that comes with ModelSim

none

SccomLogfile 0, 1 if 1, creates a logfile for sccom off (0)

Variable name Value
range

Purpose Default
Sim SE User’s Manual

Preference variables located in INI files UM-621
[vsim] simulator control variables

Variable name Value range Purpose Default

AssertionPassEnable 0, 1 turns on pass tracking for PSL assertions off (0)

AssertionFailEnable 0, 1 turns on failure tracking for PSL assertions on (1)

AssertionPassLimit Any positive
integer and -1

sets limit for the number of times
ModelSim will respond to a PSL assertion
pass event; after the limit is reached on a
particular assertion, that assertion is
disabled; use -1 for infinity

1

AssertionFailLimit Any positive
integer and -1

sets limit for the number of times
ModelSim will respond to a PSL assertion
failure event; after the limit is reached on a
particular assertion, that assertion is
disabled; use -1 for infinity

1

AssertionPassLog 0, 1 turns on transcript logging for PSL
assertion pass events

on (1)

AssertionFailLog 0, 1 turns on transcript logging for PSL
assertion failure events

on (1)

AssertionFailAction 0, 1, 2 sets action for a PSL failure event; use 0 for
continue, 1 for break, 2 for exit

continue (0)

AssertFile any valid
filename

alternative file for storing VHDL or PSL
assertion messages

transcript

AssertionFormat see next column defines format of VHDL assertion
messages; fields include:
%S - severity level
%R - report message
%T - time of assertion
%D - delta
%I - instance or region pathname (if
available)
%i - instance pathname with process
%O - process name
%K - kind of item path points to; returns
Instance, Signal, Process, or Unknown
%P - instance or region path without leaf
process
%F - file
%L - line number of assertion, or if from
subprogram, line from which call is made
%% - print ’%’ character

"** %S:
%R\n Time:
%T
Iteration:
%D%I\n"
ModelSim SE User’s Manual

UM-622 A - ModelSim variables

Model
AssertionFormatBreak see
AssertionFormat
above

defines format of messages for VHDL
assertions that trigger a breakpoint; see
AssertionFormat for options

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

AssertionFormatNote see
AssertionFormat
above

defines format of messages for VHDL Note
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D%I\n"

AssertionFormatWarning see
AssertionFormat
above

defines format of messages for VHDL
Warning assertions; see AssertionFormat
for options; if undefined, AssertionFormat
is used unless assertion causes a breakpoint
in which case AssertionFormatBreak is
used

"** %S:
%R\n
Time: %T
Iteration:
%D%I\n"

AssertionFormatError see
AssertionFormat
above

defines format of messages for VHDL
Error assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

AssertionFormatFail see
AssertionFormat
above

defines format of messages for VHDL Fail
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

AssertionFormatFatal see
AssertionFormat
above

defines format of messages for VHDL Fatal
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

BreakOnAssertion 0-4 defines severity of VHDL assertion that
causes a simulation break (0 = note, 1 =
warning, 2 = error, 3 = failure, 4 = fatal);
this variable can be set interactively with
the Tcl set command (UM-597)

3

CheckpointCompressMode 0, 1 if 1, checkpoint files are written in
compressed format; this variable can be set
interactively with the Tcl set command
(UM-597)

on (1)

Variable name Value range Purpose Default
Sim SE User’s Manual

Preference variables located in INI files UM-623
CommandHistory any valid
filename

sets the name of a file in which to store the
Main window command history

commented
out (;)

ConcurrentFileLimit any positive
integer

controls the number of VHDL files open
concurrently; this number should be less
than the current limit setting for max file
descriptors; 0 = unlimited

40

DatasetSeparator any character
except those with
special meaning
(i.e., \, {, }, etc.)

the dataset separator for fully-rooted
contexts, for example sim:/top; must not be
the same character as PathSeparator

:

DefaultForceKind freeze, drive, or
deposit

defines the kind of force used when not
otherwise specified; this variable can be set
interactively with the Tcl set command
(UM-597)

drive for
resolved
signals;
freeze for
unresolved
signals

DefaultRadix symbolic, binary,
octal, decimal,
unsigned,
hexadecimal,
ascii

a numeric radix may be specified as a name
or number (i.e., binary can be specified as
binary or 2; octal as octal or 8; etc.); this
variable can be set interactively with the Tcl
set command (UM-597)

symbolic

DefaultRestartOptions one or more of:
-force,
-noassertions,
-nobreakpoint,
-nolist, -nolog,
-nowave

sets default behavior for the restart
command

commented
out (;)

DelayFileOpen 0, 1 if 1, open VHDL87 files on first read or
write, else open files when elaborated; this
variable can be set interactively with the Tcl
set command (UM-597)

off (0)

GenerateFormat Any non-quoted
string containing
at a minimum a
%s followed by a
%d

controls the format of a generate statement
label (don't quote it)

 %s__%d

IgnoreError 0,1 if 1, ignore assertion errors; this variable
can be set interactively with the Tcl set
command (UM-597)

off (0)

IgnoreFailure 0,1 if 1, ignore assertion failures; this variable
can be set interactively with the Tcl set
command (UM-597)

off (0)

Variable name Value range Purpose Default
ModelSim SE User’s Manual

UM-624 A - ModelSim variables

Model
IgnoreNote 0,1 if 1, ignore assertion notes; this variable can
be set interactively with the Tcl set
command (UM-597)

off (0)

IgnoreWarning 0,1 if 1, ignore assertion warnings; this variable
can be set interactively with the Tcl set
command (UM-597)

off (0)

IterationLimit positive integer limit on simulation kernel iterations
allowed without advancing time; this
variable can be set interactively with the Tcl
set command (UM-597)

5000

License any single
<license_option>

if set, controls ModelSim license file
search; license options include:
nomgc - excludes MGC licenses
nomti - excludes MTI licenses
noqueue - do not wait in license queue if no
licenses are available
plus - only use PLUS license
vlog - only use VLOG license
vhdl - only use VHDL license
viewsim - accepts a simulation license
rather than being queued for a viewer
license

see also the vsim command (CR-357)
<license_option>

search all
licenses

NumericStdNoWarnings 0, 1 if 1, warnings generated within the
accelerated numeric_std and numeric_bit
packages are suppressed; this variable can
be set interactively with the Tcl set
command (UM-597)

off (0)

PathSeparator any character
except those with
special meaning
(i.e., \, {, }, etc.)

used for hierarchical pathnames; must not
be the same character as DatasetSeparator;
this variable can be set interactively with
the Tcl set command (UM-597)

/

Resolution fs, ps, ns, us, ms,
or sec with
optional prefix of
1, 10, or 100

simulator resolution; no space between
value and units (i.e., 10fs, not 10 fs);
overridden by the -t argument to vsim (CR-

357); if your delays get truncated, set the
resolution smaller; this value must be less
than or equal to the UserTimeUnit
(described below)

ns

Variable name Value range Purpose Default
Sim SE User’s Manual

Preference variables located in INI files UM-625
RunLength positive integer default simulation length in units specified
by the UserTimeUnit variable; this variable
can be set interactively with the Tcl set
command (UM-597)

100

Show3DMem 0, 1 controls whether or not arrays of 3 or more
dimensions are listed as memories in the
Memory window; this variable can be set
with the Tcl set command (UM-597)

on (1)

ShowIntMem 0, 1 controls whether or not integer arrays are
listed as memories in the Memory window;
this variable can be set with the Tcl set
command (UM-597)

on (1)

ShowEnumMem 0, 1 controls whether or not enumerated type
arrays (other than std_logic-based arrays)
are listed as memories in the Memory
window; this variable can be set with the
Tcl set command (UM-597)

on (1)

Startup = do <DO
filename>; any
valid macro (do)
file

specifies the ModelSim startup macro; see
the do command (CR-156)

commented
out (;)

StdArithNoWarnings 0, 1 if 1, warnings generated within the
accelerated Synopsys std_arith packages
are suppressed; this variable can be set
interactively with the Tcl set command

off (0)

TranscriptFile any valid
filename

file for saving command transcript;
environment variables may be included in
the pathname

transcript

UnbufferedOutput 0, 1 controls VHDL and Verilog files open for
write; 0 = Buffered, 1 = Unbuffered

0

UseCsupV2 0, 1 instructs vsim to use /usr/lib/libCsup_v2.sl
for shared object loading; for use only on
HP-UX 11.00 when you have compiled
FLI/PLI/VPI C++ code with aCC's -AA
option

off (0)

Variable name Value range Purpose Default
ModelSim SE User’s Manual

UM-626 A - ModelSim variables

Model
UserTimeUnit fs, ps, ns, us, ms,
sec, or default

specifies scaling for the Wave window and
the default time units to use for commands
such as force (CR-176) and run (CR-246);
should generally be set to default, in which
case it takes the value of the Resolution
variable; this variable can be set
interactively with the Tcl set command
(UM-597)

default

Veriuser one or more valid
shared object
names

list of dynamically loadable objects for
Verilog PLI/VPI applications; see Chapter
6 - Verilog PLI / VPI

commented
out (;)

WaveSignalNameWidth 0, positive
integer

controls the number of visible hierarchical
regions of a signal name shown in the Wave
window (UM-337); the default value of zero
displays the full name, a setting of one or
above displays the corresponding level(s)
of hierarchy

0

WLFCompress 0, 1 turns WLF file compression on (1) or off (0) 1

WLFDeleteOnQuit 0, 1 specifies whether a WLF file should be
deleted when the simulation ends; if set to
0, the file is not deleted; if set to 1, the file
is deleted

0

WLFOptimize 0, 1 specifies whether the viewing of
waveforms is optimized; default is enabled;
WLF files created prior to ModelSim
version 5.8 cannot take advantage of the
optimization

1

WLFSaveAllRegions 0, 1 specifies whether to save all design
hierarchy in the WLF file (1) or only
regions containing logged signals (0)

0

WLFSizeLimit 0 - positive
integer of MB

WLF file size limit; limits WLF file by size
(as closely as possible) to the specified
number of megabytes; if both size and time
limits are specified the most restrictive is
used; setting to 0 results in no limit

0

WLFTimeLimit 0 - positive
integer, time unit
is optional

WLF file time limit; limits WLF file by
time (as closely as possible) to the specified
amount of time. If both time and size limits
are specified the most restrictive is used;
setting to 0 results in no limit

0

Variable name Value range Purpose Default
Sim SE User’s Manual

Preference variables located in INI files UM-627
[lmc] Logic Modeling variables

Logic Modeling SmartModels and hardware modeler interface

ModelSim’s interface with Logic Modeling’s SmartModels and hardware modeler are
specified in the [lmc] section of the INI/MPF file; for more information see "VHDL
SmartModel interface" (UM-576) and "VHDL hardware model interface" (UM-586)
respectively.

Reading variable values from the INI file

You can read values from the modelsim.ini file with the following function:

GetPrivateProfileString <section> <key> <defaultValue>

Reads the string value for the specified variable in the specified section. Optionally
provides a default value if no value is present.

Setting Tcl variables with values from the modelsim.ini file is one use of these Tcl
functions. For example,

set MyCheckpointCompressMode [GetPrivateProfileString vsim
CheckpointCompressMode 1]

set PrefMain(file) [GetPrivateProfileString vsim TranscriptFile ""]
ModelSim SE User’s Manual

UM-628 A - ModelSim variables

Model
Commonly used INI variables

Several of the more commonly used modelsim.ini variables are further explained below.

Environment variables

You can use environment variables in your initialization files. Use a dollar sign ($) before
the environment variable name. For example:

[Library]
work = $HOME/work_lib
test_lib = ./$TESTNUM/work
...
[vsim]
IgnoreNote = $IGNORE_ASSERTS
IgnoreWarning = $IGNORE_ASSERTS
IgnoreError = 0
IgnoreFailure = 0

There is one environment variable, MODEL_TECH, that you cannot — and should not —
set. MODEL_TECH is a special variable set by Model Technology software. Its value is
the name of the directory from which the VCOM or VLOG compilers or VSIM simulator
was invoked. MODEL_TECH is used by the other Model Technology tools to find the
libraries.

Hierarchical library mapping

By adding an "others" clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools don’t find a mapping in the modelsim.ini file, then they
will search only the library section of the initialization file specified by the "others" clause.
For example:

[Library]
asic_lib = /cae/asic_lib
work = my_work
others = /install_dir/modeltech/modelsim.ini

Since the file referred to by the "others" clause may itself contain an "others" clause, you
can use this feature to chain a set of hierarchical INI files for library mappings.

Creating a transcript file

A feature in the system initialization file allows you to keep a record of everything that
occurs in the transcript: error messages, assertions, commands, command outputs, etc. To
do this, set the value for the TranscriptFile line in the modelsim.ini file to the name of the
file in which you would like to record the ModelSim history.

; Save the command window contents to this file
TranscriptFile = trnscrpt
Sim SE User’s Manual

Preference variables located in INI files UM-629
Using a startup file

The system initialization file allows you to specify a command or a do file that is to be
executed after the design is loaded. For example:

; VSIM Startup command
Startup = do mystartup.do

The line shown above instructs ModelSim to execute the commands in the macro file
named mystartup.do.

; VSIM Startup command
Startup = run -all

The line shown above instructs VSIM to run until there are no events scheduled.

See the do command (CR-156) for additional information on creating do files.

Turning off assertion messages

You can turn off assertion messages from your VHDL code by setting a switch in the
modelsim.ini file. This option was added because some utility packages print a huge
number of warnings.

[vsim]
IgnoreNote = 1
IgnoreWarning = 1
IgnoreError = 1
IgnoreFailure = 1

Turning off warnings from arithmetic packages

You can disable warnings from the Synopsys and numeric standard packages by adding the
following lines to the [vsim] section of the modelsim.ini file.

[vsim]
NumericStdNoWarnings = 1
StdArithNoWarnings = 1

These variables can also be set interactively using the Tcl set command (UM-597). This
capability provides an answer to a common question about disabling warnings at time 0.
You might enter commands like the following in a DO file or at the ModelSim prompt:

set NumericStdNoWarnings 1
run 0
set NumericStdNoWarnings 0
run -all

Alternatively, you could use the when command (CR-375) to accomplish the same thing:

when {$now = @1ns } {set NumericStdNoWarnings 1}
run -all

Note that the time unit (ns in this case) would vary depending on your simulation
resolution.
ModelSim SE User’s Manual

UM-630 A - ModelSim variables

Model
Force command defaults

The force command has -freeze, -drive, and -deposit options. When none of these is
specified, then -freeze is assumed for unresolved signals and -drive is assumed for resolved
signals. This is designed to provide compatibility with version 4.1 and earlier force files.
But if you prefer -freeze as the default for both resolved and unresolved signals, you can
change the defaults in the modelsim.ini file.

[vsim]
; Default Force Kind
; The choices are freeze, drive, or deposit
DefaultForceKind = freeze

Restart command defaults

The restart command has -force, -nobreakpoint, -nolist, -nolog, and -nowave options.
You can set any of these as defaults by entering the following line in the modelsim.ini file:

DefaultRestartOptions = <options>

where <options> can be one or more of -force, -nobreakpoint, -nolist, -nolog, and -nowave.

Example: DefaultRestartOptions = -nolog -force

Note: You can also set these defaults in the modelsim.tcl file. The Tcl file settings will override
the .ini file settings.

VHDL standard

You can specify which version of the 1076 Std ModelSim follows by default using the
VHDL93 variable:

[vcom]
; VHDL93 variable selects language version as the default.
; Default is VHDL-2002.
; Value of 0 or 1987 for VHDL-1987.
; Value of 1 or 1993 for VHDL-1993.
; Default or value of 2 or 2002 for VHDL-2002.
VHDL93 = 2002

Opening VHDL files

You can delay the opening of VHDL files with an entry in the INI file if you wish. Normally
VHDL files are opened when the file declaration is elaborated. If the DelayFileOpen
option is enabled, then the file is not opened until the first read or write to that file.

[vsim]
DelayFileOpen = 1
Sim SE User’s Manual

Preference variables located in Tcl files UM-631
Preference variables located in Tcl files

ModelSim Tcl preference variables give you control over fonts, colors, prompts, window
positions and other simulator window characteristics. Preference files, which contain Tcl
commands that set preference variables, are loaded before any windows are created, and so
affect all windows.

When you invoke ModelSim the first time, it loads default preferences from the pref.tcl file.
You can customize the preference variables and save a file called modelsim.tcl file that
ModelSim reads in lieu of pref.tcl. Once you have created a modelsim.tcl file, ModelSim
attempts to load the file each time it starts up. ModelSim searches for the file as follows:

• use MODELSIM_TCL (UM-614) environment variable if it exists (if MODELSIM_TCL
is a list of files, each file is loaded in the order that it appears in the list); else

• use ./modelsim.tcl; else

• use $(HOME)/modelsim.tcl if it exists

Setting variables from the GUI

Select Tools > Edit Preferences in the Main window to open the Preferences dialog box.

Important: If your preference file is not named modelsim.tcl, or if the file is not located
in the directories mentioned above, you must refer to it with the MODELSIM_TCL
environment variable.
ModelSim SE User’s Manual

UM-632 A - ModelSim variables

Model
To change a setting, select the preference item and click Change Value. Click Apply to
accept the settings for the current session only. Click Save to create a modelsim.tcl file with
the current preference settings.

Setting variables from the command line

Use the Tcl set command (UM-597) to customize preference variables from the Main
window command line:

set <variable name> <variable value>

This command establishes variable values for the current session only. To save the current
preference settings to a modelsim.tcl file, use the write preferences command:

write preferences modelsim.tcl

User-defined variables

Temporary, user-defined variables can be created with the set command (UM-597). Like
simulator variables, user-defined variables are preceded by a dollar sign when referenced.
To create a variable with the set command:

set user1 7

You can use the variable in a command like:

echo "user1 = $user1"

More preferences

Additional compiler and simulator preferences may be set in the modelsim.ini file; see
"Preference variables located in INI files" (UM-617).
Sim SE User’s Manual

Variable precedence UM-633
Variable precedence

Note that some variables can be set in a .tcl file or a .ini file. A variable set in a .tcl file takes
precedence over the same variable set in a .ini file. For example, assume you have the
following line in your modelsim.ini file:

TranscriptFile = transcript

And assume you have the following line in your modelsim.tcl file:

set PrefMain(file) {}

In this case the setting in the modelsim.tcl file will override that in the modelsim.ini file, and
a transcript file will not be produced.
ModelSim SE User’s Manual

UM-634 A - ModelSim variables

Model
Simulator state variables

Unlike other variables that must be explicitly set, simulator state variables return a value
relative to the current simulation. Simulator state variables can be useful in commands,
especially when used within ModelSim DO files (macros). The variables are referenced in
commands by prefixing the name with a dollar sign ($).

Referencing simulator state variables

Variable values may be referenced in simulator commands by preceding the variable name
with a dollar sign ($). For example, to use the now and resolution variables in an echo
command type:

echo "The time is $now $resolution."

Depending on the current simulator state, this command could result in:

The time is 12390 ps 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a "\". For
example, \$now will not be interpreted as the current simulator time.

Variable Result

argc returns the total number of parameters passed to the current macro

architecture returns the name of the top-level architecture currently being
simulated; for an optimized Verilog module, returns architecture
name; for a configuration or non-optimized Verilog module, this
variable returns an empty string

configuration returns the name of the top-level configuration currently being
simulated; returns an empty string if no configuration

delta returns the number of the current simulator iteration

entity returns the name of the top-level VHDL entity or Verilog module
currently being simulated

library returns the library name for the current region

MacroNestingLevel returns the current depth of macro call nesting

n represents a macro parameter, where n can be an integer in the range
1-9

Now always returns the current simulation time with time units (e.g.,
110,000 ns) Note: will return a comma between thousands

now when time resolution is a unary unit (i.e., 1ns, 1ps, 1fs): returns the
current simulation time without time units (e.g., 100000)
when time resolution is a multiple of the unary unit (i.e., 10ns,
100ps, 10fs): returns the current simulation time with time units
(e.g. 110000 ns) Note: will not return comma between thousands

resolution returns the current simulation time resolution
Sim SE User’s Manual

Simulator state variables UM-635
Special considerations for the now variable

For the when command (CR-375), special processing is performed on comparisons
involving the now variable. If you specify "when {$now=100}...", the simulator will stop
at time 100 regardless of the multiplier applied to the time resolution.

You must use 64-bit time operators if the time value of now will exceed 2147483647 (the
limit of 32-bit numbers). For example:

if { [gtTime $now 2us] } {
.
.
.

See "ModelSim Tcl time commands" (UM-601) for details on 64-bit time operators.
ModelSim SE User’s Manual

UM-636 A - ModelSim variables

Model
Sim SE User’s Manual

 UM-637
B - ModelSim shortcuts

Appendix contents
Command shortcuts UM-637

Command history shortcuts UM-638

Main and Source window mouse and keyboard shortcuts UM-639

List window keyboard shortcuts UM-642

Wave window mouse and keyboard shortcuts UM-643

Right mouse button UM-644

This appendix is a collection of the keyboard and command shortcuts available in the
ModelSim GUI.

Command shortcuts

• You may abbreviate command syntax, but there’s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
ModelSim does not allow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

• Multiple commands may be entered on one line if they are separated by semi-colons (;).
For example:

vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

You probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top
ModelSim SE User’s Manual

UM-638 B - ModelSim shortcuts

Model
Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the ModelSim/VSIM prompt:

Shortcut Description

!! repeats the last command

!n repeats command number n; n is the VSIM prompt number (e.g.,
for this prompt: VSIM 12>, n =12)

!abc repeats the most recent command starting with "abc"

^xyz^ab^ replaces "xyz" in the last command with "ab"

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt to the active
cursor

his or history shows the last few commands (up to 50 are kept)
Sim SE User’s Manual

Main and Source window mouse and keyboard shortcuts UM-639
Main and Source window mouse and keyboard shortcuts

The following mouse actions and special keystrokes can be used to edit commands in the
entry region of the Main window. They can also be used in editing the file displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSim
to open the Notepad editor).

Mouse - UNIX Mouse - Windows Result

< left-button - click > move the insertion cursor

< left-button - press > + drag select

< shift - left-button - press > extend selection

< left-button - double-click > select word

< left-button - double-click > + drag select word + word

< control - left-button - click > move insertion cursor without
changing the selection

< left-button - click > on previous ModelSim or VSIM prompt copy and paste previous command
string to current prompt

< middle-button - click > paste clipboard

< middle-button - press > + drag scroll the window

Keystrokes - UNIX Keystrokes - Windows Result

< left | right arrow > move cursor left | right one character

< control > < left | right arrow > move cursor left | right one word

< shift > < left | right | up | down arrow > extend selection of text

< control > < shift > < left | right arrow > extend selection of text by word

< up | down arrow > scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down > moves cursor up | down one paragraph

< control > < home > move cursor to the beginning of the text

< control > < end > move cursor to the end of the text

< backspace >, < control-h > < backspace > delete character to the left

< delete >, < control-d > < delete > delete character to the right

none esc cancel
ModelSim SE User’s Manual

UM-640 B - ModelSim shortcuts

Model
< alt > activate or inactivate menu bar mode

< alt > < F4 > close active window

< control - a >, < home > < home > move cursor to the beginning of the line

< control - b > < left arrow > move cursor left

< control - d > < delete > delete character to the right

< control - e >, < end > < end > move cursor to the end of the line

< control - f > <right arrow> move cursor right one character

< control - k > delete to the end of line

< control - n > < down arrow > move cursor one line down (Source window
only under Windows)

< control - o > < enter > insert a newline character at the cursor

< control - p > < up arrow > move cursor one line up (Source window only
under Windows)

< control - s > < control - f > find

< F3 > find next

< control - t > reverse the order of the two characters on either
side of the cursor

< control - u > delete line

< control - v >, PageDn PageDn move cursor down one screen

< control - w > < control - x > cut the selection

< control - x >, < control - s> < control - s > save

< control - y >, F18 < control - v > paste the selection

none < control - a > select the entire contents of the widget

< control - \ > clear any selection in the widget

< control - ->, < control - / > < control - Z > undoes previous edits in the Source window

< meta - "<" > none move cursor to the beginning of the file

< meta - ">" > none move cursor to the end of the file

< meta - v >, PageUp PageUp move cursor up one screen

< Meta - w> < control - c > copy selection

Keystrokes - UNIX Keystrokes - Windows Result
Sim SE User’s Manual

Main and Source window mouse and keyboard shortcuts UM-641
The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

< F8 > search for the most recent command that
matches the characters typed (Main window
only)

< F9> run simulation

< F10 > continue simulation

< F11 > single-step

< F12> step-over

Keystrokes - UNIX Keystrokes - Windows Result
ModelSim SE User’s Manual

UM-642 B - ModelSim shortcuts

Model
List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

Key Action

<left arrow> scroll listing left (selects and highlights the item to the left of the
currently selected item)

<right arrow> scroll listing right (selects and highlights the item to the right of
the currently selected item)

<up arrow> scroll listing up

<down arrow> scroll listing down

<page up>
<control-up arrow>

scroll listing up by page

<page down>
<control-down
arrow>

scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signal

<shift-tab> searches backward (up) to the previous transition on the selected
signal (does not function on HP workstations)

<shift-left arrow>
<shift-right arrow>

extends selection left/right

<control-f> Windows
<control-s> UNIX

opens the Find dialog box to find the specified item label within
the list display
Sim SE User’s Manual

Wave window mouse and keyboard shortcuts UM-643
Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action Result

< control - left-button - drag down and right>a

a. If you enter zoom mode by selecting View > Mouse Mode > Zoom Mode, you do
not need to hold down the <Ctrl> key.

zoom area (in)

< control - left-button - drag up and right> zoom out

< control - left-button - drag up and left> zoom fit

<left-button - drag> (Select mode)
< middle-button - drag> (Zoom mode)

moves closest cursor

< control - left-button - click on a scroll arrow > scrolls window to very top or
bottom(vertical scroll) or far left or
right (horizontal scroll)

< middle mouse-button - click in scroll bar trough>
(UNIX only)

scrolls window to position of click

Keystroke Action

i I or + zoom in (mouse pointer must be over the the cursor or waveform
panes)

o O or - zoom out (mouse pointer must be over the the cursor or
waveform panes)

f or F zoom full (mouse pointer must be over the the cursor or
waveform panes)

l or L zoom last (mouse pointer must be over the the cursor or
waveform panes)

r or R zoom range (mouse pointer must be over the the cursor or
waveform panes)

<up arrow>/
<down arrow>

with mouse over waveform pane, scrolls entire window up/
down one line; with mouse over pathname or values pane,
scrolls highlight up/down one line

<left arrow> scroll pathname, values, or waveform pane left

<right arrow> scroll pathname, values, or waveform pane right

<page up> scroll waveform pane up by a page
ModelSim SE User’s Manual

UM-644 B - ModelSim shortcuts

Model
Right mouse button

The right mouse button provides shortcut menus in the most windows. See Chapter 10 -
Graphic interface for menu descriptions.

<page down> scroll waveform pane down by a page

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> Windows
<control-s> UNIX

open the find dialog box; searches within the specified field in
the pathname or values pane for text strings

<control-left arrow> scroll pathname, values, or waveform pane left by a page

<control-right arrow> scroll pathname, values, or waveform pane right by a page

Keystroke Action
Sim SE User’s Manual

 UM-645
C - ModelSim messages

Appendix contents
ModelSim message system UM-646

Message format UM-646
Getting more information UM-646

Suppressing warning messages UM-647
Suppressing VCOM warning messages UM-647
Suppressing VLOG warning messages UM-647
Suppressing VSIM warning messages UM-647

Exit codes UM-648

Miscellaneous messages UM-650
Empty port name warning. UM-650
Lock message UM-650
Metavalue detected warning UM-650
Sensitivity list warning UM-651
Tcl Initialization error 2 UM-651
Too few port connections UM-652
VSIM license lost UM-653

This appendix documents various status and warning messages that are produced by
ModelSim.
ModelSim SE User’s Manual

UM-646 C - ModelSim messages

Model
ModelSim message system

The ModelSim message system helps you identify and troubleshoot problems while using
the application. The messages display in a standard format in the Main window transcript.
Accordingly, you can also access them from a saved transcript file (see "Saving the Main
window transcript file" (UM-264) for more details).

Message format

The format for the messages is:

** <SEVERITY LEVEL>: ([<Tool>[-<Group>]]-<MsgNum>) <Message>

SEVERITY LEVEL may be one of the following:

Tool indicates which ModelSim tool was being executed when the message was generated.
For example tool could be vcom, vdel, vsim, etc.

Group indicates the topic to which the problem is related. For example group could be FLI,
PLI, VCD, etc.

Example

** Error: (vsim-PLI-3071) ./src/19/testfile(77): $fdumplimit : Too few
arguments.

Getting more information

Each message is identified by a unique MsgNum id. You can access additional information
about a message using the unique id and the verror (CR-317) command. For example:

% verror 3071
Message # 3071:
Not enough arguments are being passed to the specified system task or
function.

severity level meaning

Note This is an informational message.

Warning There may be a problem that will affect the
accuracy of your results.

Error The tool cannot complete the operation.

Fatal The tool cannot complete execution.

INTERNAL ERROR This is an unexpected error that should be
reported to support@model.com.
Sim SE User’s Manual

Suppressing warning messages UM-647
Suppressing warning messages

You can suppress some warning messages. For example, you may receive warning
messages about unbound components about which you are not concerned.

Suppressing VCOM warning messages

Use the -nowarn <number> argument to vcom (CR-303) to suppress a specific warning
message. For example:

vcom -nowarn 1

Suppresses unbound component warning messages.

Alternatively, warnings may be disabled for all compiles via the modelsim.ini file (see
"[vcom] VHDL compiler control variables" (UM-619)).

The warning message numbers are:

1 = unbound component
2 = process without a wait statement
3 = null range
4 = no space in time literal
5 = multiple drivers on unresolved signal
6 = compliance checks
7 = optimization messages
8 = lint checks
9 = signal value dependency at elaboration
10 = VHDL93 constructs in VHDL87 code

Suppressing VLOG warning messages

Use the +nowarn<CODE> argument to vlog (CR-345) to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vlog +nowarnDECAY

Suppresses decay warning messages.

Suppressing VSIM warning messages

Use the +nowarn<CODE> argument to vsim (CR-357) to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vsim +nowarnTFMPC

Suppresses warning messages about too few port connections.
ModelSim SE User’s Manual

UM-648 C - ModelSim messages

Model
Exit codes

The table below describes exit codes used by ModelSim tools.

Exit code Description

0 Normal (non-error) return

1 Incorrect invocation of tool

2 Previous errors prevent continuing

3 Cannot create a system process (execv, fork, spawn, etc.)

4 Licensing problem

5 Cannot create/open/find/read/write a design library

6 Cannot create/open/find/read/write a design unit

7 Cannot open/read/write/dup a file (open, lseek, write, mmap, munmap,
fopen, fdopen, fread, dup2, etc.)

8 File is corrupted or incorrect type, version, or format of file

9 Memory allocation error

10 General language semantics error

11 General language syntax error

12 Problem during load or elaboration

13 Problem during restore

14 Problem during refresh

15 Communication problem (Cannot create/read/write/close pipe/socket)

16 Version incompatibility

19 License manager not found/unreadable/unexecutable (vlm/mgvlm)

42 Lost license

43 License read/write failure

44 Modeltech daemon license checkout failure #44

45 Modeltech daemon license checkout failure #45

90 Assertion failure (SEVERITY_QUIT)

99 Unexpected error in tool

100 GUI Tcl initialization failure

101 GUI Tk initialization failure
Sim SE User’s Manual

Exit codes UM-649
102 GUI IncrTk initialization failure

111 X11 display error

202 Interrupt (SIGINT)

204 Illegal instruction (SIGILL)

205 Trace trap (SIGTRAP)

206 Abort (SIGABRT)

208 Floating point exception (SIGFPE)

210 Bus error (SIGBUS)

211 Segmentation violation (SIGSEGV)

213 Write on a pipe with no reader (SIGPIPE)

214 Alarm clock (SIGALRM)

215 Software termination signal from kill (SIGTERM)

216 User-defined signal 1 (SIGUSR1)

217 User-defined signal 2 (SIGUSR2)

218 Child status change (SIGCHLD)

230 Exceeded CPU limit (SIGXCPU)

231 Exceeded file size limit (SIGXFSZ)

Exit code Description
ModelSim SE User’s Manual

UM-650 C - ModelSim messages

Model
Miscellaneous messages

This section describes miscellaneous messages which may be associated with ModelSim.

Empty port name warning

Message text

** WARNING: [8] <path/file_name>:
empty port name in port list.

Meaning

ModelSim reports these warnings if you use the -lint argument to vlog (CR-345). It reports
the warning for any NULL module ports.

Suggested action

If you wish to ignore this warning, do not use the -lint argument.

Lock message

Message text

waiting for lock by user@user. Lockfile is <library_path>/_lock

Meaning

The _lock file is created in a library when you begin a compilation into that library, and it
is removed when the compilation completes. This prevents simultaneous updates to the
library. If a previous compile did not terminate properly, ModelSim may fail to remove the
_lock file.

Suggested action

Manually remove the _lock file after making sure that no one else is actually using that
library.

Metavalue detected warning

Message text

Warning: NUMERIC_STD.">": metavalue detected, returning FALSE

Meaning

This warning is an assertion being issued by the IEEE numeric_std package. It indicates
that there is an 'X' in the comparison.

Suggested action

The message does not indicate which comparison is reporting the problem since the
assertion is coming from a standard package. To track the problem, note the time the
warning occurs, restart the simulation, and run to one time unit before the noted time. At
this point, start stepping the simulator until the warning appears. The location of the blue
Sim SE User’s Manual

Miscellaneous messages UM-651
arrow in the source window will be pointing at the line following the line with the
comparison.

These messages can be turned off by setting the NumericStdNoWarnings variable to 1
from the command line or in the modelsim.ini file.

Sensitivity list warning

Message text

signal is read by the process but is not in the sensitivity list

Meaning

ModelSim outputs this message when you use the -check_synthesis argument to vcom
(CR-303). It reports the warning for any signal that is read by the process but is not in the
sensitivity list.

Suggested action

There are cases where you may purposely omit signals from the sensitivity list even though
they are read by the process. For example, in a strictly sequential process, you may prefer
to include only the clock and reset in the sensitivity list because it would be a design error
if any other signal triggered the process. In such cases, you’re only option as of version 5.7
is to not use the -check_synthesis argument. A more robust implementation of the
argument may be added to a future version.

Tcl Initialization error 2

Message text

Tcl_Init Error 2 : Can't find a usable Init.tcl in the following directories :
./../tcl/tcl8.3 .

Meaning

This message typically occurs when the base file was not included in a Unix installation.
When you install ModelSim, you need to download and install 3 files from the ftp site.
These files are:

• modeltech-base.tar.gz

• modeltech-docs.tar.gz

• modeltech-<platform>.exe.gz

If you install only the <platform> file, you will not get the Tcl files that are located in the
base file.

This message could also occur if the file or directory was deleted or corrupted.

Suggested action

Reinstall ModelSim with all three files.
ModelSim SE User’s Manual

UM-652 C - ModelSim messages

Model
Too few port connections

Message text

** Warning (vsim-3017): foo.v(1422): [TFMPC] - Too few port connections.
Expected 2, found 1.
Region: /foo/tb

Meaning

This warning occurs when an instantiation has fewer port connections than the
corresponding module definition. The warning doesn’t necessarily mean anything is
wrong; it is legal in Verilog to have an instantiation that doesn’t connect all of the pins.
However, someone that expects all pins to be connected would like to see such a warning.

Here are some examples of legal instantiations that will and will not cause the warning
message.

Module definition:

module foo (a, b, c, d);

Instantiation that does not connect all pins but will not produce the warning:

foo inst1(e, f, g,); – positional association

foo inst1(.a(e), .b(f), .c(g), .d()); – named association

Instantiation that does not connect all pins but will produce the warning:

foo inst1(e, f, g); – positional association

foo inst1(.a(e), .b(f), .c(g)); – named association

Any instantiation above will leave pin d unconnected but the first example has a
placeholder for the connection. Here’s another example:

foo inst1(e, , g, h);

foo inst1(.a(e), .b(), .c(g), .d(h));

Suggested actions

• Check that there is not an extra comma at the end of the port list. (e.g., model(a,b,)). The
extra comma is legal Verilog and implies that there is a third port connection that is
unnamed.

• If you are purposefully leaving pins unconnected, you can disable these messages using
the +nowarnTFMPC argument to vsim.
Sim SE User’s Manual

Miscellaneous messages UM-653
VSIM license lost

Message text

Console output:
Signal 0 caught... Closing vsim vlm child.
vsim is exiting with code 4
FATAL ERROR in license manager

transcript/vsim output:
** Error: VSIM license lost; attempting to re-establish.
Time: 5027 ns Iteration: 2
** Fatal: Unable to kill and restart license process.
Time: 5027 ns Iteration: 2

Meaning

ModelSim queries the license server for a license at regular intervals. Usually these
"License Lost" error messages indicate that network traffic is high, and communication
with the license server times out.

Suggested action

Anything you can do to improve network communication with the license server will
probably solve or decrease the frequency of this problem.
ModelSim SE User’s Manual

UM-654 C - ModelSim messages

Model
Sim SE User’s Manual

 UM-655
D - System initialization

Appendix contents
Files accessed during startup UM-656

Environment variables accessed during startup UM-657

Initialization sequence UM-658

ModelSim goes through numerous steps as it initializes the system during startup. It
accesses various files and environment variables to determine library mappings, configure
the GUI, check licensing, and so forth.
ModelSim SE User’s Manual

UM-656 D - System initialization

Model
Files accessed during startup

The table below describes the files that are read during startup. They are listed in the order
in which they are accessed.

File Purpose

modelsim.ini contains initial tool settings; see "Preference variables located in
INI files" (UM-617) for specific details on the modelsim.ini file

location map file used by ModelSim tools to find source files based on easily
reallocated "soft" paths; default file name is mgc_location_map

pref.tcl contains defaults for fonts, colors, prompts, window positions,
and other simulator window characteristics; see "Preference
variables located in Tcl files" (UM-631) for specific details on the
pref.tcl file

modelsim.tcl contains user-customized settings for fonts, colors, prompts,
window positions, and other simulator window characteristics;
see "Preference variables located in Tcl files" (UM-631) for more
details on the modelsim.tcl file

<project_name>.mpf if available, loads last project file which is specified in the
registry (Windows) or $(HOME)/.modelsim (UNIX); see "What
are projects?" (UM-32) for details on project settings
Sim SE User’s Manual

Environment variables accessed during startup UM-657
Environment variables accessed during startup

The table below describes the environment variables that are read during startup. They are
listed in the order in which they are accessed. For more information on environment
variables, see "Environment variables" (UM-613).

Environment variable Purpose

MODEL_TECH set by ModelSim to the directory in which the binary executables reside
(e.g., ../modeltech/<platform>/)

MODEL_TECH_OVERRIDE provides an alternative directory for the binary executables;
MODEL_TECH is set to this path

MODELSIM identifies the pathname of the modelsim.ini file

MGC_WD identifies the Mentor Graphics working directory

MGC_LOCATION_MAP identifies the pathname of the location map file; set by ModelSim if not
defined

MODEL_TECH_TCL identifies the pathname of all Tcl libraries installed with ModelSim

HOME identifies your login directory (UNIX only)

MGC_HOME identifies the pathname of the MGC tool suite

TCL_LIBRARY identifies the pathname of the Tcl library; set by ModelSim to the same
pathname as MODEL_TECH_TCL; must point to libraries supplied by
Model Technology

TK_LIBRARY identifies the pathname of the Tk library; set by ModelSim to the same
pathname as MODEL_TECH_TCL; must point to libraries supplied by
Model Technology

ITCL_LIBRARY identifies the pathname of the [incr]Tcl library; set by ModelSim to the
same path as MODEL_TECH_TCL; must point to libraries supplied by
Model Technology

ITK_LIBRARY identifies the pathname of the [incr]Tk library; set by ModelSim to the
same pathname as MODEL_TECH_TCL; must point to libraries supplied
by Model Technology

VSIM_LIBRARY identifies the pathname of the Tcl files that are used by ModelSim; set by
ModelSim to the same pathname as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

MTI_COSIM_TRACE creates an mti_trace_cosim file containing debugging information about
FLI/PLI/VPI function calls; set to any value before invoking the
simulator.

MTI_LIB_DIR identifies the path to all Tcl libraries installed with ModelSim

MODELSIM_TCL identifies the pathname of user-customized GUI preferences (e.g.,
C:\modeltech\modelsim.tcl; this environment variable can be a list of file
pathnames, separated by semicolons (Windows) or colons (UNIX)
ModelSim SE User’s Manual

UM-658 D - System initialization

Model
Initialization sequence

The following list describes in detail ModelSim’s initialization sequence. The sequence
includes a number of conditional structures, the results of which are determined by the
existence of certain files and the current settings of environment variables.

In the steps below, names in uppercase denote environment variables (except
MTI_LIB_DIR which is a Tcl variable). Instances of $(NAME) denote paths that are
determined by an environment variable (except $(MTI_LIB_DIR) which is determined by
a Tcl variable).

1 Determines the path to the executable directory (../modeltech/<platform>/). Sets
MODEL_TECH to this path, unless MODEL_TECH_OVERRIDE exists, in which case
MODEL_TECH is set to the same value as MODEL_TECH_OVERRIDE.

2 Finds the modelsim.ini file by evaluating the following conditions:

• use MODELSIM if it exists; else

• use $(MGC_WD)/modelsim.ini; else

• use ./modelsim.ini; else

• use $(MODEL_TECH)/modelsim.ini; else

• use $(MODEL_TECH)/../modelsim.ini; else

• use $(MGC_HOME)/lib/modelsim.ini; else

• set path to ./modelsim.ini even though the file doesn’t exist

3 Finds the location map file by evaluating the following conditions:

• use MGC_LOCATION_MAP if it exists (if this variable is set to "no_map", ModelSim
skips initialization of the location map); else

• use mgc_location_map if it exists; else

• use $(HOME)/mgc/mgc_location_map; else

• use $(HOME)/mgc_location_map; else

• use $(MGC_HOME)/etc/mgc_location_map; else

• use $(MGC_HOME)/shared/etc/mgc_location_map; else

• use $(MODEL_TECH)/mgc_location_map; else

• use $(MODEL_TECH)/../mgc_location_map; else

• use no map

4 Reads various variables from the [vsim] section of the modelsim.ini file. See "[vsim]
simulator control variables" (UM-621) for more details.

5 Parses any command line arguments that were included when you started ModelSim and
reports any problems.

6 Defines the following environment variables:

• use MODEL_TECH_TCL if it exists; else
Sim SE User’s Manual

Initialization sequence UM-659
• set MODEL_TECH_TCL=$(MODEL_TECH)/../tcl

• set TCL_LIBRARY=$(MODEL_TECH_TCL)/tcl8.3

• set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.3

• set ITCL_LIBRARY=$(MODEL_TECH_TCL)/itcl3.0

• set ITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0

• set VSIM_LIBRARY=$(MODEL_TECH_TCL)/vsim

7 Initializes the simulator’s Tcl interpreter.

8 Checks for a valid license (a license is not checked out unless specified by a modelsim.ini
setting or command line option).

The next four steps relate to initializing the graphical user interface.

9 Sets Tcl variable MTI_LIB_DIR=$(MODEL_TECH_TCL)

10 Loads $(MTI_LIB_DIR)/vsim/pref.tcl.

11 Finds the modelsim.tcl file by evaluating the following conditions:

• use MODELSIM_TCL environment variable if it exists (if MODELSIM_TCL is a list of
files, each file is loaded in the order that it appears in the list); else

• use ./modelsim.tcl; else

• use $(HOME)/modelsim.tcl if it exists

12 Loads last working directory, project file, and printer defaults from the registry
(Windows) or $(HOME)/.modelsim (UNIX).

That completes the initialization sequence. Also note the following about the modelsim.ini
file:

• When you change the working directory within ModelSim, the tool reads the [library],
[vcom], and [vlog] sections of the local modelsim.ini file. When you make changes in the
compiler options dialog or use the vmap command, the tool updates the appropriate
sections of the file.

• The pref.tcl file references the default .ini file via the [GetPrivateProfileString] Tcl
command. The .ini file that is read will be the default file defined at the time pref.tcl is
loaded.
ModelSim SE User’s Manual

UM-660 D - System initialization

Model
Sim SE User’s Manual

 UM-661
Licensing Agreement

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE
RESTRICTIONS.

CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE
SOFTWARE.

END-USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading, or have
acquired with this Agreement, including any updates, modifications, revisions, copies,
documentation and design data (“Software”) are copyrighted, trade secret and confidential
information of Mentor Graphics or its licensors who maintain exclusive title to all
Software and retain all rights not expressly granted by this Agreement. Mentor Graphics
grants to you, subject to payment of appropriate license fees, a nontransferable,
nonexclusive license to use Software solely: (a) in machine-readable, object-code form;
(b) for your internal business purposes; and (c) on the computer hardware or at the site for
which an applicable license fee is paid, or as authorized by Mentor Graphics. A site is
restricted to a one-half mile (800 meter) radius. Mentor Graphics' standard policies and
programs, which vary depending on Software, license fees paid or service plan purchased,
apply to the following and are subject to change: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single
user on the authorized hardware or for a restricted period of time (such limitations may be
communicated and technically implemented through the use of authorization codes or
similar devices); (c) support services provided, including eligibility to receive telephone
support, updates, modifications and revisions. Current standard policies and programs are
available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software development
(“ESD”) Software, Mentor Graphics grants to you a nontransferable, nonexclusive license
to reproduce and distribute executable files created using ESD compilers, including the
ESD run-time libraries distributed with ESD C and C++ compiler Software that are linked
into a composite program as an integral part of your compiled computer program,
provided that you distribute these files only in conjunction with your compiled computer
program. Mentor Graphics does NOT grant you any right to duplicate or incorporate
copies of Mentor Graphics' real-time operating systems or other ESD Software, except
those explicitly granted in this section, into your products without first signing a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE. Portions or all of certain Software may contain code for experimental
testing and evaluation (“Beta Code”), which may not be used without Mentor Graphics'
explicit authorization. Upon Mentor Graphics' authorization, Mentor Graphics grants to
you a temporary, nontransferable, nonexclusive license for experimental use to test and

This license is a legal “Agreement” concerning the use of Software between you,
the end user, either individually or as an authorized representative of the company
acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited, acting directly or through their subsidiaries or authorized
distributors (collectively “Mentor Graphics”). USE OF SOFTWARE INDICATES
YOUR COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS
AND CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to
these terms and conditions, promptly return, or, if received electronically, certify
destruction of, Software and all accompanying items within five days after receipt
of Software and receive a full refund of any license fee paid.
ModelSim SE User’s Manual

UM-662 License Agreement

Model
evaluate the Beta Code without charge for a limited period of time specified by Mentor
Graphics. This grant and your use of the Beta Code shall not be construed as marketing or
offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form. If Mentor Graphics authorizes you to use the Beta
Code, you agree to evaluate and test the Beta Code under normal conditions as directed by
Mentor Graphics. You will contact Mentor Graphics periodically during your use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of
your evaluation and testing, you will send to Mentor Graphics a written evaluation of the
Beta Code, including its strengths, weaknesses and recommended improvements. You
agree that any written evaluations and all inventions, product improvements,
modifications or developments that Mentor Graphics conceives or made during or
subsequent to this Agreement, including those based partly or wholly on your feedback,
will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive
rights, title and interest in all such property. The provisions of this subsection shall survive
termination or expiration of this Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to
support the authorized use. Each copy must include all notices and legends embedded in
Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. You shall maintain a
record of the number and primary location of all copies of Software, including copies
merged with other software, and shall make those records available to Mentor Graphics
upon request. You shall not make Software available in any form to any person other than
employees and contractors, excluding Mentor Graphics' competitors, whose job
performance requires access. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does
not disclose it or use it except as permitted by this Agreement. Except as otherwise
permitted for purposes of interoperability as specified by applicable and mandatory local
law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way
derive from Software any source code. You may not sublicense, assign or otherwise
transfer Software, this Agreement or the rights under it, whether by operation of law or
otherwise (“attempted transfer”) without Mentor Graphics' prior written consent and
payment of Mentor Graphics then-current applicable transfer charges. Any attempted
transfer without Mentor Graphics’ prior written consent shall be a material breach of this
Agreement and may. at Mentor graphics’ option, result in the immediate termination of
the Agreement and licenses granted under this Agreement. The provisions of this section 4
shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period, Software, when properly
installed, will substantially conform to the functional specifications set forth in the
applicable user manual. Mentor Graphics does not warrant that Software will meet
your requirements or that operation of Software will be uninterrupted or error free.
The warranty period is 90 days starting on the 15th day after delivery or upon
installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if
Software has been subject to misuse, unauthorized modification or installation.
MENTOR GRAPHICS' ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY
SHALL BE, AT MENTOR GRAPHICS' OPTION, EITHER (A) REFUND OF THE
PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B)
MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT
MEET THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE
COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH
Sim SE User’s Manual

 UM-663
IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST;
OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “AS
IS.”

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE.
NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER
WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO
SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT.
MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER
APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR SAVINGS)
WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY,
EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR
GRAPHICS' OR ITS LICENSORS' LIABILITY UNDER THIS AGREEMENT
EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR SERVICE
GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID,
MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR
ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN
CONNECTION WITH THE USE OF SOFTWARE IN ANY APPLICATION WHERE
THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS
MENTOR GRAPHICS AND ITS LICENSORS FROM ANY CLAIMS, LOSS, COST,
DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEYS' FEES, ARISING
OUT OF OR IN CONNECTION WITH YOUR USEOF SOFTWARE AS DESCRIBED
IN SECTION 7.

9. INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought
against you alleging that Software infringes a patent or copyright or misappropriates a
trade secret in the United States, Canada, Japan, or member state of the European
Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. You understand and agree
that as conditions to Mentor Graphics’ obligations under this section you must: (a)
notify Mentor Graphics promptly in writing of the action; (b) provide Mentor
Graphics all reasonable information and assistance to defend or settle the action; and
(c) grant Mentor Graphics sole authority and control of the defense or settlement of
the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a)
replace or modify Software so that it becomes noninfringing; (b) procure for you the
right to continue using Software; or (c) require the return of Software and refund to
you any license fee paid, less a reasonable allowance for use.
ModelSim SE User’s Manual

UM-664 License Agreement

Model
9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the
combination of Software with any product not furnished by Mentor Graphics; (b) the
modification of Software other than by Mentor Graphics; (c) the use of other than a
current unaltered release of Software; (d) the use of Software as part of an infringing
process; (e) a product that you make, use or sell; (f) any Beta Code contained in
Software; (g) any Software provided by Mentor Graphics' licensors who do not
provide such indemnification to Mentor Graphics' customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphics for
its attorney fees and other costs related to the action upon a final judgment.

9.4. THIS SECTION 9 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS
AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH
RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR
TRADE SECRET MISAPPROPRIATION BY ANY SOFTWARE LICENSED
UNDER THIS AGREEMENT.

10. TERM. This Agreement remains effective until expiration or termination. This
Agreement will automatically terminate if you fail to comply with any term or condition
of this Agreement or if you fail to pay for the license when due and such failure to pay
continues for a period of 30 days after written notice from Mentor Graphics. If Software
was provided for limited term use, this Agreement will automatically expire at the end of
the authorized term. Upon any termination or expiration, you agree to cease all use of
Software and return it to Mentor Graphics or certify deletion and destruction of Software,
including all copies, to Mentor Graphics' reasonable satisfaction.

11. EXPORT. Software is subject to regulation by local laws and United States government
agencies, which prohibit export or diversion of certain products, information about the
products, and direct products of the products to certain countries and certain persons. You
agree that you will not export any Software or direct product of Software in any manner
without first obtaining all necessary approval from appropriate local and United States
government agencies.

12. RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense
and is commercial computer software provided with RESTRICTED RIGHTS. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is
subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, as
applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 SW
Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

13. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by
Mentor Graphics from Microsoft or other licensors, Microsoft or the applicable licensor is
a third party beneficiary of this Agreement with the right to enforce the obligations set
forth in this Agreement.

14. AUDIT RIGHTS. With reasonable prior notice, Mentor Graphics shall have the right to
audit during your normal business hours all records and accounts as may contain
information regarding your compliance with the terms of this Agreement. Mentor
Graphics shall keep in confidence all information gained as a result of any audit. Mentor
Graphics shall only use or disclose such information as necessary to enforce its rights
under this Agreement.

15. CONTROLLING LAW AND JURISDICTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF OREGON, USA, IF
Sim SE User’s Manual

 UM-665
YOU ARE LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF
IRELAND IF YOU ARE LOCATED OUTSIDE OF NORTH AND SOUTH AMERICA.
All disputes arising out of or in relation to this Agreement shall be submitted to the
exclusive jurisdiction of Dublin, Ireland when the laws of Ireland apply, or Wilsonville,
Oregon when the laws of Oregon apply. This section shall not restrict Mentor Graphics’
right to bring an action against you in the jurisdiction where your place of business is
located.

16. SEVERABILITY. If any provision of this Agreement is held by a court of competent
jurisdiction to be void, invalid, unenforceable or illegal, such provision shall be severed
from this Agreement and the remaining provisions will remain in full force and effect.

17. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating
to its subject matter and supersedes all prior or contemporaneous agreements, including
but not limited to any purchase order terms and conditions, except valid license
agreements related to the subject matter of this Agreement (which are physically signed
by you and an authorized agent of Mentor Graphics) either referenced in the purchase
order or otherwise governing this subject matter. This Agreement may only be modified in
writing by authorized representatives of the parties. Waiver of terms or excuse of breach
must be in writing and shall not constitute subsequent consent, waiver or excuse. The
prevailing party in any legal action regarding the subject matter of this Agreement shall be
entitled to recover, in addition to other relief, reasonable attorneys' fees and expenses.

Rev. 020826, Part Number 214231
ModelSim SE User’s Manual

UM-666 License Agreement

Model
Sim SE User’s Manual

 UM-667
Index
CR = Command Reference, UM = User’s Manual
Symbols

#, comment character UM-596
+acc option, design object visibility UM-133
+opt UM-128
+typdelays CR-352
-, in a coverage report UM-449
.so, shared object file

loading PLI/VPI C applications UM-159
loading PLI/VPI C++ applications UM-164

;{} CR-15
’hasX, hasX CR-25

Numerics

1076, IEEE Std UM-25
differences between versions UM-74

1364, IEEE Std UM-25, UM-107
2001, keywords, disabling CR-352
64-bit libraries UM-64
64-bit ModelSim, using with 32-bit FLI apps UM-182
64-bit time

now variable UM-635
Tcl time commands UM-601

A

+acc option, design object visibility UM-133
abort command CR-51
absolute time, using @ CR-18
ACC routines UM-177
accelerated packages UM-62
access

hierarchical items UM-523
limitations in mixed designs UM-211

add button command CR-52
add list command CR-55
add wave command CR-64
add_menu command CR-58
add_menucb command CR-60
add_menuitem simulator command CR-61
add_separator command CR-62
add_submenu command CR-63
alias command CR-68
analog

signal formatting UM-350
supported signal types UM-350

analog, signal formatting CR-64
annotating interconnect delays, v2k_int_delays CR-370
architecture simulator state variable UM-634
archives

described UM-55
archives, library CR-344
argc simulator state variable UM-634
arguments

passing to a DO file UM-607
arithmetic package warnings, disabling UM-629
arrays

indexes CR-12
slices CR-12, CR-15

AssertFile .ini file variable UM-621
assertion fail command CR-69
assertion pass command CR-71
assertion report command CR-73
AssertionFailEnable .ini variable UM-621
AssertionFailLimit .ini variable UM-621
AssertionFailLog .ini variable UM-621
AssertionFormat .ini file variable UM-621
AssertionFormatBreak .ini file variable UM-622
AssertionFormatError .ini file variable UM-622
AssertionFormatFail .ini file variable UM-622
AssertionFormatFatal .ini file variable UM-622
AssertionFormatNote .ini file variable UM-622
AssertionFormatWarning .ini file variable UM-622
AssertionPassEnable .ini variable UM-621
AssertionPassLimit .ini variable UM-621
AssertionPassLog .ini variable UM-621
assertions

configuring from the GUI UM-387
debugging UM-516
enabling CR-69, CR-71
failure behavior CR-69
file and line number UM-621
flow UM-496
limitations UM-496
messages

alternate output file UM-514
turning off UM-629

pass behavior CR-71
reporting on CR-73, UM-514
selecting severity that stops simulation UM-387
setting format of messages UM-621
testing for with onbreak command CR-210
viewing in Wave window UM-515
warnings, locating UM-621
ModelSim SE User’s Manual

UM-668 Index

Model
attributes, of signals, using in expressions CR-25
auto find bp command UM-479
auto step mode, C Debug UM-480

B

bad magic number error message UM-241
balloon dialog, toggling on/off UM-353
balloon popup

C Debug UM-490
base (radix), specifying in List window UM-291
base (radix), specifying in Memory window UM-306
batch_mode command CR-75
batch-mode simulations UM-24

halting CR-378
bd (breakpoint delete) command CR-76
binary radix, mapping to std_logic values CR-30
binding C++ objects UM-204
binding errors in SystemC, resolving UM-204
binding, VHDL, default UM-61
bitwise format UM-467
blocking assignments UM-121
bookmark add wave command CR-77
bookmark delete wave command CR-78
bookmark goto wave command CR-79
bookmark list wave command CR-80
bookmarks UM-361
bp (breakpoint) command CR-81
brackets, escaping CR-15
break

on assertion UM-387
on signal value CR-375

BreakOnAssertion .ini file variable UM-622
breakpoints

C code UM-476
conditional CR-375, UM-323
continuing simulation after CR-246
deleting CR-76, UM-329, UM-391
listing CR-81
setting CR-81, UM-329
setting automatically in C code UM-480
signal breakpoints (when statements) CR-375, UM-

323
Source window, viewing in UM-325
time-based UM-323

in when statements CR-379
.bsm file UM-283
buffered/unbuffered output UM-625
bus contention checking CR-90

configuring CR-92

disabling CR-93
bus float checking

configuring CR-95
disabling CR-96
enabling CR-94

busses
escape characters in CR-15
RTL-level, reconstructing UM-249
user-defined CR-65, UM-292, UM-345

buswise format UM-467
Button Adder (add buttons to windows) UM-400
buttons, adding to the Main window toolbar CR-52

C

C applications
compiling and linking UM-159
debugging UM-473

C callstack
moving down CR-231
moving up CR-215

C Debug UM-473
auto find bp UM-479
auto step mode UM-480
debugging functions during elaboration UM-483
debugging functions when exiting UM-487
function entry points, finding UM-479
initialization mode UM-483
menu reference UM-488
registered function calls, identifying UM-480
Stop on quit mode UM-487

C debugging CR-85
C++ applications

compiling and linking UM-164
case choice, must be locally static CR-305
case sensitivity

named port associations UM-229
VHDL vs. Verilog CR-16

causality, tracing in Dataflow window UM-277
cd (change directory) command CR-84
cdbg command CR-85
cell libraries UM-142
cells

hiding in Dataflow window UM-284, UM-285
change command CR-87
change directory, disabled UM-265
change_menu_cmd command CR-89
chasing X UM-278
check contention add command CR-90
check contention config command CR-92
Sim SE User’s Manual

 UM-669
check contention off command CR-93
check float add command CR-94
check float config command CR-95
check float off command CR-96
check stable off command CR-97
check stable on command CR-98
-check_synthesis argument CR-304

warning message UM-651
checkpoint command CR-99
checkpoint/restore UM-84, UM-140
CheckpointCompressMode .ini file variable UM-622
CheckSynthesis .ini file variable UM-619
class member selection, syntax CR-13
cleanup

SystemC state-based code UM-200
clean-up of SystemC state-based code UM-200
clear differences UM-469
clock change, sampling signals at UM-297
clocked comparison UM-457, UM-463
Code Coverage

$coverage_save system task UM-149
by instance UM-420
cancel exclusions UM-431
clear coverage data UM-432
columns in workspace UM-427
condition coverage UM-420, UM-452
coverage clear command CR-134
coverage exclude command CR-135
coverage reload command CR-136
coverage report command CR-137
coverage save command CR-140
current exclusions pane UM-431
data types supported UM-421
details pane UM-433
display filter UM-432
display filter toolbar UM-442
enabling with vcom or vlog UM-423
enabling with vsim UM-423
excluding lines/files UM-443
exclusion filter files UM-444
expression coverage UM-420, UM-453
filter instance list UM-432
important notes UM-422
instance coverage UM-432
Main window coverage data UM-426
merge utility UM-451
merging report files CR-136
merging reports CR-311
missed branches UM-430
missed coverage UM-430
pragma exclusions UM-443

reports UM-446
Source window data UM-435
source window details UM-434
statistics in Main window UM-426
Tcl preference variables UM-454
toggle coverage UM-420

excluding signals CR-273
toggle details UM-433
workspace pane UM-427

columns
hide/showing in GUI UM-257
sorting by UM-257

combining signals, busses CR-65, UM-292, UM-345
command history UM-267
CommandHistory .ini file variable UM-623
command-line mode UM-23
Commands

compare commands UM-471
commands

.main clear CR-44

.wave.tree interrupt CR-45

.wave.tree zoomfull CR-46

.wave.tree zoomin CR-47

.wave.tree zoomlast CR-48

.wave.tree zoomout CR-49

.wave.tree zoomrange CR-50
abort CR-51
add button CR-52
add list CR-55
add wave CR-64
add_menu CR-58
add_menucb CR-60
add_menuitem CR-61
add_separator CR-62
add_submenu CR-63
alias CR-68
assertion fail command CR-69
assertion pass CR-71
assertion report CR-73
batch_mode CR-75
bd (breakpoint delete) CR-76
bookmark add wave CR-77
bookmark delete wave CR-78
bookmark goto wave CR-79
bookmark list wave CR-80
bp (breakpoint) CR-81
cd (change directory) CR-84
cdbg CR-85
change CR-87
change_menu_cmd CR-89
check contention add CR-90
ModelSim SE User’s Manual

UM-670 Index

Model
check contention config CR-92
check contention off CR-93
check float add CR-94
check float config CR-95
check float off CR-96
check stable off CR-97
check stable on CR-98
checkpoint CR-99
compare add CR-100
compare annotate CR-104, CR-107
compare clock CR-105
compare close CR-111
compare delete CR-110
compare info CR-112
compare list CR-113
compare open CR-125
compare options CR-114
compare reload CR-118
compare savediffs CR-121
compare saverules CR-122
compare see CR-123
compare start CR-120
configure CR-129
coverage clear CR-134
coverage exclude CR-135
coverage reload CR-136
coverage report CR-137
coverage save CR-140
dataset alias CR-141
dataset clear CR-142
dataset close CR-143
dataset info CR-144
dataset list CR-145
dataset open CR-146
dataset rename CR-147, CR-148
dataset snapshot CR-149
delete CR-151
describe CR-152
disable_menu CR-154
disable_menuitem CR-155
disablebp CR-153
do CR-156
down CR-157
drivers CR-159
dumplog64 CR-160
echo CR-161
edit CR-162
enable_menu CR-164
enable_menuitem CR-165
enablebp CR-163
environment CR-166

examine CR-167
exit CR-171
find CR-172
force CR-176
gdb dir CR-179
getactivecursortime CR-180
getactivemarkertime CR-181
help CR-182
history CR-183
lecho CR-184
left CR-185
log CR-187
lshift CR-189
lsublist CR-190
macro_option CR-191
mem display CR-192
mem list CR-194
mem load CR-195
mem save CR-198
mem search CR-200
modelsim CR-202
next CR-203
noforce CR-204
nolog CR-205
notation conventions CR-10
notepad CR-207
noview CR-208
nowhen CR-209
onbreak CR-210
onElabError CR-211
onerror CR-212
pause CR-213
play CR-214
pop CR-215
power add CR-216
power report CR-217
power reset CR-218
printenv CR-219, CR-220
profile clear CR-221
profile interval CR-222
profile off CR-223
profile on CR-224
profile option CR-225
profile report CR-226
property list CR-228
property wave CR-229
push CR-231
pwd CR-232
quietly CR-233
quit CR-234
radix CR-235
Sim SE User’s Manual

 UM-671
readers CR-236
record CR-237
report CR-238
restart CR-240
restore CR-242
resume CR-243
right CR-244
run CR-246
sccom CR-248
scgenmod CR-251
search CR-253
searchlog CR-255
seetime CR-257
setenv CR-258
shift CR-259
show CR-260
splitio CR-262
status CR-263
step CR-264
stop CR-265
system UM-599
tb (traceback) CR-266
tcheck_set CR-267
tcheck_status CR-269
toggle add CR-271
toggle disable CR-273
toggle enable CR-274
toggle report CR-275
toggle reset CR-276
transcribe CR-277
transcript CR-278
transcript file CR-279
TreeUpdate CR-390
tssi2mti CR-280
unsetenv CR-281
up CR-282
variables referenced in CR-17
vcd add CR-284
vcd checkpoint CR-285
vcd comment CR-286
vcd dumpports CR-287
vcd dumpportsall CR-289
vcd dumpportsflush CR-290
vcd dumpportslimit CR-291
vcd dumpportsoff CR-292
vcd dumpportson CR-293
vcd file CR-294
vcd files CR-296
vcd flush CR-298
vcd limit CR-299
vcd off CR-300

vcd on CR-301
vcom CR-303
vcover convert CR-310
vcover merge CR-311
vdel CR-315
vdir CR-316
verror CR-317
vgencomp CR-318
view CR-320
virtual count CR-322
virtual define CR-323
virtual delete CR-324
virtual describe CR-325
virtual expand CR-326
virtual function CR-327
virtual hide CR-330
virtual log CR-331
virtual nohide CR-333
virtual nolog CR-334
virtual region CR-336
virtual save CR-337
virtual show CR-338
virtual signal CR-339
virtual type CR-342
vlib CR-344
vlog CR-345
vmake CR-355
vmap CR-356
vsim CR-357
VSIM Tcl commands UM-600
vsimDate CR-373
vsimId CR-373
vsimVersion CR-373
WaveActivateNextPane CR-390
WaveRestoreCursors CR-390
WaveRestoreZoom CR-390
when CR-375
where CR-380
wlf2log CR-381
wlf2vcd CR-383
wlfman CR-384
wlfrecover CR-387
write cell_report CR-388
write format CR-389
write list CR-391
write preferences CR-392
write report CR-393
write transcript CR-394
write tssi CR-395
write wave CR-397

comment character
ModelSim SE User’s Manual

UM-672 Index

Model
Tcl and DO files UM-596
comment characters in VSIM commands CR-10
compare

add region UM-462
add signals UM-461
by signal UM-461
clear differences UM-469
clocked UM-457, UM-463
continuous UM-457, UM-464
difference markers UM-467
differences UM-470
displayed in List window UM-470
end UM-468
graphic interface UM-459
icons UM-468
limit count UM-465
menu UM-468
modes UM-457
options UM-465
pathnames UM-466
reference dataset UM-459
reference region UM-462
reload UM-469
rules UM-469
run UM-468
save differences UM-469
show differences UM-469
specify dataset UM-459
start UM-468
startup wizard UM-468
tab UM-460
test dataset UM-459
test region UM-462
timing differences UM-467
tolerance UM-464
tolerances UM-457
values UM-467
verilog matching UM-465
VHDL matching UM-465
wave window display UM-466
waveforms UM-455
wizard UM-468
write report UM-469

compare add command CR-100
compare annotate command CR-104, CR-107
compare by region UM-462
compare clock command CR-105
compare close command CR-111
compare commands UM-471
compare delete command CR-110
compare info command CR-112

compare list command CR-113
compare open command CR-125
compare options command CR-114
compare reload command CR-118
compare savediffs command CR-121
compare saverules command CR-122
compare see command CR-123
compare simulations UM-239
compare start command CR-120
compatibility, of vendor libraries CR-316
compile

gensrc errors during UM-206, UM-207
compile history UM-41
compile order

auto generate UM-42
changing UM-42

compiler directives UM-150
IEEE Std 1364-2000 UM-150
XL compatible compiler directives UM-151

compiling
+opt argument UM-128
changing order in the GUI UM-42
compile history UM-41
default options, setting UM-370
-fast argument UM-127
graphic interface, with the UM-368
grouping files UM-43
order, changing in projects UM-42
properties, in projects UM-48
range checking in VHDL CR-308, UM-74
source errors, locating UM-369
SystemC CR-248, CR-251, UM-190

code modification examples UM-191
converting sc_main() UM-190
exporting top level module UM-190
for source level debug UM-192
invoking sccom UM-192
linking the compiled source UM-197
modifying source code UM-190
replacing sc_start() UM-190
replacing VCD dump functions UM-190

using sccom vs. raw C++ compiler UM-195
Verilog CR-345, UM-108

incremental compilation UM-109
library components, including CR-348
optimizing performance CR-347, UM-127
XL ’uselib compiler directive UM-114
XL compatible options UM-113

VHDL CR-303, UM-73
at a specified line number CR-305
selected design units (-just eapbc) CR-305
Sim SE User’s Manual

 UM-673
standard package (-s) CR-308
VITAL packages UM-93

component declaration
generating SystemC from Verilog or VHDL UM-

238
generating VHDL from Verilog UM-226
vgencomp for SystemC UM-238
vgencomp for VHDL UM-226

component, default binding rules UM-61
Compressing files

VCD tasks UM-566
compressing files

VCD files CR-287, CR-296
concatenation

directives CR-29
of signals CR-28, CR-339

ConcurrentFileLimit .ini file variable UM-623
conditional breakpoints CR-375, UM-323
configuration simulator state variable UM-634
configurations

instantiation in mixed designs UM-225
Verilog UM-115

configurations, simulating CR-357
configure command CR-129
connectivity, exploring UM-274
constants

in case statements CR-305
values of, displaying CR-152, CR-167

contention checking CR-90
context menu

List window UM-289
context menus

code coverage in workspace UM-429
described UM-259
Library tab UM-58
Project tab UM-41
Structure window UM-333

continuous comparison UM-457
conversion, radix CR-235
convert real to time UM-97
convert time to real UM-96
coverage

merging data UM-450
saving raw data UM-450

coverage clear command CR-134
coverage exclude command CR-135
coverage reload command CR-136
coverage report command CR-137
coverage reports UM-446

sample reports UM-448
coverage save command CR-140

$coverage_save system task UM-149
CppOptions .ini file variable (sccom) UM-620
CppPath .ini file variable (sccom) UM-620
CppPath .ini variable UM-193
current exclusions

hide/show pragmas UM-431
pragmas UM-443

current exclusions pane UM-431
cursors

link to Dataflow window UM-271
locking UM-359
measuring time with UM-359
naming UM-358
trace events with UM-277
Wave window UM-358

customizing
adding buttons CR-52
via preference variables UM-631

D

deltas
explained UM-78

data types
Code Coverage UM-421

Dataflow window UM-270
automatic cell hiding UM-284, UM-285
options UM-284, UM-285
pan UM-276
zoom UM-276
see also windows, Dataflow window

dataflow.bsm file UM-283
dataset alias command CR-141
Dataset Browser UM-244
dataset clear command CR-142
dataset close command CR-143
dataset info command CR-144
dataset list command CR-145
dataset open command CR-146
dataset rename command CR-147, CR-148
Dataset Snapshot UM-246
dataset snapshot command CR-149
Datasets UM-239
datasets UM-456

environment command, specifying with CR-166
managing UM-244
reference UM-459
restrict dataset prefix display UM-245
specifying for compare UM-459
test UM-459
ModelSim SE User’s Manual

UM-674 Index

Model
DatasetSeparator .ini file variable UM-623
Debug Detective UM-395
debugging

C code UM-473
declarations, hiding implicit with explicit CR-309
default binding rules UM-61
default compile options UM-370
Default editor, changing UM-613
DefaultForceKind .ini file variable UM-623
DefaultRadix .ini file variable UM-623
DefaultRestartOptions variable UM-623, UM-630
defaults

restoring UM-613
window arrangement UM-259

+define+ CR-346
definition (ID) of memory UM-302
delay

delta delays UM-78
interconnect CR-361
modes for Verilog models UM-142
SDF files UM-543
stimulus delay, specifying UM-322

+delay_mode_distributed CR-346
+delay_mode_path CR-346
+delay_mode_unit CR-346
+delay_mode_zero CR-347
’delayed CR-25
DelayFileOpen .ini file variable UM-623
delete command CR-151
deleting library contents UM-57
delta simulator state variable UM-634
deltas

collapsing in the List window UM-294
hiding in the List window CR-130, UM-294
referencing simulator iteration

as a simulator state variable UM-634
dependencies, checking CR-316
dependent design units UM-73
describe command CR-152
descriptions of HDL items UM-329
design hierarchy, viewing in Structure window UM-331
design library

creating UM-56
logical name, assigning UM-59
mapping search rules UM-60
resource type UM-54
VHDL design units UM-73
working type UM-54

design portability and SystemC UM-193
design units UM-54

hierarchy of, viewing UM-261

report of units simulated CR-393
Verilog

adding to a library CR-345
details

code coverage UM-433
directories

mapping libraries CR-356
moving libraries UM-60

directory, changing, disabled UM-265
disable_menu command CR-154
disable_menuitem command CR-155
disablebp command CR-153
distributed delay mode UM-143
dividers

adding from command line CR-64
Wave window UM-343

DLL files, loading UM-159, UM-164
do command CR-156
DO files (macros) CR-156

error handling UM-609
executing at startup UM-613, UM-625
parameters, passing to UM-607
Tcl source command UM-610

docking
window panes UM-257

documentation UM-29
DOPATH environment variable UM-613
down command CR-157
drivers

Dataflow Window UM-274
show in Dataflow window UM-347
Wave window UM-347

drivers command CR-159
drivers, multiple on unresolved signal UM-372
dump files, viewing in ModelSim CR-302
dumplog64 command CR-160
dumpports tasks, VCD files UM-565

E

echo command CR-161
edges, finding CR-185, CR-244
edit command CR-162
Editing

in notepad windows UM-639
in the Main window UM-639
in the Source window UM-639

EDITOR environment variable UM-613
editor, default, changing UM-613
elab_defer_fli argument UM-82, UM-138
Sim SE User’s Manual

 UM-675
elaboration file
creating UM-81, UM-137
loading UM-81, UM-137
modifying stimulus UM-81, UM-137
resimulating the same design UM-80, UM-136
simulating with PLI or FLI models UM-82, UM-

138
elaboration, interrupting CR-357
embedded wave viewer UM-275
empty port name warning UM-650
enable_menu command CR-164
enable_menuitem command CR-165
enablebp command CR-163
encryption

+protect argument CR-351
‘protect compiler directive UM-152
-nodebug argument (vcom) CR-306
-nodebug argument (vlog) CR-350
securing pre-compiled libraries UM-65, UM-69

end comparison UM-468
end_of_construction() function UM-205
end_of_simulation() function UM-205
ENDFILE function UM-89
ENDLINE function UM-89
‘endprotect compiler directive UM-152
entities

default binding rules UM-61
entities, specifying for simulation CR-371
entity simulator state variable UM-634
enumerated types

user defined CR-342
environment command CR-166
environment variables UM-613

accessed during startup UM-657
reading into Verilog code CR-346
referencing from ModelSim command line UM-616
referencing with VHDL FILE variable UM-616
setting in Windows UM-615
specifying library locations in modelsim.ini file

UM-617
specifying UNIX editor CR-162
state of CR-220
TranscriptFile, specifying location of UM-625
used in Solaris linking for FLI UM-161
using in pathnames CR-16
using with location mapping UM-66
variable substitution using Tcl UM-599

environment, displaying or changing pathname CR-166
errors

bad magic number UM-241
during compilation, locating UM-369

getting details about messages CR-317
getting more information UM-646
multiple definition UM-208
onerror command CR-212
out-of-line function UM-208
SystemC compilation UM-206
SystemC loading UM-206
Tcl_init error UM-651
void function UM-208
VSIM license lost UM-653

errors, handling sccom -link UM-197
escape character CR-15
event order

changing in Verilog CR-345
in optimized designs UM-135
in Verilog simulation UM-119

event queues UM-119
events, tracing UM-277
examine command CR-167
examine tooltip

toggling on/off UM-353
exclusion filter files UM-444
exclusions

cancel UM-431
hide/show pragmas UM-431
lines and files UM-443
load exclusion file UM-431
save exclusion file UM-431

exit codes UM-648
exit command CR-171
expand net UM-274
Explicit .ini file variable UM-619
Exporting SystemC modules

to Verilog UM-234
exporting SystemC modules

to VHDL UM-238
exporting top SystemC module UM-190
Expression Builder UM-395, UM-463

configuring a List trigger with UM-296
specify when expression UM-463, UM-464

extended identifiers UM-225
and SystemC UM-237
syntax in commands CR-16

F

-f CR-347
F8 function key UM-641
-fast CR-347, UM-127
ModelSim SE User’s Manual

UM-676 Index

Model
field descriptions
coverage reports UM-448

File compression
VCD tasks UM-566

file compression
SDF files UM-543
VCD files CR-287, CR-296

file I/O
splitio command CR-262
TextIO package UM-86
VCD files UM-559

file-line breakpoints UM-329
files, grouping for compile UM-43
filter

code coverage UM-442
filtering signals in Signals window UM-319
filters

for Code Coverage UM-444
find command CR-172
finding

cursors in the Wave window UM-359
marker in the List window UM-300
names and values UM-259

fixed point types UM-205
FLI UM-98

debugging UM-473
folders, in projects UM-46
fonts

controlling in X-sessions UM-260
force command CR-176

defaults UM-630
foreign language interface UM-98
foreign module declaration

Verilog example CR-252, UM-232
VHDL example UM-236

foreign module declaration, SystemC UM-231
format file UM-340

List window CR-389
Wave window CR-389, UM-340

FPGA libraries, importing UM-68
function calls, identifying with C Debug UM-480
functions

SystemC, unsupported UM-204

G

-g C++ compiler option UM-201
g++, alternate installations UM-193
gate-level designs, optimizing UM-129
gdb

setting source directory CR-179
gdb debugger UM-473
gdb dir command CR-179
GenerateFormat .ini file variable UM-623
generics

assigning or overriding values with -g and -G CR-
359

examining generic values CR-167
limitation on assigning composite types CR-359
VHDL UM-213

get_resolution() VHDL function UM-94
getactivecursortime command CR-180
getactivemarkertime command CR-181
glitches

disabling generation
from command line CR-366
from GUI UM-380

graphic interface UM-253
UNIX support UM-22

grouping files for compile UM-43
GUI preferences, saving UM-631
GUI_expression_format CR-23

GUI expression builder UM-395
syntax CR-24

H

halting waveform drawing CR-45
hardware model interface UM-586
’hasX CR-25
Hazard .ini file variable (VLOG) UM-618
hazards

-hazards argument to vlog CR-348
-hazards argument to vsim CR-367
limitations on detection UM-122

HDL item UM-28
help command CR-182
hierarchical profile, Performance Analyzer UM-411
hierarchical references, mixed-language UM-211
hierarchy

driving signals in UM-525, UM-534
forcing signals in UM-95, UM-530, UM-539
referencing signals in UM-95, UM-528, UM-537
releasing signals in UM-95, UM-532, UM-541
viewing signal names without UM-352

history
of commands

shortcuts for reuse CR-20, UM-638
of compiles UM-41

history command CR-183
Sim SE User’s Manual

 UM-677
hm_entity UM-587
HOME environment variable UM-613
HP aCC, restrictions on compiling with UM-194

I

I/O
splitio command CR-262
TextIO package UM-86
VCD files UM-559

ieee .ini file variable UM-617
IEEE libraries UM-62
IEEE Std 1076 UM-25

differences between versions UM-74
IEEE Std 1364 UM-25, UM-107
IgnoreError .ini file variable UM-623
IgnoreFailure .ini file variable UM-623
IgnoreNote .ini file variable UM-624
IgnoreVitalErrors .ini file variable UM-619
IgnoreWarning .ini file variable UM-624
implicit operator, hiding with vcom -explicit CR-309
importing FPGA libraries UM-68
+incdir+ CR-348
include guards UM-206
incremental compilation

automatic UM-110
manual UM-110
with Verilog UM-109

index checking UM-74
indexed arrays, escaping square brackets CR-15
INF, in a coverage report UM-449
$init_signal_driver UM-534
init_signal_driver UM-525
$init_signal_spy UM-537
init_signal_spy UM-95, UM-528
init_usertfs function UM-155, UM-485
Initial dialog box, turning on/off UM-612
initialization of SystemC state-based code UM-200
initialization sequence UM-658
inlining requirements UM-197
instance

code coverage UM-420
instantiation in mixed-language design

Verilog from VHDL UM-225
VHDL from Verilog UM-229

instantiation in SystemC-Verilog design
SystemC from Verilog UM-234
Verilog from SystemC UM-231

instantiation in SystemC-VHDL design
VHDL from SystemC UM-235

instantiation in VHDL-SystemC design
SystemC from VHDL UM-237

interconnect delays CR-361, UM-555
annotating per Verilog 2001 CR-370

internal signals, adding to a VCD file CR-284
item_list_file, WLF files CR-384
iteration_limit, infinite zero-delay loops UM-79
IterationLimit .ini file variable UM-624

K

keyboard shortcuts
List window UM-301, UM-642
Main window UM-269, UM-639
Source window UM-639
Wave window UM-363, UM-643

keywords
disabling 2001 keywords CR-352
enabling System Verilog keywords CR-352

L

language templates UM-397
language versions, VHDL UM-74
lecho command CR-184
left command CR-185
Libraries

modelsim_lib UM-94
libraries

64-bit and 32-bit in same library UM-64
archives CR-344
dependencies, checking CR-316
design libraries, creating CR-344, UM-56
design library types UM-54
design units UM-54
group use, setting up UM-60
IEEE UM-62
importing FPGA libraries UM-68
including precompiled modules UM-382
listing contents CR-316
mapping

from the command line UM-59
from the GUI UM-59
hierarchically UM-628
search rules UM-60

moving UM-60
multiple libraries with common modules UM-112
naming UM-59
precompiled modules, including CR-348
predefined UM-62
ModelSim SE User’s Manual

UM-678 Index

Model
refreshing library images CR-308, CR-352, UM-63
resource libraries UM-54
std library UM-62
Synopsys UM-62
vendor supplied, compatibility of CR-316
Verilog CR-367, UM-111, UM-214
VHDL library clause UM-61
working libraries UM-54
working with contents of UM-57

library map file, Verilog configurations UM-115
library maps, Verilog 2001 UM-115
library simulator state variable UM-634
License .ini file variable UM-624
licensing

License variable in .ini file UM-624
linking SystemC source UM-197
lint-style checks CR-349
List window UM-286

adding items to CR-55
context menu UM-289
setting triggers UM-296
waveform comparison UM-470
see also windows, List window

LM_LICENSE_FILE environment variable UM-613
location maps, referencing source files UM-66
locations maps

specifying source files with UM-66
lock message UM-650
log command CR-187
log file

log command CR-187
nolog command CR-205
overview UM-239
QuickSim II format CR-381
redirecting with -l CR-360
virtual log command CR-331
virtual nolog command CR-334
see also WLF files

Logic Modeling
SmartModel

command channel UM-580
SmartModel Windows

lmcwin commands UM-581
memory arrays UM-582

long simulations
saving at intervals UM-246

lshift command CR-189
lsublist command CR-190

M

macro_option command CR-191
MacroNestingLevel simulator state variable UM-634
macros (DO files) UM-607

breakpoints, executing at CR-82
creating from a saved transcript UM-264
depth of nesting, simulator state variable UM-634
error handling UM-609
executing CR-156
forcing signals, nets, or registers CR-176
parameters

as a simulator state variable (n) UM-634
passing CR-156, UM-607
total number passed UM-634

relative directories CR-156
shifting parameter values CR-259
Startup macros UM-629

.main clear command CR-44
Main window UM-262

code coverage UM-426
see also windows, Main window

manuals UM-29
mapping

data types UM-213
libraries

from the command line UM-59
hierarchically UM-628

symbols
Dataflow window UM-283

SystemC in mixed designs UM-223
SystemC to Verilog UM-220
SystemC to VHDL UM-224
Verilog states in mixed designs UM-214
Verilog states in SystemC designs UM-219
Verilog to SytemC, port and data types UM-219
Verilog to VHDL data types UM-213
VHDL to SystemC UM-217
VHDL to Verilog data types UM-216

mapping libraries, library mapping UM-59
math_complex package UM-62
math_real package UM-62
+maxdelays CR-349
mc_scan_plusargs()

using with an elaboration file UM-82, UM-138
mc_scan_plusargs, PLI routine CR-369
mem display command CR-192
mem list command CR-194
mem load command CR-195
mem save command CR-198
mem search command CR-200
Sim SE User’s Manual

 UM-679
memories
displaying the contents UM-302
initializing UM-309
initializing interactively UM-311
loading memory patterns UM-309
MTI’s definition of UM-302
saving memory data to a file UM-312

memory
modeling in VHDL UM-99

Memory window UM-302
see also windows, Memory window

memory, displaying contents CR-192
memory, listing CR-194
memory, loading contents CR-195
memory, saving contents CR-198
memory, searching for patterns CR-200
menus

customizing UM-260
Dataflow window UM-272
List window UM-288
Main window UM-265
Memory window UM-303
Process window UM-315
Signals window UM-317
Source window UM-326
Structure window UM-332
tearing off or pinning menus UM-259
Variables window UM-335
Wave window UM-340

merging coverage reports CR-311
messages UM-645

bad magic number UM-241
echoing CR-161
empty port name warning UM-650
exit codes UM-648
getting more information CR-317, UM-646
loading, disbling with -quiet CR-308, CR-351
lock message UM-650
long description UM-646
metavalue detected UM-650
ModelSim message system UM-646
redirecting UM-625
sensitivity list warning UM-651
suppressing warnings from arithmetic packages

UM-629
Tcl_init error UM-651
too few port connections UM-652
turning off assertion messages UM-629
VSIM license lost UM-653
warning, suppressing UM-647

metavalue detected warning UM-650

MGC_LOCATION_MAP env variable UM-66
MGC_LOCATION_MAP variable UM-613
+mindelays CR-349
missed coverage UM-430

branches UM-430
mixed-language simulation UM-209

access limitations UM-211
mnemonics, assigning to signal values CR-342
MODEL_TECH environment variable UM-613
MODEL_TECH_TCL environment variable UM-613
modeling memory in VHDL UM-99
ModelSim

commands CR-33–CR-398
modelsim command CR-202
MODELSIM environment variable UM-614
modelsim.ini

found by ModelSim UM-658
default to VHDL93 UM-630
delay file opening with UM-630
environment variables in UM-628
force command default, setting UM-630
hierarchical library mapping UM-628
opening VHDL files UM-630
restart command defaults, setting UM-630
startup file, specifying with UM-629
transcript file created from UM-628
turning off arithmetic package warnings UM-629
turning off assertion messages UM-629

modelsim.tcl file UM-631
modelsim_lib UM-94

path to UM-617
MODELSIM_TCL environment variable UM-614
Modified field, Project tab UM-40
modules

handling multiple, common names UM-112
with unnamed ports UM-228

mouse shortcuts
Main window UM-269, UM-639
Source window UM-639
Wave window UM-363, UM-643

.mpf file UM-32
loading from the command line UM-51
order of access during startup UM-656

mti_cosim_trace environment variable UM-614
MTI_SYSTEMC macro UM-193
MTI_TF_LIMIT environment variable UM-614
multiple drivers on unresolved signal UM-372
Multiple simulations UM-239
multi-source interconnect delays CR-361
ModelSim SE User’s Manual

UM-680 Index

Model
N

n simulator state variable UM-634
name association UM-204
name binding

SystemC UM-205
name case sensitivity, VHDL vs. Verilog CR-16
Name field

Project tab UM-40
names, modules with the same UM-112
negative pulses

driving an error state CR-370
Negative timing

$setuphold/$recovery UM-147
negative timing

algorithm for calculating delays UM-123
check limits UM-123
extending check limits CR-367

nets
adding to the Wave and List windows UM-322
Dataflow window, displaying in UM-270
drivers of, displaying CR-159
readers of, displaying CR-236
stimulus CR-176
values of

displaying in Signals window UM-316
examining CR-167
forcing UM-321
saving as binary log file UM-322

waveforms, viewing UM-337
next and previous edges, finding UM-644
next command CR-203
Nlview widget Symlib format UM-283
no space in time literal UM-372
NoCaseStaticError .ini file variable UM-619
NoDebug .ini file variable (VCOM) UM-619
NoDebug .ini file variable (VLOG) UM-618
-nodebug argument (vcom) CR-306
-nodebug argument (vlog) CR-350
noforce command CR-204
NoIndexCheck .ini file variable UM-619
+nolibcell CR-350
nolog command CR-205
NOMMAP environment variable UM-614
NoNameBind .ini file variable (sccom) UM-620
non-blocking assignments UM-121
NoOthersStaticError .ini file variable UM-619
NoRangeCheck .ini file variable UM-619
notepad command CR-207
Notepad windows, text editing UM-639
-notrigger argument UM-297

noview command CR-208
NoVital .ini file variable UM-619
NoVitalCheck .ini file variable UM-619
Now simulator state variable UM-634
now simulator state variable UM-634
+nowarn<CODE> CR-350
nowhen command CR-209
numeric_bit package UM-62
numeric_std package UM-62

disabling warning messages UM-629
NumericStdNoWarnings .ini file variable UM-624

O

onbreak command CR-210
onElabError command CR-211
onerror command CR-212
operating systems supported, See Installation Guide
+opt UM-128
optimizations

disabling for Verilog designs CR-351
disabling for VHDL designs CR-307
disabling process merging CR-303

optimize for std_logic_1164 UM-372
Optimize_1164 .ini file variable UM-619
optimizing Verilog designs UM-127

design object visibility UM-133
event order issues UM-135
gate-level UM-129
timing checks UM-135
without source UM-134

OptionFile entry in project files UM-374
order of events

changing in Verilog CR-345
in optimized designs UM-135

ordering files for compile UM-42
organizing projects with folders UM-46
OSCI 2.1 features supported UM-205
OSCI simulator, differences from ModelSim UM-204
OSCI simulator, differences with vsim UM-204
others .ini file variable UM-618
overriding the simulator resolution UM-198

P

Packages
util UM-94

packages
standard UM-62
textio UM-62
Sim SE User’s Manual

 UM-681
VITAL 1995 UM-91
VITAL 2000 UM-91

page setup
Dataflow window UM-282
Wave window UM-366

pan, Dataflow window UM-276
panes

docking and undocking UM-257
parameters

making optional UM-608
using with macros CR-156, UM-607

path delay mode UM-143
Pathnames UM-466
pathnames

in VSIM commands CR-12
spaces in CR-11

PathSeparator .ini file variable UM-624
pause command CR-213
PedanticErrors .ini file variable UM-619
performance

improving for Verilog simulations UM-127
Performance Analyzer UM-407

%parent field UM-414
commands UM-417
getting started UM-410
hierarchical profile UM-411
in(%) field UM-413
interpreting data UM-411
name field UM-413
preferences, setting UM-417
profile report command UM-416
ranked profile UM-414
report option UM-416
results, viewing UM-411
statistical sampling UM-408
under(%) field UM-413
view_profile command UM-411
view_profile_ranked command UM-411

platforms supported, See Installation Guide
play command CR-214
PLI

specifying which apps to load UM-156
Veriuser entry UM-156

PLI/VPI UM-154
debugging UM-473
tracing UM-183

PLIOBJS environment variable UM-156, UM-614
pop command CR-215
popup

toggling waveform popup on/off UM-353, UM-467
Port driver data, capturing UM-571

ports, unnamed, in mixed designs UM-228
ports, VHDL and Verilog UM-214
Postscript

saving a waveform in UM-363
saving the Dataflow display in UM-280

power add command CR-216
power report command CR-217
power reset command CR-218
pragmas UM-431, UM-443

hide/show exclusions UM-431
precedence of variables UM-633
precision, simulator resolution UM-117, UM-211
pre-compilied libraries, optimizing with -fast UM-134
pref.tcl file UM-631
preference variables

.ini files, located in UM-617
code coverage UM-454
editing UM-631
Performance Analyzer UM-417
saving UM-631
Tcl files, located in UM-631

preferences, saving UM-631
primitives, symbols in Dataflow window UM-283
printenv command CR-219, CR-220
Printing

comparison differences UM-470
printing

Dataflow window display UM-280
waveforms in the Wave window UM-363

Process window UM-314
see also windows, Process window

processes
optimizations, disabling merging CR-303
values and pathnames in Variables window UM-

334
without wait statements UM-372

profile clear command CR-221
profile interval command CR-222
profile off command CR-223
profile on command CR-224
profile option command CR-225
profile report command CR-226, UM-416
profiler, see Performance Analyzer UM-407
Programming Language Interface UM-154
project context menus UM-41
project tab

information in UM-40
sorting UM-40

Projects
MODELSIM environment variable UM-614

projects UM-31
ModelSim SE User’s Manual

UM-682 Index

Model
accessing from the command line UM-51
adding files to UM-35
benefits UM-32
code coverage settings UM-424
compile order UM-42

changing UM-42
compiler properties in UM-48
compiling files UM-38
context menu UM-41
creating UM-34
creating simulation configurations UM-44
folders in UM-46
grouping files in UM-43
loading a design UM-39
override mapping for work directory with vcom CR-

308
override mapping for work directory with vlog CR-

352
overview UM-32

propagation, preventing X propagation CR-361
property list command CR-228
property wave command CR-229
Protect .ini file variable (VLOG) UM-618
‘protect compiler directive UM-152
PSL assertions UM-493

see also assertions
pulse error state CR-370
push command CR-231
pwd command CR-232

Q

QuickSim II logfile format CR-381
Quiet .ini file variable

VCOM UM-619
Quiet .ini file variable (VLOG) UM-618
quietly command CR-233
quit command CR-234

R

race condition, problems with event order UM-119
radix

changing in Signals, Variables, Dataflow, List, and
Wave windows CR-235

character strings, displaying CR-342
default, DefaultRadix variable UM-623
of signals being examined CR-168
of signals in Wave window CR-66
specifying in List window UM-291

specifying in Memory window UM-306
radix command CR-235
range checking UM-74

disabling CR-306
enabling CR-308

ranked profile UM-414
readers and drivers UM-274
readers command CR-236
real type, converting to time UM-97
rebuilding supplied libraries UM-63
reconstruct RTL-level design busses UM-249
record command CR-237
record field selection, syntax CR-13
records, values of, changing UM-334
$recovery UM-147
redirecting messages, TranscriptFile UM-625
reference region UM-462
refreshing library images CR-308, CR-352, UM-63
registered function calls UM-480
registers

adding to the Wave and List windows UM-322
values of

displaying in Signals window UM-316
saving as binary log file UM-322

waveforms, viewing UM-337
report

simulator control UM-612
simulator state UM-612

report command CR-238
reporting

code coverage UM-446
compile history UM-41
variable settings CR-17

RequireConfigForAllDefaultBinding variable UM-619
resolution

in SystemC simulation UM-198
mixed designs UM-211
overriding in SystemC UM-198
returning as a real UM-94
specifying with -t argument CR-363
verilog simulation UM-117
VHDL simulation UM-77

Resolution .ini file variable UM-624
resolution simulator state variable UM-634
resource libraries UM-61
restart command CR-240

defaults UM-630
in GUI UM-266
toolbar button UM-442

restore command CR-242
restoring defaults UM-613
Sim SE User’s Manual

 UM-683
results, saving simulations UM-239
resume command CR-243
right command CR-244
RTL-level design busses

reconstructing UM-249
run command CR-246
RunLength .ini file variable UM-625

S

saving
simulation options in a project UM-44
Waveform Comparison differences UM-469
waveforms UM-239

saving simulations UM-84, UM-140
sc_cycle() function UM-204
sc_initialize(), removing calls UM-204
sc_main() function UM-204
SC_MODULE_EXPORT macro UM-190
sc_set_time_resolution() function UM-204
sc_start() function UM-204
sc_start() function, replacing in SystemC UM-204
ScalarOpts .ini file variable UM-618, UM-619
sccom

using sccom vs. raw C++ compiler UM-195
sccom command CR-248
sccom -link command UM-197, UM-234, UM-238
sccom -link errors, handling UM-197
sccomLogfile .ini file variable (sccom) UM-620
sccomVerbose .ini file variable (sccom) UM-620
scgenmod command CR-251
scgenmod, using UM-231, UM-235
scope, setting region environment CR-166
SCV library, including CR-249
SDF

controlling missing instance messages CR-363
disabling individual checks CR-267
disabling timing checks UM-555
errors and warnings UM-545
instance specification UM-544
interconnect delays UM-555
mixed VHDL and Verilog designs UM-554
specification with the GUI UM-545
troubleshooting UM-556
Verilog

$sdf_annotate system task UM-548
optional conditions UM-553
optional edge specifications UM-552
rounded timing values UM-553
SDF to Verilog construct matching UM-549

VHDL
resolving errors UM-547
SDF to VHDL generic matching UM-546

$sdf_done UM-149
search command CR-253
search libraries CR-367, UM-382
searching

binary signal values in the GUI CR-30
in the source window UM-329
in the Structure window UM-333
List window

signal values, transitions, and names CR-23,
CR-157, CR-282, UM-297

next and previous edge in Wave window CR-185,
CR-244

values and names UM-259
Verilog libraries UM-111, UM-229
Wave window

signal values, edges and names CR-185, CR-
244, UM-355

searchlog command CR-255
seetime command CR-257
sensitivity list warning UM-651
setenv command CR-258
$setuphold UM-147
shared library

building in SystemC UM-197, UM-234, UM-266,
UM-376

shared objects
loading FLI applications

see ModelSim FLI Reference manual
loading PLI/VPI C applications UM-159
loading PLI/VPI C++ applications UM-164

shift command CR-259
Shortcuts

text editing UM-639
shortcuts

command history CR-20, UM-638
command line caveat CR-19, UM-637
List window UM-301, UM-642
Main window UM-639
Main windows UM-269
Source window UM-639
Wave window UM-363, UM-643

show command CR-260
show differences UM-469
show drivers

Dataflow window UM-274
Wave window UM-347

show source lines with errors UM-371
Show_BadOptionWarning .ini file variable UM-618
ModelSim SE User’s Manual

UM-684 Index

Model
Show_Lint .ini file variable (VLOG) UM-618
Show_source .ini file variable

VCOM UM-619
Show_source .ini file variable (VLOG) UM-618
Show_VitalChecksWarning .ini file variable UM-619
Show_Warning1 .ini file variable UM-619
Show_Warning2 .ini file variable UM-619
Show_Warning3 .ini file variable UM-620
Show_Warning4 .ini file variable UM-620
Show_Warning5 .ini file variable UM-620
Show3DMem .ini file variable UM-625
ShowEnumMem .ini file variable UM-625
ShowIntMem .ini file variable UM-625
signal interaction

Verilog and SystemC UM-217
Signal Spy UM-95, UM-528

overview UM-524
$signal_force UM-539
signal_force UM-95, UM-530
$signal_release UM-541
signal_release UM-95, UM-532
signals

adding to a WLF file UM-322
adding to the Wave and List windows UM-322
alternative names in the List window (-label) CR-56
alternative names in the Wave window (-label) CR-

65
applying stimulus to UM-321
attributes of, using in expressions CR-25
breakpoints CR-375, UM-323
combining into a user-defined bus CR-65, UM-292,

UM-345
Dataflow window, displaying in UM-270
drivers of, displaying CR-159
driving in the hierarchy UM-525
environment of, displaying CR-166
filtering in the Signals window UM-319
finding CR-172
force time, specifying CR-177
hierarchy

driving in UM-525, UM-534
referencing in UM-95, UM-528, UM-537
releasing anywhere in UM-532
releasing in UM-95, UM-541

log file, creating CR-187
names of, viewing without hierarchy UM-352
pathnames in VSIM commands CR-12
radix

specifying for examine CR-168
specifying in List window CR-56
specifying in Wave window CR-66

readers of, displaying CR-236
sampling at a clock change UM-297
states of, displaying as mnemonics CR-342
stimulus CR-176
transitions, searching for UM-360
types, selecting which to view UM-319
unresolved, multiple drivers on UM-372
values of

displaying in Signals window UM-316
examining CR-167
forcing anywhere in the hierarchy UM-95,

UM-530, UM-539
replacing with text CR-342
saving as binary log file UM-322

waveforms, viewing UM-337
Signals window UM-316

see also windows, Signals window
Simulating

Comparing simulations UM-239
comparing simulations UM-455

simulating
batch mode UM-23
command-line mode UM-23
default run length UM-386
delays, specifying time units for CR-18
design unit, specifying CR-357
elaboration file UM-80, UM-136
graphic interface to UM-377
iteration limit UM-387
mixed language designs

compilers UM-211
libraries UM-211
resolution limit in UM-211

mixed Verilog and SystemC designs
channel and port type mapping UM-217
SystemC sc_signal data type mapping UM-218
Verilog port direction UM-219
Verilog state mapping UM-219

mixed Verilog and VHDL designs
Verilog parameters UM-213
Verilog state mapping UM-214
VHDL and Verilog ports UM-214
VHDL generics UM-213

mixed VHDL and SystemC designs
SystemC state mapping UM-223
VHDL port direction UM-222
VHDL port type mapping UM-221
VHDL sc_signal data type mapping UM-221

optimizing Verilog performance CR-347
saving dataflow display as a Postscript file UM-280
saving options in a project UM-44
Sim SE User’s Manual

 UM-685
saving simulations CR-187, CR-364, UM-239
saving waveform as a Postscript file UM-363
speeding-up with Performance Analyzer UM-407
stepping through a simulation CR-264
stimulus, applying to signals and nets UM-321
stopping simulation in batch mode CR-378
SystemC UM-187, UM-198

usage flow for SystemC only UM-189
time resolution UM-378
Verilog UM-116

delay modes UM-142
hazard detection UM-122
optimizing performance UM-127
resolution limit UM-117
XL compatible simulator options UM-126

VHDL UM-77
viewing results in List window UM-286
VITAL packages UM-93

Simulation Configuration
creating UM-44

simulations
event order in UM-119
saving results CR-148, CR-149, UM-239
saving results at intervals UM-246
saving with checkpoint UM-84, UM-140

simulator resolution
mixed designs UM-211
returning as a real UM-94
SystemC UM-198
Verilog UM-117
VHDL UM-77
vsim -t argument CR-363

simulator state variables UM-634
simulator version CR-364, CR-373
simulator, ModelSim and OSCI differences UM-204
simultaneous events in Verilog

changing order CR-345
sizetf callback function UM-173
sm_entity UM-577
SmartModels

creating foreign architectures with sm_entity UM-
577

invoking SmartModel specific commands UM-580
linking to UM-576
lmcwin commands UM-581
memory arrays UM-582
Verilog interface UM-583
VHDL interface UM-576

so, shared object file
loading PLI/VPI C applications UM-159
loading PLI/VPI C++ applications UM-164

sorting
HDL items in GUI windows UM-259

source balloon
C Debug UM-490

source code pragmas UM-443
source code, security UM-65, UM-69, UM-152
source directory, setting from source window UM-326
source errors, locating during compilation UM-369
source files, referencing with location maps UM-66
source files, specifying with location maps UM-66
source libraries

arguments supporting UM-113
source lines with errors

showing UM-371
Source window UM-325

code coverage data UM-435
View menu UM-436
see also windows, Source window

source-level debug
SystemC, enabling UM-201

spaces in pathnames CR-11
specify path delays CR-370
speeding-up the simulation UM-407
splitio command CR-262
square brackets, escaping CR-15
stability checking

disabling CR-97
enabling CR-98

Standard Developer’s Kit User Manual UM-29
standards supported UM-25
start_of_simulation() function UM-205
Startup

macros UM-629
startup

alternate to startup.do (vsim -do) CR-358
environment variables access during UM-657
files accessed during UM-656
macro in the modelsim.ini file UM-625
startup macro in command-line mode UM-23
using a startup file UM-629

Startup .ini file variable UM-625
state variables UM-634
status bar

Main window UM-269
status command CR-263
Status field

Project tab UM-40
std .ini file variable UM-617
std_arith package

disabling warning messages UM-629
std_developerskit .ini file variable UM-617
ModelSim SE User’s Manual

UM-686 Index

Model
Std_logic
mapping to binary radix CR-30

std_logic_arith package UM-62
std_logic_signed package UM-62
std_logic_textio UM-62
std_logic_unsigned package UM-62
StdArithNoWarnings .ini file variable UM-625
STDOUT environment variable UM-614
step command CR-264
stimulus

applying to signals and nets UM-321
modifying for elaboration file UM-81, UM-137

stop command CR-265
Structure window UM-331

see also windows, Structure window
subprogram write is ambiguous error, fixing UM-88
Support UM-30
symbol mapping

Dataflow window UM-283
symbolic constants, displaying CR-342
symbolic link to design libraries (UNIX) UM-60
symbolic names, assigning to signal values CR-342
Synopsis hardware modeler UM-586
synopsys .ini file variable UM-617
Synopsys libraries UM-62
synthesis

rule compliance checking CR-304, UM-371, UM-
619

system calls
VCD UM-565
Verilog UM-144

system commands UM-599
system tasks

ModelSim Verilog UM-149
VCD UM-565
Verilog UM-144
Verilog-XL compatible UM-147

System Verilog UM-25
enabling with -sv argument CR-352

SystemC
class and structure member naming syntax CR-13
compiling for source level debug UM-192
compiling optimized code UM-192
component declaration for instantiation UM-238
converting sc_main() UM-190
exporting sc_main, example UM-191
exporting top level module UM-190
foreign module declaration UM-231
instantiation criteria in Verilog design UM-234
instantiation criteria in VHDL design UM-237
linking the compiled source UM-197

maintaining design portability UM-193
mapping states in mixed designs UM-223

VHDL UM-224
mixed designs with Verilog UM-209
mixed designs with VHDL UM-209
name association UM-204
replacing sc_start() UM-190
simulating UM-198
source code, modifying for ModelSim UM-190
state-based code, initializing and cleanup UM-200
troubleshooting UM-206
unsupported functions UM-204
verification library, including CR-249
virtual functions UM-200

SystemC modules
exporting for use in Verilog UM-234
exporting for use in VHDL UM-238

T

tab stops, in the Source window UM-330
tb command CR-266
tcheck_set command CR-267
tcheck_status command CR-269
Tcl UM-591–UM-602

command separator UM-598
command substitution UM-597
command syntax UM-594
evaluation order UM-598
history shortcuts CR-20, UM-638
preference variables UM-631
relational expression evaluation UM-598
time commands UM-601
variable

in when commands CR-376
substitution UM-599

VSIM Tcl commands UM-600
Tcl_init error message UM-651
Technical support and updates UM-30
temp files, VSOUT UM-616
test region UM-462
testbench, accessing internal items from UM-523
text and command syntax UM-28
Text editing UM-639
TEXTIO

buffer, flushing UM-90
TextIO package

alternative I/O files UM-90
containing hexadecimal numbers UM-89
dangling pointers UM-89
Sim SE User’s Manual

 UM-687
ENDFILE function UM-89
ENDLINE function UM-89
file declaration UM-86
implementation issues UM-88
providing stimulus UM-90
standard input UM-87
standard output UM-87
WRITE procedure UM-88
WRITE_STRING procedure UM-88

TF routines UM-179
TFMPC

disabling warning CR-369
explanation UM-652

time
absolute, using @ CR-18
resolution in SystemC UM-198
simulation time units CR-18
time resolution as a simulator state variable UM-634

time literal, missing space UM-372
time resolution

in mixed designs UM-211
in Verilog UM-117
in VHDL UM-77
setting

with the GUI UM-378
with vsim command CR-363

time type
converting to real UM-96

time, time units, simulation time CR-18
time-based breakpoints UM-323
timescale directive warning

disabling CR-369
investigating UM-117

timing
$setuphold/$recovery UM-147
annotation UM-543
differences shown by comparison UM-467
disabling checks CR-350, UM-555
disabling checks for entire design CR-362
disabling individual checks CR-267
in optimized designs UM-135
negative check limits

described UM-123
extending CR-367

status of individual checks CR-269
title, Main window, changing CR-364
title, windows, changing UM-255
TMPDIR environment variable UM-614
to_real VHDL function UM-96
to_time VHDL function UM-97
toggle add command CR-271

toggle coverage
excluding signals CR-273

toggle disable command CR-273
toggle enable command CR-274
toggle report command CR-275
toggle reset command CR-276
toggle statistics

enabling CR-271
reporting CR-275
resetting CR-276

toggling waveform popup on/off UM-353, UM-467
tolerance

leading edge UM-464
trailing edge UM-464

too few port connections, explanation UM-652
tooltip, toggling waveform popup UM-353
tracing

events UM-277
source of unknown UM-278

transcribe command CR-277
transcript

clearing CR-44
file name, specifed in modelsim.ini UM-628
redirecting with -l CR-360
reducing file size CR-279
saving UM-264
using as a DO file UM-264

transcript command CR-278
transcript file command CR-279
TranscriptFile .ini file variable UM-625
transitions, signal, finding CR-185, CR-244
tree windows

VHDL and Verilog items in UM-261
viewing the design hierarchy UM-261

TreeUpdate command CR-390
triggers, in the List window UM-296
triggers, in the List window, setting UM-294
troubleshooting

sccom -link errors UM-197
SystemC UM-206

TSCALE, disabling warning CR-369
TSSI CR-395

in VCD files UM-571
tssi2mti command CR-280
type

converting real to time UM-97
converting time to real UM-96

Type field, Project tab UM-40
types, fixed point in SystemC UM-205
ModelSim SE User’s Manual

UM-688 Index

Model
U

-u CR-352
unbound component UM-372
UnbufferedOutput .ini file variable UM-625
undeclared nets, reporting an error CR-349
undefined symbol, error UM-207
unit delay mode UM-143
unknowns, tracing UM-278
unnamed ports, in mixed designs UM-228
unresolved signals, multiple drivers on UM-372
unsetenv command CR-281
unsupported functions in SystemC UM-204
up command CR-282
UpCase .ini file variable UM-618
use 1076-1993 language standard UM-370
use clause, specifying a library UM-62
use explicit declarations only UM-371
use flow

Code Coverage UM-420
SystemC-only designs UM-189

UseCsupV2 .ini file variable UM-625
user hook Tcl variable UM-400
user-defined bus CR-65, UM-248, UM-292, UM-345
UserTimeUnit .ini file variable UM-626
UseScv .ini file variable (sccom) UM-620
util package UM-94

V

-v CR-352
v2k_int_delays CR-370
values

describe HDL items CR-152
examine HDL item values CR-167
of HDL items UM-329
replacing signal values with strings CR-342

variable settings report CR-17
variables

adding to the Wave and List windows UM-322
describing CR-152
environment variables UM-613
LM_LICENSE_FILE UM-613
personal preferences UM-612
precedence between .ini and .tcl UM-633
reading from the .ini file UM-627
referencing in commands CR-17
setting environment variables UM-613
simulator state variables

current settings report UM-612

iteration number UM-634
name of entity or module as a variable UM-634
resolution UM-634
simulation time UM-634

value of
changing from command line CR-87
changing with the GUI UM-334
examining CR-167

values of
displaying in Signals window UM-316
saving as binary log file UM-322

Variables window UM-334
see also windows, Variables window

variables, Tcl, user hook UM-400
vcd add command CR-284
VCD and SystemC

replacing dump functions UM-190
vcd checkpoint command CR-285
vcd comment command CR-286
vcd dumpports command CR-287
vcd dumpportsall command CR-289
vcd dumpportsflush command CR-290
vcd dumpportslimit command CR-291
vcd dumpportsoff command CR-292
vcd dumpportson command CR-293
vcd file command CR-294
VCD files UM-559

adding items to the file CR-284
capturing port driver data CR-287, UM-571
case sensitivity UM-560
converting to WLF files CR-302
creating CR-284, UM-560
dumping variable values CR-285
dumpports tasks UM-565
flushing the buffer contents CR-298
from VHDL source to VCD output UM-567
generating from WLF files CR-383
inserting comments CR-286
internal signals, adding CR-284
specifying maximum file size CR-299
specifying name of CR-296
specifying the file name CR-294
state mapping CR-294, CR-296
stimulus, using as UM-562
supported TSSI states UM-571
turn off VCD dumping CR-300
turn on VCD dumping CR-301
VCD system tasks UM-565
viewing files from another tool CR-302

vcd files command CR-296
vcd flush command CR-298
Sim SE User’s Manual

 UM-689
vcd limit command CR-299
vcd off command CR-300
vcd on command CR-301
vcd2wlf command CR-302
vcom

enabling code coverage UM-423
vcom command CR-303
vcover command UM-451
vcover convert command CR-310
vcover merge command CR-311
vdel command CR-315
vdir command CR-316
vector elements, initializing CR-87
vendor libraries, compatibility of CR-316
Vera, see Vera documentation
Verilog

ACC routines UM-177
capturing port driver data with -dumpports CR-294,

UM-571
cell libraries UM-142
compiler directives UM-150
compiling and linking PLI C applications UM-159
compiling and linking PLI C++ applications UM-

164
compiling design units UM-108
compiling with XL ’uselib compiler directive UM-

114
component declaration UM-226
configurations UM-115
creating a design library UM-108
event order in simulation UM-119
instantiation criteria in mixed-language design UM-

225
instantiation criteria in SystemC design UM-231
instantiation of VHDL design units UM-229
language templates UM-397
library usage UM-111
mapping states in mixed designs UM-214
mapping states in SystemC designs UM-219
mixed designs with SystemC UM-209
mixed designs with VHDL UM-209
parameters UM-213
port direction UM-219
sc_signal data type mapping UM-218
SDF annotation UM-548
sdf_annotate system task UM-548
simulating UM-116

delay modes UM-142
XL compatible options UM-126

simulation hazard detection UM-122
simulation resolution limit UM-117

SmartModel interface UM-583
source code viewing UM-325
standards UM-25
system tasks UM-144
TF routines UM-179
to SystemC, channel and port type mapping UM-

217
XL compatible compiler options UM-113
XL compatible routines UM-181
XL compatible system tasks UM-147

verilog .ini file variable UM-618
Verilog 2001

disabling support CR-352, UM-618
Verilog PLI/VPI ??–UM-185

64-bit support in the PLI UM-182
compiling and linking PLI/VPI C applications UM-

159
compiling and linking PLI/VPI C++ applications

UM-164
debugging PLI/VPI code UM-183
PLI callback reason argument UM-171
PLI support for VHDL objects UM-176
registering PLI applications UM-155
registering VPI applications UM-157
specifying the PLI/VPI file to load UM-168

Verilog-XL
compatibility with UM-105, UM-153

Veriuser .ini file variable UM-156, UM-626
Veriuser, specifying PLI applications UM-156
veriuser.c file UM-175
verror command CR-317
version

obtaining with vsim command CR-364
obtaining with vsim<info> commands CR-373

vgencomp command CR-318
VHDL

compiling design units UM-73
creating a design library UM-73
delay file opening UM-630
dependency checking UM-73
field naming syntax CR-13
file opening delay UM-630
foreign language interface UM-98
hardware model interface UM-586
instantiation criteria in SystemC design UM-235
instantiation from Verilog UM-229
instantiation of Verilog UM-213
language templates UM-397
language versions UM-74
library clause UM-61
mixed designs with SystemC UM-209
ModelSim SE User’s Manual

UM-690 Index

Model
mixed designs with Verilog UM-209
object support in PLI UM-176
port direction UM-222
port type mapping UM-221
sc_signal data type mapping UM-221
simulating UM-77
SmartModel interface UM-576
source code viewing UM-325
standards UM-25
timing check disabling UM-77
VITAL package UM-62

VHDL utilities UM-94, UM-95, UM-528, UM-537
get_resolution() UM-94
to_real() UM-96
to_time() UM-97

VHDL-1987, compilation problems UM-74
VHDL-1993, enabling support for CR-303, UM-620
VHDL-2002, enabling support for CR-303, UM-620
VHDL93 .ini file variable UM-620
view command CR-320
view_profile command UM-411
view_profile_ranked command UM-411
viewing

design hierarchy UM-261
library contents UM-57
waveforms CR-364, UM-239

virtual count commands CR-322
virtual define command CR-323
virtual delete command CR-324
virtual describe command CR-325
virtual expand commands CR-326
virtual function command CR-327
virtual functions in SystemC UM-200
virtual hide command CR-330, UM-249
virtual log command CR-331
virtual nohide command CR-333
virtual nolog command CR-334
virtual objects UM-248

virtual functions UM-249
virtual regions UM-250
virtual signals UM-248
virtual types UM-250

virtual region command CR-336, UM-250
virtual regions

reconstruct the RTL hierarchy in gate-level design
UM-250

virtual save command CR-337, UM-249
virtual show command CR-338
virtual signal command CR-339, UM-248
virtual signals

reconstruct RTL-level design busses UM-249

reconstruct the original RTL hierarchy UM-249
virtual hide command UM-249

virtual type command CR-342
VITAL

compiling and simulating with accelerated VITAL
packages UM-93

compliance warnings UM-92
disabling optimizations for debugging UM-93
specification and source code UM-91
VITAL packages UM-91

vital95 .ini file variable UM-618
vlib command CR-344
vlog

enabling code coverage UM-423
vlog command CR-345
vlog.opt file UM-374
vlog95compat .ini file variable UM-618
vmake command CR-355
vmap command CR-356
VPI, registering applications UM-157
VPI/PLI UM-154

compiling and linking C applications UM-159
compiling and linking C++ applications UM-164

vsim build date and version CR-373
vsim command CR-357
VSIM license lost UM-653
vsim, differences with OSCI simulator UM-204
VSOUT temp file UM-616

W

WARNING[8], -lint argument to vlog CR-349
warnings

disabling at time 0 UM-629
empty port name UM-650
exit codes UM-648
getting more information UM-646
messages, long description UM-646
metavalue detected UM-650
suppressing VCOM warning messages CR-307,

UM-647
suppressing VLOG warning messages CR-350,

UM-647
suppressing VSIM warning messages CR-369, UM-

647
Tcl initialization error 2 UM-651
too few port connections UM-652
turning off warnings from arithmetic packages UM-

629
waiting for lock UM-650
Sim SE User’s Manual

 UM-691
Wave Log Format (WLF) file UM-239
wave log format (WLF) file CR-364

of binary signal values CR-187
see also WLF files

wave viewer, Dataflow window UM-275
Wave window UM-337

adding items to CR-64
compare waveforms UM-466
in the Dataflow window UM-275
saving layout UM-340
toggling waveform popup on/off UM-353, UM-467
values column UM-467
see also windows, Wave window

.wave.tree interrupt command CR-45

.wave.tree zoomfull command CR-46

.wave.tree zoomin command CR-47

.wave.tree zoomlast command CR-48

.wave.tree zoomout command CR-49

.wave.tree zoomrange command CR-50
WaveActivateNextPane command CR-390
Waveform Comparison CR-100, UM-455

add region UM-462
adding signals UM-461
clear differences UM-469
clocked comparison UM-457, UM-463
compare by region UM-462
compare by signal UM-461
compare commands UM-471
compare menu UM-468
compare options UM-465
compare tab UM-460
comparing at a signal edge UM-457
comparison method tab UM-463
comparison modes UM-457
comparison wizard UM-468
continuous comparison UM-457, UM-464
dataset UM-456
dataset, specifying UM-459
difference markers UM-467
end UM-468
features UM-456
flattened designs UM-458
graphic interface UM-459
hierarchical designs UM-458
icons UM-468
introduction UM-456
leading edge tolerance UM-464
limit count UM-465
List window display UM-470
pathnames UM-466
printing differences UM-470

reference dataset UM-459
reference region UM-462
reload UM-469
rules UM-469
run comparison UM-468
save differences UM-469
show differences UM-469
specify when expression UM-463, UM-464
start UM-468
Tcl preference variables UM-472
test dataset UM-459
test region UM-462
timing differences UM-467
tolerances UM-457
trailing edge tolerance UM-464
values column UM-467
Verilog matching UM-465
VHDL matching UM-465
Wave window display UM-466
when statement UM-463
write report UM-469

waveform logfile
log command CR-187
overview UM-239
see also WLF files

waveform popup UM-353, UM-467
waveforms UM-239

halting drawing CR-45
optimize viewing of UM-626
optimizing viewing of CR-365
saving and viewing CR-187, UM-240
viewing UM-337

WaveRestoreCursors command CR-390
WaveRestoreZoom command CR-390
WaveSignalNameWidth .ini file variable UM-626
Welcome dialog, turning on/off UM-612
when command CR-375
when statement

setting signal breakpoints UM-323
specifying for waveform comparison UM-463
time-based breakpoints CR-379

where command CR-380
wildcard characters

for pattern matching in simulator commands CR-17
Windows

Main window
text editing UM-639

Source window
text editing UM-639

windows
buttons, adding to UM-400
ModelSim SE User’s Manual

UM-692 Index

Model
code coverage statistics UM-426
Dataflow window UM-270

zooming UM-276
finding HDL item names in UM-259
List window UM-286

adding HDL items UM-287
adding signals with a WLF file UM-322
display properties of UM-293
formatting HDL items UM-290
output file CR-391
saving data to a file UM-301
saving the format of CR-389
setting triggers UM-294, UM-296
time markers UM-259

Main window UM-262
adding user-defined buttons CR-52
status bar UM-269
time and delta display UM-269

Memory window UM-302
initializing interactively UM-311
initializing memories UM-309
modifying display UM-305
navigating to memory locations UM-307
saving data to a file UM-312
selecting memory instances UM-304
viewing contents UM-304
viewing multiple instances UM-304

opening
from command line CR-320
multiple copies UM-259
with the GUI UM-265

Process window UM-314
displaying active processes UM-314
specifying next process to be executed UM-314
viewing processing in the region UM-314

saving position and size UM-259
searching for HDL item values in UM-259
Signals window UM-316

VHDL and Verilog items viewed in UM-316
Source window UM-325

setting tab stops UM-330
viewing HDL source code UM-325

Structure window UM-331
selecting items to view in Signals window UM-

316
VHDL and Verilog items viewed in UM-331
viewing design hierarchy UM-331

title, changing UM-255
Variables window UM-334

VHDL and Verilog items viewed in UM-334
Wave window UM-337

adding HDL items to UM-339
adding signals with a WLF file UM-322
cursor measurements UM-359
display properties UM-352
display range (zoom), changing UM-360
format file, saving UM-340
path elements, changing CR-131, UM-626
searching for HDL item values UM-356
time cursors UM-358
zooming UM-360

WLF files
adding items to UM-322
comparing UM-456
converting to VCD CR-383
creating from VCD CR-302
filtering, combining CR-384
limiting size CR-365
log command CR-187
optimizing waveform viewing CR-365, UM-626
overview UM-240
repairing CR-387
saving CR-148, CR-149, UM-241
saving at intervals UM-246
specifying name CR-364

wlf2log command CR-381
wlf2vcd command CR-383
wlfman command CR-384
wlfrecover command CR-387
work library UM-54
workspace UM-263

code coverage UM-427
context menu UM-429
Files tab UM-427

write cell_report command CR-388
write format command CR-389
write list command CR-391
write preferences command CR-392
WRITE procedure, problems with UM-88
write report command CR-393
write transcript command CR-394
write tssi command CR-395
write wave command CR-397
write, waveform comparison report UM-469

X

X
tracing unknowns UM-278

.Xdefaults file, controlling fonts UM-260
Sim SE User’s Manual

 UM-693
X propagation
disabling for entire design CR-361
disabling X generation on specific instances CR-

267
X-session

controlling fonts UM-260

Y

-y CR-352

Z

zero delay elements UM-78
zero delay mode UM-143
zero-delay loop, infinite UM-79
zero-delay oscillation UM-79
zero-delay race condition UM-119
zoom

Dataflow window UM-276
from Wave toolbar buttons UM-360
saving range with bookmarks UM-361
with the mouse UM-361
ModelSim SE User’s Manual

UM-694

Model
Sim SE User’s Manual

	Bookcase
	User’s Manual
	Table of Contents
	1 - Introduction
	ModelSim graphic interface
	ModelSim modes of operation
	Command-line mode
	Batch mode

	Standards supported
	Assumptions
	Sections in this document
	What is an "Item"
	Text conventions
	Where to find our documentation
	Download a free PDF reader with Search

	Technical support and updates

	2 - Projects
	Introduction
	What are projects?
	What are the benefits of projects?
	Project conversion between versions

	Getting started with projects
	Step 1 - Creating a new project
	Step 2 - Adding items to the project
	Step 3 - Compiling the files
	Step 4 - Simulating a design
	Other basic project operations

	The Project tab
	Sorting the list
	Project tab context menu

	Changing compile order
	Auto-generating compile order
	Grouping files

	Creating a Simulation Configuration
	Organizing projects with folders
	Adding a folder

	Specifying file properties and project settings
	File compilation properties
	Project settings

	Accessing projects from the command line

	3 - Design libraries
	Design library overview
	Design unit information
	Working library versus resource libraries
	Archives

	Working with design libraries
	Creating a library
	Managing library contents
	Assigning a logical name to a design library
	Moving a library
	Setting up libraries for group use

	Specifying the resource libraries
	Verilog resource libraries
	VHDL resource libraries
	Default binding rules for VHDL resource libraries
	Predefined libraries
	Alternate IEEE libraries supplied
	Rebuilding supplied libraries
	Regenerating your design libraries
	Maintaining 32-bit and 64-bit versions in the same library

	Protecting source code and using -nodebug
	Referencing source files with location maps
	Using location mapping
	Pathname syntax
	How location mapping works
	Mapping with Tcl variables

	Importing FPGA libraries
	Protecting source code using -nodebug

	4 - VHDL simulation
	Compiling VHDL designs
	Creating a design library
	Invoking the VHDL compiler
	Dependency checking
	Range and index checking
	Differences between language versions

	Simulating VHDL designs
	Simulator resolution limit
	Delta delays

	Simulating with an elaboration file
	Overview
	Elaboration file flow
	Creating an elaboration file
	Loading an elaboration file
	Modifying stimulus
	Using with the PLI or FLI
	Syntax
	Example

	Checkpointing and restoring simulations
	Checkpoint file contents
	Controlling checkpoint file compression
	The difference between checkpoint/restore and restart
	Using macros with restart and checkpoint/restore

	Using the TextIO package
	Syntax for file declaration
	Using STD_INPUT and STD_OUTPUT within ModelSim

	TextIO implementation issues
	Writing strings and aggregates
	Reading and writing hexadecimal numbers
	Dangling pointers
	The ENDLINE function
	The ENDFILE function
	Using alternative input/output files
	Flushing the TEXTIO buffer
	Providing stimulus

	VITAL specification and source code
	VITAL packages
	ModelSim VITAL compliance
	VITAL compliance checking
	VITAL compliance warnings

	Compiling and simulating with accelerated VITAL packages
	Compiler options for VITAL optimization

	Util package
	get_resolution
	init_signal_driver()
	init_signal_spy()
	signal_force()
	signal_release()
	to_real()
	to_time()

	Foreign language interface
	Modeling memory
	Affecting performance by cancelling scheduled events
	Converting an integer into a bit_vector

	5 - Verilog simulation
	Introduction
	Compilation
	Incremental compilation
	Library usage
	Verilog-XL compatible compiler arguments
	Verilog-XL `uselib compiler directive
	Verilog configurations

	Simulation
	Invoking the simulator
	Simulator resolution limit
	Event ordering in Verilog designs
	Negative timing check limits
	Verilog-XL compatible simulator arguments

	Compiling for faster performance
	Compiling with -fast
	Compiling with +opt
	Compiling mixed designs with -fast
	Compiling gate-level designs with -fast
	Referencing the optimized design
	Enabling design object visibility with the +acc option
	Using pre-compiled libraries
	Event order and optimized designs
	Timing checks in optimized designs
	Using -fast on cells with internal delay

	Simulating with an elaboration file
	Overview
	Elaboration file flow
	Creating an elaboration file
	Loading an elaboration file
	Modifying stimulus
	Using with the PLI or FLI
	Syntax
	Example

	Checkpointing and restoring simulations
	Checkpoint file contents
	Controlling checkpoint file compression
	The difference between checkpoint/restore and restart
	Using macros with restart and checkpoint/restore

	Cell libraries
	SDF timing annotation
	Delay modes

	System tasks
	IEEE Std 1364 system tasks
	Verilog-XL compatible system tasks
	ModelSim Verilog system tasks

	Compiler directives
	IEEE Std 1364 compiler directives
	Verilog-XL compatible compiler directives
	ModelSim compiler directives

	6 - Verilog PLI / VPI
	Introduction
	Registering PLI applications
	Registering VPI applications
	Example

	Compiling and linking PLI/VPI C applications
	Compiling and linking PLI/VPI C++ applications
	Specifying the PLI/VPI file to load
	PLI example
	VPI example
	The PLI callback reason argument
	The sizetf callback function
	PLI object handles
	Third party PLI applications
	Support for VHDL objects
	IEEE Std 1364 ACC routines
	IEEE Std 1364 TF routines
	Verilog-XL compatible routines
	Using 64-bit ModelSim with 32-bit PLI/VPI Applications
	64-bit support in the PLI
	PLI/VPI tracing
	The purpose of tracing files
	Invoking a trace
	Syntax
	Arguments
	Examples

	Debugging PLI/VPI application code

	7 - SystemC simulation
	Supported platforms and compiler versions
	Building gcc with custom configuration options

	Usage flow for SystemC-only designs
	Compiling SystemC designs
	Creating a design library
	Modifying SystemC source code
	Invoking the SystemC compiler
	Compiling optimized and/or debug code
	Specifying an alternate g++ installation
	Maintaining portability between OSCI and ModelSim
	Restrictions on compiling with HP aCC
	Switching platforms and compilation
	Using sccom vs. raw C++ compiler
	Issues with C++ templates

	Linking the compiled source
	sccom -link

	Simulating SystemC designs
	Simulator resolution limit
	Initialization and cleanup of SystemC state-based code

	Debugging the design
	Source-level debug

	Differences between ModelSim and the OSCI simulator
	Name association (binding)
	Fixed point types
	OSCI 2.1 features supported

	Troubleshooting SystemC
	Errors during compilation
	Errors during loading

	8 - Mixed-language simulations
	Usage flow for mixed-language simulations
	Separate compilers, common design libraries
	Access limitations in mixed-language designs
	Simulator resolution limit
	Runtime modeling semantics

	Mapping data types
	Verilog to VHDL mappings
	VHDL to Verilog mappings
	Verilog and SystemC signal interaction and mappings
	VHDL and SystemC signal interaction and mappings

	VHDL: instantiating Verilog
	Verilog instantiation criteria
	Component declaration
	vgencomp component declaration
	Modules with unnamed ports

	Verilog: instantiating VHDL
	VHDL instantiation criteria
	Entity/architecture names and escaped identifiers
	Named port associations
	Generic associations
	SDF annotation

	SystemC: instantiating Verilog
	Verilog instantiation criteria
	SystemC foreign module declaration

	Verilog: instantiating SystemC
	SystemC instantiation criteria
	Exporting SystemC modules
	sccom -link

	SystemC: instantiating VHDL
	VHDL instantiation criteria
	SystemC foreign module declaration

	VHDL: instantiating SystemC
	SystemC instantiation criteria
	Component declaration
	vgencomp component declaration
	Exporting SystemC modules
	sccom -link

	9 - WLF files (datasets) and virtuals
	WLF files (datasets)
	Saving a simulation to a WLF file
	Hiding library cell signals when saving a waveform file
	Opening datasets
	Viewing dataset structure
	Managing multiple datasets
	Saving at intervals with Dataset Snapshot

	Virtual Objects (User-defined buses, and more)
	Virtual signals
	Virtual functions
	Virtual regions
	Virtual types

	Dataset, WLF file, and virtual commands

	10 - Graphic interface
	Window overview
	Common window features
	Quick access toolbars
	Columnar information display
	Docking and undocking panes
	Drag and drop
	Automatic window updating
	Finding names and searching for values
	Sorting items
	Multiple window copies
	Saving window layout
	Context menus
	Menu tear off
	Customizing menus and buttons
	Controlling fonts in an X-session
	Tree window hierarchical view

	Main window
	Workspace
	Transcript
	Active processes
	The Main window menu bar
	The Main window status bar
	Mouse and keyboard shortcuts

	Dataflow window
	Items you can view
	Adding items to the window
	Links to other windows
	Dataflow window menu bar
	Exploring the connectivity of your design
	Zooming and panning
	Tracing events (causality)
	Tracing the source of an unknown (X)
	Finding items by name in the Dataflow window
	Printing and saving the display
	Configuring page setup
	Symbol mapping
	Configuring window options

	List window
	Items you can view
	Adding items to the List window
	The List window menu bar
	The List window context menu
	Editing and formatting items in the List window
	Combining items in the List window
	Setting List window display properties
	Configuring a List trigger with the Expression Builder
	Sampling signals at a clock change
	Finding items by name in the List window
	Searching for item values in the List window
	Setting time markers in the List window
	Saving List window data to a file
	List window keyboard shortcuts

	Memory window
	Memories you can view
	The Memory window menu bar
	Viewing memory contents
	Modifying the memory window display
	Navigating to memory locations within a memory instance
	Initializing memories

	Process window
	Understanding process status
	Links to other windows
	The Process window menu bar

	Signals window
	Items you can view
	The Signals window menu bar
	Filtering the signal list
	Finding items in the Signals window
	Forcing signal and net values
	Adding items to the Wave and List windows or a WLF file
	Setting signal breakpoints in HDL designs
	Defining clock signals in HDL designs

	Source window
	The Source window menu bar
	Setting file-line breakpoints
	Checking item values and descriptions
	Finding and replacing in the Source window
	Setting tab stops in the Source window

	Structure window
	Items you can view
	Structure window menu bar
	Structure window context menu
	Finding items in the Structure window

	Variables window
	The Variables window menu bar
	Finding items in the Variables window

	Wave window
	Pathname pane
	Value pane
	Waveform pane
	Cursor panes
	Items you can view
	Adding items in the Wave window
	Saving the Wave window format
	The Wave window menu bar
	Using dividers
	Splitting Wave window panes
	Combining items in the Wave window
	Displaying drivers of the selected waveform
	Editing and formatting items in the Wave window
	Setting Wave window display properties
	Sorting a group of items
	Setting signal breakpoints
	Finding items by name or value in the Wave window
	Searching for item values in the Wave window
	Using time cursors in the Wave window
	Examining waveform values
	Zooming - changing the waveform display range
	Saving zoom range and scroll position with bookmarks
	Wave window mouse and keyboard shortcuts
	Printing and saving waveforms

	Compiling with the graphic interface
	Locating source errors during compilation
	Setting default compile options
	Setting SystemC link options

	Simulating with the graphic interface
	Design tab
	VHDL tab
	Verilog tab
	Libraries tab
	SDF tab
	Options tab
	Setting default simulation options
	Enabling design object visibility in optimized simulations

	Creating and managing breakpoints
	Signal breakpoints
	File-line breakpoints
	Breakpoints dialog

	Miscellaneous tools and add-ons
	The GUI Expression Builder
	HDL language templates
	The Button Adder
	The Macro Helper
	The Tcl Debugger

	11 - Performance Analyzer
	Introducing Performance Analysis
	A statistical sampling profiler

	Getting started
	Interpreting the data
	Viewing Performance Analyzer results
	Interpreting the Name field
	Interpreting the Under(%) and In(%) fields
	Differences in the ranked and hierarchical views

	Analyzing C code performance
	Reporting results
	Profile menu
	Performance Analyzer commands
	Performance Analyzer preference variables

	12 - Code Coverage
	Introduction
	Usage flow for Code Coverage
	Supported types
	Important notes about coverage statistics

	Enabling Code Coverage
	Viewing coverage data in the Main window
	Workspace pane
	Missed Coverage pane
	Current Exclusions pane
	Instance Coverage pane
	Details pane

	Viewing coverage data in the Source window
	Toggle coverage
	Enabling Toggle coverage
	Excluding nodes from Toggle coverage
	Viewing toggle coverage data in the Signals window
	Toggle coverage reporting

	Filtering coverage data
	Covfilter toolbar

	Excluding items from coverage
	Excluding lines/files via the GUI
	Excluding lines/files with pragmas
	Excluding lines/files with a filter file
	Excluding nodes from toggle statistics

	Reporting coverage data
	Sample reports

	Saving and reloading coverage data
	From the command line
	From the graphic interface
	With the vcover utility

	Coverage statistics details
	Condition coverage
	Expression coverage

	Code Coverage preference variables

	13 - Waveform Compare
	Introduction
	Two modes of comparison
	Comparing hierarchical and flattened designs

	Graphic interface to Waveform Compare
	Opening dataset comparison
	Adding signals, regions, and clocks
	Setting compare options
	Wave window display
	Waveform Compare menu
	Printing compare differences
	Compare objects in the List window

	Waveform Compare commands
	Waveform Compare preference variables

	14 - C Debug
	Supported platforms and gdb versions
	Setting up C Debug
	Setting breakpoints
	Stepping in C Debug
	Known problems with stepping in C Debug

	Finding function entry points with Auto find bp
	Identifying all registered function calls
	Enabling Auto step mode
	Example
	Auto find bp versus Auto step mode

	Debugging functions during elaboration
	FLI functions in initialization mode
	PLI functions in initialization mode
	VPI functions in initialization mode
	Completing design load

	Debugging functions when quitting simulation
	C Debug menu reference
	C Debug command reference
	C Debug dialog reference
	C Debug setup dialog
	Command entry dialog

	15 - PSL Assertions
	What are assertions?
	Definition
	Types of assertions
	PSL assertion language

	Using assertions in ModelSim
	Assertion flow
	Limitations

	Embedding assertions in your code
	Syntax
	Restrictions
	Example

	Writing assertions in an external file
	Syntax
	Restrictions
	Example

	Understanding clock declarations
	Default clock
	Partially clocked properties

	Understanding assertion names
	General assertion writing guidelines
	Understanding operator precedence and curly braces

	Compiling and simulating assertions
	Embedded assertions
	External assertions file
	Making changes to assertions
	Simulating assertions
	VHDL code inside PSL statements

	Managing assertions
	Viewing assertions in the Assertion Browser
	Hiding/showing fields in the Assertion Browser
	Enabling/disabling failure and pass checking
	Enabling/disabling failure and pass logging
	Setting failure and pass limits
	Setting failure action

	Reporting on assertions
	Specifying an alternative output file for assertion messages

	Viewing assertions in the Wave window
	Assertion ’signals’

	Example debugging session
	How would you debug without assertions?
	The example assertions file
	Debugging the assertion failure

	ModelSim assertion commands

	16 - Signal Spy
	Introduction
	Designed for testbenches

	init_signal_driver
	init_signal_spy
	signal_force
	signal_release
	$init_signal_driver
	$init_signal_spy
	$signal_force
	$signal_release

	17 - Standard Delay Format (SDF) Timing Annotation
	Specifying SDF files for simulation
	Instance specification
	SDF specification with the GUI
	Errors and warnings

	VHDL VITAL SDF
	SDF to VHDL generic matching
	Resolving errors

	Verilog SDF
	The $sdf_annotate system task
	SDF to Verilog construct matching
	Optional edge specifications
	Optional conditions
	Rounded timing values

	SDF for mixed VHDL and Verilog designs
	Interconnect delays
	Disabling timing checks
	Troubleshooting
	Specifying the wrong instance
	Mistaking a component or module name for an instance label
	Forgetting to specify the instance

	18 - Value Change Dump (VCD) Files
	Creating a VCD file
	Flow for four-state VCD file
	Flow for extended VCD file
	Case sensitivity
	Checkpoint/restore and writing VCD files

	Using extended VCD as stimulus
	Simulating with input values from a VCD file
	Replacing instances with output values from a VCD file

	ModelSim VCD commands and VCD tasks
	Compressing files with VCD tasks

	A VCD file from source to output
	VHDL source code
	VCD simulator commands
	VCD output

	Capturing port driver data
	Supported TSSI states
	Strength values
	Port identifier code
	Example VCD output from vcd dumpports

	19 - Logic Modeling SmartModels
	VHDL SmartModel interface
	Creating foreign architectures with sm_entity
	Vector ports
	Command channel
	SmartModel Windows
	Memory arrays

	Verilog SmartModel interface
	Linking the LMTV interface to the simulator

	20 - Logic Modeling hardware models
	VHDL hardware model interface
	Creating foreign architectures with hm_entity
	Vector ports
	Hardware model commands

	21 - Tcl and macros (DO files)
	Tcl features within ModelSim
	Tcl References
	Tcl commands
	Tcl command syntax
	if command syntax
	set command syntax
	Command substitution
	Command separator
	Multiple-line commands
	Evaluation order
	Tcl relational expression evaluation
	Variable substitution
	System commands

	List processing
	ModelSim Tcl commands
	ModelSim Tcl time commands
	Conversions
	Relations
	Arithmetic

	Tcl examples
	Macros (DO files)
	Creating DO files
	Using Parameters with DO files
	Making macro parameters optional
	Useful commands for handling breakpoints and errors
	Error action in DO files

	A - ModelSim variables
	Variable settings report
	Personal preferences
	Returning to the original ModelSim defaults
	Environment variables
	Creating environment variables in Windows
	Referencing environment variables within ModelSim
	Removing temp files (VSOUT)

	Preference variables located in INI files
	[Library] library path variables
	[vlog] Verilog compiler control variables
	[vcom] VHDL compiler control variables
	[sccom] SystemC compiler control variables
	[vsim] simulator control variables
	[lmc] Logic Modeling variables
	Reading variable values from the INI file
	Commonly used INI variables

	Preference variables located in Tcl files
	Setting variables from the GUI
	Setting variables from the command line
	User-defined variables
	More preferences

	Variable precedence
	Simulator state variables
	Referencing simulator state variables
	Special considerations for the now variable

	B - ModelSim shortcuts
	Command shortcuts
	Command history shortcuts
	Main and Source window mouse and keyboard shortcuts
	List window keyboard shortcuts
	Wave window mouse and keyboard shortcuts
	Right mouse button

	C - ModelSim messages
	ModelSim message system
	Message format
	Getting more information

	Suppressing warning messages
	Suppressing VCOM warning messages
	Suppressing VLOG warning messages
	Suppressing VSIM warning messages

	Exit codes
	Miscellaneous messages
	Empty port name warning
	Lock message
	Metavalue detected warning
	Sensitivity list warning
	Tcl Initialization error 2
	Too few port connections
	VSIM license lost

	D - System initialization
	Files accessed during startup
	Environment variables accessed during startup
	Initialization sequence

	Licensing Agreement
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

