
ModelSim® Reference Manual

Software Version 6.2g

February 2007

© 1991-2007 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://www.mentor.com/terms_conditions/trademarks.cfm

ModelSim Reference Manual, v6.2g 3
February 2007

Table of Contents

Chapter 1
Syntax and Conventions . 11

Documentation Conventions . 11
File and Directory Pathnames . 12

Design Object Names . 12
Object Name Syntax . 12
SystemVerilog Scope Resolution Operator . 13
Specifying Names . 14
Escaping Brackets and Spaces in Array Slices . 15
Environment Variables and Pathnames . 16
Name Case Sensitivity . 16
Extended Identifiers . 16

Wildcard Characters. 17
Filtering Wildcard Matching for Certain Commands. 17

Simulator Variables . 18
Simulation Time Units. 18
Command Shortcuts. 19
Command History Shortcuts . 19
Numbering Conventions . 20

VHDL Numbering Conventions . 20
Verilog Numbering Conventions . 21

GUI_expression_format. 22
Expression Typing . 22
Expression Syntax. 23
Signal and Subelement Naming Conventions. 28
Grouping and Precedence . 28
Concatenation of Signals or Subelements. 28
Record Field Members . 30
Searching for Binary Signal Values in the GUI . 30

Chapter 2
Commands . 33

abort . 40
add dataflow . 41
add list. 42
add memory . 45
add watch . 46
add wave . 47
add_cmdhelp . 52
alias . 53
batch_mode . 54
bd. 55

Table of Contents

4
February 2007

ModelSim Reference Manual, v6.2g

bookmark add wave . 56
bookmark delete wave . 57
bookmark goto wave. 58
bookmark list wave . 59
bp. 60
cd. 63
change . 64
configure . 66
dataset alias . 70
dataset clear. 71
dataset close . 72
dataset config . 73
dataset info . 74
dataset list . 75
dataset open. 76
dataset rename. 77
dataset save . 78
dataset snapshot . 79
delete . 81
describe . 82
disablebp . 83
do. 84
drivers . 85
dumplog64 . 86
echo . 87
edit. 88
enablebp . 89
environment . 90
examine . 92
exit. 96
find . 97
find infiles . 101
find insource . 102
formatTime . 103
force . 104
help . 108
history . 109
layout. 110
log . 111
lshift . 113
lsublist . 114
mem compare . 115
mem display . 116
mem list. 118
mem load. 119
mem save . 122
mem search . 124
modelsim. 127
noforce . 128

Table of Contents

ModelSim Reference Manual, v6.2g 5
February 2007

nolog . 129
notepad . 131
noview. 132
nowhen . 133
onbreak . 134
onElabError. 136
onerror. 137
pause . 138
precision . 139
printenv . 140
project . 141
pwd . 143
quietly . 144
quit . 145
radix . 146
readers . 147
report . 148
restart. 150
resume. 152
run . 153
runStatus . 155
searchlog . 157
see . 159
setenv . 160
shift . 161
show . 162
simstats . 163
status . 165
step . 166
stop . 167
tb . 168
Time . 169
transcript . 172
transcript file . 173
tssi2mti . 174
unsetenv . 175
vcd add . 176
vcd checkpoint . 178
vcd comment. 179
vcd dumpports. 180
vcd dumpportsall. 182
vcd dumpportsflush. 183
vcd dumpportslimit . 184
vcd dumpportsoff . 185
vcd dumpportson. 186
vcd file . 187
vcd files. 189
vcd flush . 191
vcd limit . 192

Table of Contents

6
February 2007

ModelSim Reference Manual, v6.2g

vcd off . 193
vcd on . 194
vcd2wlf . 195
vcom . 196
 vdel. 204
vdir . 206
verror. 209
vgencomp . 210
view. 212
virtual count . 214
virtual define . 215
virtual delete . 216
virtual describe . 217
virtual expand . 218
virtual function . 219
virtual hide . 222
virtual log . 223
virtual nohide . 225
virtual nolog . 226
virtual region. 228
virtual save . 229
virtual show. 230
virtual signal . 231
virtual type . 234
vlib . 236
vlog . 238
vmake . 248
vmap . 250
vsim. 251
vsim<info> . 271
vsource . 272
wave . 273
when . 276
where. 281
wlf2log . 282
wlf2vcd . 284
wlfman . 285
wlfrecover . 289
write format. 290
write list . 292
write preferences. 293
write report . 294
write timing. 295
write transcript . 296
write tssi . 297
write wave. 299

Table of Contents

ModelSim Reference Manual, v6.2g 7
February 2007

Index

Third-Party Information

End-User License Agreement

8
February 2007

ModelSim Reference Manual, v6.2g

List of Examples

Example 1-1. SystemVerilog Scope Resolution Operator Example 13

9
February 2007

ModelSim Reference Manual, v6.2g

List of Figures

ModelSim Reference Manual, v6.2g 10
February 2007

List of Tables

Table 1-1. 11
Table 1-2. 15
Table 1-3. 17
Table 1-4. WildcardFilter Values . 18
Table 1-5. 19
Table 1-6. 20
Table 1-7. 21
Table 1-8. 21
Table 1-9. 24
Table 1-10. 24
Table 1-11. 24
Table 1-12. 25
Table 1-13. 26
Table 1-14. 27
Table 1-15. 31
Table 1-16. 31
Table 2-1. Commands . 33
Table 2-2. runStatus Command States . 155
Table 2-3. runStatus -full Command Information . 155
Table 2-4. Design Unit Properties . 206
Table 2-5. 273
Table 2-6. 273
Table 2-7. 273

ModelSim Reference Manual, v6.2g 11
February 2007

Chapter 1
Syntax and Conventions

Documentation Conventions
This manual uses the following conventions to define ModelSim™ command syntax.

Note
Neither the prompt at the beginning of a line nor the <Enter> key that ends a line is
shown in the command examples.

Table 1-1.

Syntax notation Description

< > angled brackets surrounding a syntax item indicate a
user-defined argument; do not enter the brackets in
commands

[] square brackets generally indicate an optional item; if
the brackets surround several words, all must be
entered as a group; the brackets are not entered1

1. One exception to this rule is when you are using Verilog syntax to designate an array
slice. For example,

add wave {vector1[4:0]}

The square brackets in this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets as a Tcl command.

{ } braces indicate that the enclosed expression contains
one or more spaces yet should be treated as a single
argument, or that the expression contains square
brackets for an index; for either situation, the braces
are entered

… an ellipsis indicates items that may appear more than
once; the ellipsis itself does not appear in commands

| the vertical bar indicates a choice between items on
either side of it; do not include the bar in the command

monospaced type monospaced type is used in command examples

comments included with commands are preceded by
the number sign (#); useful for adding comments to
DO files (macros)

ModelSim Reference Manual, v6.2g12

Syntax and Conventions
File and Directory Pathnames

February 2007

File and Directory Pathnames
Several ModelSim commands have arguments that point to files or directories. For example, the
-y argument to vlog specifies the Verilog source library directory to search for undefined
modules. Spaces in file pathnames must be escaped or the entire path must be enclosed in
quotes. For example:

vlog top.v -y C:/Documents\ and\ Settings/projects/dut

or

vlog top.v -y "C:/Documents and Settings/projects/dut"

Design Object Names
Design objects are organized hierarchically. Each of the following objects creates a new level in
the hierarchy:

• VHDL — component instantiation statement, block statement, and package

• Verilog — module instantiation, named fork, named begin, task and function

• SystemVerilog — class, package, program, and interface

Object Name Syntax
The syntax for specifying object names in ModelSim is as follows:

[<datasetName><datasetSeparator>][<pathSeparator>][<hierarchicalPath>]
<objectName>[<elementSelection>]

where

• datasetName — is the logical name of the WLF file in which the object exists. The
currently active simulation is the “sim” dataset. Any loaded WLF file is referred to by
the logical name specified when the WLF file was loaded. Refer to the chapter “WLF
Files (Datasets) and Virtuals” in the User’s Manual for more information.

• datasetSeparator — is the character used to terminate the dataset name. The default is
’:’, though a different character (other than ’\’) may be specified as the dataset separator
via the DatasetSeparator variable in the modelsim.ini file. The default is ':'. This
character must be different than the pathSeparator character.

• pathSeparator — is the character used to separate hierarchical object names. Normally,
'/' is used for VHDL and '.' is used for Verilog, although other characters (except '\') may
be specified via the PathSeparator variable in the modelsim.ini file. This character must
be different than the datasetSeparator. Neither '.' or '/' can be used when referring to the
contents of a SystemVerilog package or class.

Syntax and Conventions
File and Directory Pathnames

ModelSim Reference Manual, v6.2g 13
February 2007

• hierarchicalPath — is a set of hierarchical instance names separated by a path
separator and ending in a path separator prior to the objectName. For example,
/top/proc/clk.

• objectName — is the name of an object in a design.

• elementSelection — indicates some combination of the following:

o Array indexing — Single array elements are specified using either parentheses "()"
or square brackets "[]" around a single number.

o Array slicing — Slices (or part-selects) of arrays are specified using either
parentheses "()" or square brackets "[]" around a range specification. A range is two
numbers separated by one of the following: " to ", " downto ", ":". See Escaping
Brackets and Spaces in Array Slices for important information about using square
brackets in ModelSim commands.

o Record field selection — A record field is specified using a period "." followed by
the name of the field.

SystemVerilog Scope Resolution Operator
SystemVerilog offers the scope resolution operator ’::’ for accessing classes within a package
and static data within a class. The example below shows various methods of using this operator
as well as alternatives using standard hierarchical references.

Example 1-1. SystemVerilog Scope Resolution Operator Example

package myPackage;
class packet;

static int a[0:1] = {1, 2};
int b[0:1];
int c;

function new;
b[0] = 3;
b[1] = 4;
c = a[0];

endfunction
endclass

endpackage : myPackage

module top;
myPackage::packet my = new;
int myint = my.a[1];

endmodule

The following examine examples access data from the class packet.

examine myPackage::packet::a
examine /top/my.a

ModelSim Reference Manual, v6.2g14

Syntax and Conventions
File and Directory Pathnames

February 2007

Both of the above commands return the contents of the static array a within class packet.

examine myPackage::packet::a(0)
examine /top/my.a(0)

Both of the above commands return the contents of the first element of the static array a
within class packet.

examine /top/my.b

Return the contents of the instance-specific array b.

examine /top/my.b(0)

Return the contents of the first element of the instance-specific array b.

When referring to the contents of a package or class, you cannot use the standard path
separators ‘.’ or ‘/’.

Specifying Names
We distinguish between four "types" of object names: simple, relative, fully-rooted, and
absolute.

A simple name does not contain any hierarchy. It is simply the name of an object (e.g., clk or
data[3:0]) in the current context.

A relative name does not start with a path separator and may or may not include a dataset name
or a hierarchical path (e.g., u1/data or view:clk). A relative name is relative to the current
context in the current or specified dataset.

A fully-rooted name starts with a path separator and includes a hierarchical path to an object
(e.g., /top/u1/clk).There is a special case of a fully-rooted name where the top-level design unit
name can be unspecified (e.g., /u1/clk). In this case, the first top-level instance in the design is
assumed.

An absolute name is an exactly specified hierarchical name containing a dataset name and a
fully rooted name (e.g., sim:/top/u1/clk).

The current dataset is used when accessing objects where a dataset name is not specified as part
of the name. The current dataset is determined by the dataset currently selected in the Structure
window or by the last dataset specified in an environment.

The current context in the current or specified dataset is used when accessing objects with
relative or simple names. The current context is either the current process, if any, or the current
instance if there is no current process or the current process is not in the current instance. The
situation of the current process not being in the current instance can occur, for example, by
selecting a different instance in the Structure tab or by using the environment to set the current
context to a different instance.

Syntax and Conventions
File and Directory Pathnames

ModelSim Reference Manual, v6.2g 15
February 2007

Here are some examples of object names and what they specify:

Escaping Brackets and Spaces in Array Slices
Because ModelSim is a Tcl-based tool, you must use curly braces (’{}’) to "escape" square
brackets and spaces when specifying array slices. For example:

toggle add {data[3:0]}
toggle add {data(3 to 0)}

For complete details on Tcl syntax, refer to Tcl Command Syntax.

Further Details
As a Tcl-based tool, ModelSim commands follow Tcl syntax. One problem people encounter
with ModelSim commands is the use of square brackets (’[]’) or spaces when specifying array
slices. As shown on the previous page, square brackets are used to specify slices of arrays (e.g.,
data[3:0]). However, in Tcl, square brackets signify command substitution. Consider the
following example:

set aluinputs [find -in alu/*]

ModelSim evaluates the find command first and then sets variable aluinputs to the result of the
find command. Obviously you don’t want this type of behavior when specifying an array slice,
so you would use curly brace escape characters:

add wave {/s/abc/data_in[10:1]}

Table 1-2.

Syntax Description

clk specifies the object clk in the current context

/top/clk specifies the object clk in the top-level design unit.

/top/block1/u2/clk specifies the object clk, two levels down from the top-level
design unit

block1/u2/clk specifies the object clk, two levels down from the current
context

array_sig[4] specifies an index of an array object

{array_sig(1 to 10)} specifies a slice of an array object in VHDL; see Escaping
Brackets and Spaces in Array Slices for more information

{mysignal[31:0]} specifies a slice of an array object in Verilog; see Escaping
Brackets and Spaces in Array Slices for more information

record_sig.field specifies a field of a record

ModelSim Reference Manual, v6.2g16

Syntax and Conventions
File and Directory Pathnames

February 2007

You must also use the escape characters if using VHDL syntax with spaces:

add wave {/s/abc/data_in(10 downto 1)}

Environment Variables and Pathnames
You can substitute environment variables for pathnames in any argument that requires a
pathname. For example:

vlog -v $lib_path/und1

Assuming you have defined $lib_path on your system, vlog will locate the source library file
und1 and search it for undefined modules. Refer to Environment Variables for more
information.

Note
Environment variable expansion does not occur in files that are referenced via the -f
argument to vcom, vlog, or vsim.

Name Case Sensitivity
Name case sensitivity is different for VHDL and Verilog. VHDL names are not case sensitive
except for extended identifiers in VHDL 1076-1993 or later. In contrast, all Verilog names are
case sensitive.

Names in ModelSim commands are case sensitive when matched against case sensitive
identifiers, otherwise they are not case sensitive.

Extended Identifiers
The following are supported formats for extended identifiers for any command that takes an
identifier.

{\ext ident!\ }
Note that trailing space before closing brace is required

\\ext\ ident\!\\
All non-alpha characters escaped

Syntax and Conventions
Wildcard Characters

ModelSim Reference Manual, v6.2g 17
February 2007

Wildcard Characters
Wildcard characters can be used in HDL object names in some simulator commands.
Conventions for wildcards are as follows:

Filtering Wildcard Matching for Certain Commands
By default certain commands do not add all objects that match a wildcard pattern. For example,
the add wave command doesn’t add VHDL variables or Verilog memories by default because
this can use a lot of RAM.

Note
A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

WildcardFilter Preference Variable
The WildcardFilter preference variable allows you to specify the object types to exclude when
performing wildcard matches.

You can view the current settings by entering the following at the command prompt:

> set WildcardFilter

which, returns a space separated list of the current values. The default setting returns:

> set WildcardFilter
Variable Constant Generic Parameter SpecParam Memory CellInternal

You can change the settings by specifying a space-separated list of values enclosed in double-
quotes ("), for example:

set WildcardFilter "signal constant compare net reg"

Table 1-3.

Syntax Description

* matches any sequence of characters

? matches any single character

[] matches any one of the enclosed
characters; a hyphen can be used to
specify a range (for example, a-z, A-Z,
0-9); can be used only with the find
command

ModelSim Reference Manual, v6.2g18

Syntax and Conventions
Simulator Variables

February 2007

where Table 1-4 lists all the legal values for WildcardFilter.

The WildcardFilter variable applies to the commands add dataflow, add list, add memory, add
watch, add wave, find, and log.

Simulator Variables
ModelSim variables can be referenced in simulator commands by preceding the name of the
variable with the dollar sign ($) character. ModelSim uses global variables for simulator state
variables, simulator control variables, simulator preference variables, and user-defined
variables. Refer to “Simulator State Variables” in the User’s Manual for more information on
variables.

The report command returns a list of current settings for either the simulator state or simulator
control variables.

Simulation Time Units
You can specify the time unit for delays in all simulator commands that have time arguments.
For example:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time units in a ModelSim command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always expressed
using the resolution units that are specified by the UserTimeUnit variable.

By default, the specified time units are assumed to be relative to the current time unless the
value is preceded by the character @, which signifies an absolute time specification.

Table 1-4. WildcardFilter Values

Alias Memory Reg

CellInternal1

1. Applies to signals in cells, where a cell is defined as a module a)
within a ‘celldefine or b) containing a specify block.

NamedEvent Signal

Compare Net SpecParam

Constant None2

2. This value disables all filtering.

Time

Generic Parameter Variable

Integer Real

Syntax and Conventions
Command Shortcuts

ModelSim Reference Manual, v6.2g 19
February 2007

Comments in Argument Files
Argument files may be loaded with the -f <filename> argument of the vcom, vlog, sccom and
vsim commands. The -f <filename> argument specifies a file that contains more command line
arguments.

Comments within the argument files follow these rules:

• All text in a line beginning with // to its end is treated as a comment.

• All text bracketed by /* … */ is treated as a comment.

Also, program arguments can be placed on separate lines in the argument file, with the newline
characters treated as space characters. There is no need to put '\' at the end of each line.

Command Shortcuts
• You may abbreviate command syntax, but there’s a catch — the minimum number of

characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
ModelSim does not allow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

• Multiple commands may be entered on one line if they are separated by semi-colons (;).
For example:

ModelSim> vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

You probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command History Shortcuts
The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the ModelSim/VSIM prompt:

Table 1-5.

Shortcut Description

!! repeats the last command

ModelSim Reference Manual, v6.2g20

Syntax and Conventions
Numbering Conventions

February 2007

Numbering Conventions
Numbers in ModelSim can be expressed in either VHDL or Verilog style. You can use two
styles for VHDL numbers and one for Verilog.

VHDL Numbering Conventions
There are two types of VHDL number styles:

VHDL Style 1
[-] [radix #] value [#]

A ‘-’ can also be used to designate a "don’t care" element when you search for a signal value or
expression in the List or Wave window. If you want the ‘-’ to be read as a "don’t care" element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you
would type "-0110--" as opposed to -0110--. If you don’t include the double quotes, ModelSim
will read the ‘-’ as a negative sign. For example:

!n repeats command number n; n is the VSIM prompt
number (e.g., for this prompt: VSIM 12>, n =12)

!abc repeats the most recent command starting with "abc"

^xyz^ab^ replaces "xyz" in the last command with "ab"

up and down arrows scrolls through the command history with the keyboard
arrows

click on prompt left-click once on a previous ModelSim or VSIM
prompt in the transcript to copy the command typed at
that prompt to the active cursor

his or history shows the last few commands (up to 50 are kept)

Table 1-6.

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

is a delimiter between the radix and the value; the first # sign is required
if a radix is used, the second is always optional

Table 1-5.

Shortcut Description

Syntax and Conventions
Numbering Conventions

ModelSim Reference Manual, v6.2g 21
February 2007

16#FFca23#
2#11111110
-23749

VHDL Style 2
base "value"

For example:

B"11111110"
X"FFca23"

Searching for VHDL Arrays in the Wave and List Windows
Searching for signal values in the Wave or List window may not work correctly for VHDL
arrays if the target value is in decimal notation. You may get an error that the value is of
incompatible type. Since VHDL does not have a radix indicator for decimal, the target value
may get misinterpreted as a scalar value. Prefixing the value with the Verilog notation 'd should
eliminate the problem, even if the signal is VHDL.

Verilog Numbering Conventions
Verilog numbers are expressed in the style:

[-] [size] [base] value

A ‘-’ can also be used to designate a "don’t care" element when you search for a signal value or
expression in the List or Wave windows. If you want the ‘-’ to be read as a "don’t care" element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you

Table 1-7.

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

value specifies digits in the appropriate base with optional underscore
separators; default is decimal; required

Table 1-8.

Element Description

- indicates a negative number; optional

size the number of bits in the number; optional

base specifies the base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or ‘D, hex: ‘h
or ‘H; optional

value specifies digits in the appropriate base with optional underscore separators;
default is decimal; required

ModelSim Reference Manual, v6.2g22

Syntax and Conventions
GUI_expression_format

February 2007

would type "-0110--" as opposed to 7'b-0110--. If you don’t include the double quotes,
ModelSim will read the ‘-’ as a negative sign. For example:

’b11111110 8’b11111110
’Hffca23 21’H1fca23
-23749

GUI_expression_format
The GUI_expression_format is an option of several simulator commands that operate within the
ModelSim GUI environment. The expressions help you locate and examine objects within the
List and Wave windows (expressions may also be used through the Edit > Search menu in both
windows). The commands that use the expression format are:

configure, examine, searchlog, virtual function, virtual signal

Expression Typing
GUI expressions are typed. The supported types consist of the following scalar and array types.

Scalar Types
The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration, and
signal state. Signal states are represented by the nine VHDL std_logic states: ’U’ ’X’ ’0’ ’1’ ’Z’
’W’ ’L’ ’H’ and ’-’.

Verilog states 0, 1, x, and z are mapped into these states and the Verilog strengths are ignored.
Conversion is done automatically when referencing Verilog nets or registers.

Array Types
The supported array types are signed and unsigned arrays of signal states. This would
correspond to the VHDL std_logic_array type. Verilog registers are automatically converted to
these array types. The array type can be treated as either UNSIGNED or SIGNED, as in the
IEEE std_logic_arith package. Normally, referencing a signal array causes it to be treated as
UNSIGNED by the expression evaluator; to cause it to be treated as SIGNED, use casting as
described below. Numeric operations supported on arrays are performed by the expression
evaluator via ModelSim’s built-in numeric_standard (and similar) package routines. The
expression evaluator selects the appropriate numeric routine based on SIGNED or UNSIGNED
properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals may be
used in the expression as long as some variable of that enumeration type is referenced in the
expression. This is useful for sub-expressions of the form:

Syntax and Conventions
GUI_expression_format

ModelSim Reference Manual, v6.2g 23
February 2007

(/memory/state == reading)

Expression Syntax
GUI expressions generally follow C-language syntax, with both VHDL-specific and Verilog-
specific conventions supported. These expressions are not parsed by the Tcl parser, and so do
not support general Tcl; parentheses should be used rather than curly braces. Procedure calls are
not supported.

A GUI expression can include the following elements: Tcl macros, constants, array constants,
variables, array variables, signal attributes, operators, and casting.

Tcl Macros
Macros are useful for pre-defined constants or for entire expressions that have been previously
saved. The substitution is done only once, when the expression is first parsed. Macro syntax is:

$<name>

Substitutes the string value of the Tcl global variable <name>.

ModelSim Reference Manual, v6.2g24

Syntax and Conventions
GUI_expression_format

February 2007

Constants

Array Constants, Expressed in Any of the Following Formats

Variables

Table 1-9.

Type Values

boolean value true false TRUE FALSE

integer [0-9]+

real number <int>|([<int>].<int>[exp]) where the optional [exp] is: (e|E)[+|-][0-
9]+

time integer or real optionally followed by time unit

enumeration VHDL user-defined enumeration literal

single bit constants expressed as any of the following:
0 1 x X z Z U H L W ’U’ ’X’ ’0’ ’1’ ’Z’ ’W’ ’L’ ’H’ ’-’ 1’b0 1’b1

Table 1-10.

Type Values

VHDL # notation <int>#<alphanum>[#]
Example: 16#abc123#

VHDL bitstring "(U|X|0|1|Z|W|L|H|-)*"
Example: "11010X11"

Verilog notation [-][<int>]’(b|B|o|O|d|D|h|H) <alphanum>
(where <alphanum> includes 0-9, a-f, A-F, and ’-’)
Example: 12’hc91 (This is the preferred notation because it removes the
ambiguity about the number of bits.)

Based notation 0x…, 0X…, 0o…, 0O…, 0b…, OB…
ModelSim automatically zero fills unspecified upper bits.

Table 1-11.

Variable Type

Name of a signal The name may be a simple name, a VHDL or Verilog style extended
identifier, or a VHDL or Verilog style path. The signal must be one of
the following types:
-- VHDL signal of type INTEGER, REAL, or TIME
-- VHDL signal of type std_logic or bit
-- VHDL signal of type user-defined enumeration
-- Verilog net, Verilog register, Verilog integer, or Verilog real

Syntax and Conventions
GUI_expression_format

ModelSim Reference Manual, v6.2g 25
February 2007

Array variables

Signal attributes
<name>’event
<name>’rising
<name>’falling
<name>’delayed()
<name>’hasX

The ’delayed attribute lets you assign a delay to a VHDL signal. To assign a delay to a signal in
Verilog, use “#” notation in a sub-expression (e.g., #-10 /top/signalA).

The hasX attribute lets you search for signals, nets, or registers that contains an X (unknown)
value.

See Examples of Expression Syntax below for further details on ’delayed and ’hasX.

NOW Returns the value of time at the current location in the WLF file as the
WLF file is being scanned (not the most recent simulation time).

Table 1-12.

Variable Type

Name of a signal -- VHDL signals of type bit_vector or std_logic_vector
-- Verilog register
-- Verilog net array
A subrange or index may be specified in either VHDL or Verilog
syntax. Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4),
mysignal [4]

Table 1-11.

Variable Type

ModelSim Reference Manual, v6.2g26

Syntax and Conventions
GUI_expression_format

February 2007

Operators

Note
Arithmetic operators use the std_logic_arith package.

Table 1-13.

Operator Description Operator Description

&& boolean and sll/SLL shift left logical

|| boolean or sla/SLA shift left arithmetic

! boolean not srl/SRL shift right logical

== equal sra/SRA shift right arithmetic

!= not equal ror/ROR rotate right

=== exact equal1

1. This operator is allowed to be compatible with other simulators.

rol/ROL rotate left

!== exact not equal1 + arithmetic add

< less than - arithmetic subtract

<= less than or equal * arithmetic multiply

> greater than / arithmetic divide

>= greater than or equal mod/MOD arithmetic modulus

not/NOT/~ unary bitwise inversion rem/REM arithmetic remainder

and/AND/& bitwise and |<vector_expr> OR reduction

nand/NAND bitwise nand ^<vector_expr> XOR reduction

or/OR/| bitwise or

nor/NOR bitwise nor

xor/XOR bitwise xor

xnor/XNOR bitwise xnor

Syntax and Conventions
GUI_expression_format

ModelSim Reference Manual, v6.2g 27
February 2007

Casting

Examples of Expression Syntax
/top/bus & $bit_mask

This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’event && (/top/xyz == 16’hffae)

This expression evaluates to a boolean true when signal clk changes and signal /top/xyz
is equal to hex ffae; otherwise is false.

clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)

Evaluates to a boolean true when signal clk just changed from low to high and signal
mystate is the enumeration reading and signal /top/u3/addr is equal to the specified
32-bit hex constant; otherwise is false.

(/top/u3/addr and 32’hff000000) == 32’hac000000

Evaluates to a boolean true when the upper 8 bits of the 32-bit signal /top/u3/addr equals
hex ac.

/top/signalA'delayed(10ns)

This expression returns /top/signalA delayed by 10 ns.

/top/signalA'delayed(10 ns) && /top/signalB

This expression takes the logical AND of a delayed /top/signalA with /top/signalB.

Table 1-14.

Casting Description

(bool) convert to boolean

(boolean) convert to boolean

(int) convert to integer

(integer) convert to integer

(real) convert to real

(time) convert to 64-bit integer

(std_logic) convert to 9-state signal value

(signed) convert to signed vector

(unsigned) convert to unsigned vector

(std_logic_vector) convert to unsigned vector

ModelSim Reference Manual, v6.2g28

Syntax and Conventions
GUI_expression_format

February 2007

virtual function { (#-10 /top/signalA) && /top/signalB}
mySignalB_AND_DelayedSignalA

This evaluates /top/signalA at 10 simulation time steps before the current time, and takes
the logical AND of the result with the current value of /top/signalB. The '#' notation uses
positive numbers for looking into the future, and negative numbers for delay. This
notation does not support the use of time units.

((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)

Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk
just changed from low to high, and signal mode is enumeration writing.

searchlog -expr {dbus'hasX} {0 ns} dbus

Searches for an ’X’ in dbus. This is equivalent to the expression: {dbus(0) == 'x' ||
dbus(1) == 'x'} This makes it possible to search for X values without having to
write a type specific literal.

Signal and Subelement Naming Conventions
ModelSim supports naming conventions for VHDL and Verilog signal pathnames, VHDL array
indexing, Verilog bit selection, VHDL subrange specification, and Verilog part selection.

Examples in Verilog and VHDL syntax:

top.chip.vlogsig
/top/chip/vhdlsig
vlogsig[3]
vhdlsig(9)
vlogsig[5:2]
vhdlsig(5 downto 2)

Grouping and Precedence
Operator precedence generally follows that of the C language, but we recommend liberal use of
parentheses.

Concatenation of Signals or Subelements
Elements in the concatenation that are arrays are expanded so that each element in the array
becomes a top-level element of the concatenation. But for elements in the concatenation that are
records, the entire record becomes one top-level element in the result. To specify that the
records be broken down so that their subelements become top-level elements in the
concatenation, use the concat_flatten directive. Currently we do not support leaving full arrays
as elements in the result. (Please let us know if you need that option.)

Syntax and Conventions
GUI_expression_format

ModelSim Reference Manual, v6.2g 29
February 2007

If the elements being concatenated are of incompatible base types, a VHDL-style record will be
created. The record object can be expanded in the Objects and Wave windows just like an array
of compatible type elements.

Concatenation Syntax for VHDL
<signalOrSliceName1> & <signalOrSliceName2> & ...

Concatenation Syntax for Verilog
&{<signalOrSliceName1>, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceName1>}, <signalOrSliceName2>, ... }

Note that the concatenation syntax begins with "&{" rather than just "{". Repetition multipliers
are supported, as illustrated in the second line. The repetition element itself may be an arbitrary
concatenation subexpression.

Concatenation Directives
A concatenation directive (as illustrated below) can be used to constrain the resulting array
range of a concatenation or influence how compound objects are treated. By default, the
concatenation will be created with a descending index range from (n-1) downto 0, where n is the
number of elements in the array.

(concat_range 31:0)<concatenationExpr> # Verilog syntax
(concat_range (31:0))<concatenationExpr> # Also Verilog syntax
(concat_range (31 downto 0))<concatenationExpr> # VHDL syntax

The concat_range directive completely specifies the index range.

(concat_ascending) <concatenationExpr>

The concat_ascending directive specifies that the index start at zero and increment
upwards.

(concat_flatten) <concatenationExpr>

The concat_flatten directive flattens the signal structure hierarchy.

(concat_noflatten) <concatenationExpr>

The concat_noflatten directive groups signals together without merging them into one
big array. The signals become elements of a record and retain their original names.
When expanded, the new signal looks just like a group of signals. The directive can be
used hierarchically with no limits on depth.

(concat_sort_wild_ascending) <concatenationExpr>

The concat_sort_wild_ascending directive gathers signals by name in ascending order
(the default is descending).

ModelSim Reference Manual, v6.2g30

Syntax and Conventions
GUI_expression_format

February 2007

(concat_reverse) <concatenationExpr>

The concat_reverse directive reverses the bits of the concatenated signals.

Examples of Concatenation
&{ "mybusbasename*" }

Gathers all signals in the current context whose names begin with "mybusbasename",
sorts those names in descending order, and creates a bus with index range (n-1) downto
0, where n is the number of matching signals found. (Note that it currently does not
derive the index name from the tail of the one-bit signal name.)

(concat_range 13:4)&{ "mybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by name in
descending order.

(concat_ascending)&{ "mybusbasename*" }

Specifies an ascending range of 0 to n-1, with the signals gathered by name in
descending order.

(concat_ascending)((concat_sort_wild_ascending)&{"mybusbasename*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by name in ascending
order.

(concat_reverse)(bus1 & bus2)

Specifies that the bits of bus1 and bus2 be reversed in the output virtual signal.

Record Field Members
Arbitrarily-nested arrays and records are supported, but operators will only operate on one field
at a time. That is, the expression {a == b} where a and b are records with multiple fields, is not
supported. This would have to be expressed as:

{(a.f1 == b.f1) && (a.f2 == b.f2) ...}

Examples:

vhdlsig.field1
vhdlsig.field1.subfield1
vhdlsig.(5).field3
vhdlsig.field4(3 downto 0)

Searching for Binary Signal Values in the GUI
When you use the GUI to search for signal values displayed in 4-state binary radix, you should
be aware of how ModelSim maps between binary radix and std_logic. The issue arises because

Syntax and Conventions
GUI_expression_format

ModelSim Reference Manual, v6.2g 31
February 2007

there is no “un-initialized” value in binary, while there is in std_logic. So, ModelSim relies on
mapping tables to determine whether a match occurs between the displayed binary signal value
and the underlying std_logic value.

This matching algorithm applies only to searching via the GUI. It does not apply to VHDL or
Verilog testbenches.

For comparing VHDL std_logic/std_ulogic objects, ModelSim uses the table shown below. An
entry of “0” in the table is “no match”; an entry of “1” is a “match”; an entry of “2” is a match
only if you set the Tcl variable STDLOGIC_X_MatchesAnything to 1. Note that X will match
a U, and - will match anything.

For comparing Verilog net values, ModelSim uses the table shown below. An entry of “2” is a
match only if you set the Tcl variable “VLOG_X_MatchesAnything” to 1.

Table 1-15.

Search
Entry

Matches as follows:

U X 0 1 Z W L H -

U 1 1 0 0 0 0 0 0 1

X 1 1 2 2 2 2 2 2 1

0 0 2 1 0 0 0 1 0 1

1 0 2 0 1 0 0 0 1 1

Z 0 2 0 0 1 0 0 0 1

W 0 2 0 0 0 1 0 0 1

L 0 2 1 0 0 0 1 0 1

H 0 2 0 1 0 0 0 1 1

- 1 1 1 1 1 1 1 1 1

Table 1-16.

Search
Entry

Matches as follows:

0 1 Z X

0 1 0 0 2

1 0 1 0 2

Z 0 0 1 2

X 2 2 2 1

ModelSim Reference Manual, v6.2g32

Syntax and Conventions
GUI_expression_format

February 2007

ModelSim Reference Manual, v6.2g 33
February 2007

Chapter 2
Commands

The commands here are entered either in macro files or on the command line of the Main
window. Some commands are automatically entered on the command line when you use the
ModelSim graphical user interface.

Note that in addition to the simulation commands documented in this section, you can use the
Tcl commands described in the Tcl man pages (use the Main window menu selection: Help >
Tcl Man Pages).

The following table provides a brief description of each ModelSim command. Command
details, arguments, and examples can be selecting the links in the Command name column.

Table 2-1. Commands

Command name Action

abort halts the execution of a macro file interrupted by a breakpoint or
error

add dataflow adds the specified object to the Dataflow window

add list lists VHDL signals and variables, and Verilog nets and registers,
and their values in the List window

add log also known as the log command; see log

add memory opens the specified memory in the MDI frame of the Main
window

add watch adds signals or variables to the Watch window

add wave adds VHDL signals and variables, and Verilog nets and registers
to the Wave window

add_cmdhelp adds an entry to the command-line help; use the help command to
display the help text

alias creates a new Tcl procedure that evaluates the specified
commands

batch_mode returns a 1 if ModelSim is operating in batch mode, otherwise
returns a 0

bd deletes a breakpoint

bookmark add wave adds a bookmark to the specified Wave window

bookmark delete wave deletes bookmarks from the specified Wave window

bookmark goto wave zooms and scrolls a Wave window using the specified bookmark

ModelSim Reference Manual, v6.2g34

Commands

February 2007

bookmark list wave displays a list of available bookmarks

bp sets a breakpoint

change modifies the value of a VHDL variable or Verilog register
variable

configure invokes the List or Wave widget configure command for the
current default List or Wave window

dataset alias assigns an additional name to a dataset

dataset clear clears the current simulation WLF file

dataset close closes a dataset

dataset config configures WLF file settings after dataset is open

dataset info reports information about the specified dataset

dataset list lists the open dataset(s)

dataset open opens a dataset and references it by a logical name

dataset rename changes the logical name of an opened dataset

dataset save saves data from the current WLF file to a specified file

dataset snapshot saves data from the current WLF file at a specified interval

delete removes objects from either the List or Wave window

describe displays information about the specified HDL object

disablebp turns off breakpoints and when commands

do executes commands contained in a macro file

drivers displays in the Main window the current value and scheduled
future values for all the drivers of a specified VHDL signal or
Verilog net

dumplog64 dumps the contents of the vsim.wlf file in a readable format

echo displays a specified message in the Main window

edit invokes the editor specified by the EDITOR environment variable

enablebp turns on breakpoints and when commands turned off by the
disablebp command

environment displays or changes the current dataset and region environment

examine examines one or more objects, and displays current values (or the
values at a specified previous time) in the Main window

exit exits the simulator and the ModelSim application

Table 2-1. Commands (cont.)

Command name Action

Commands

ModelSim Reference Manual, v6.2g 35
February 2007

find displays the full pathnames of all objects in the design whose
names match the name specification you provide

find infiles searches the specified files and prints to the Transcript pane those
lines from the files that match the specified pattern.

find insource searches all source files related to the current design and prints to
the Transcript pane those lines from the files that match the
specified pattern.

formatTime global format control for all time values displayed in the GUI

force applies stimulus to VHDL signals and Verilog nets

help displays in the Main window a brief description and syntax for the
specified command

history lists the commands executed during the current session

layout save or load custom GUI layouts

log creates a wave log format (WLF) file containing simulation data
for all objects whose names match the provided specifications

lshift takes a Tcl list as an argument and shifts it in-place one place to
the left, eliminating the left-most element

lsublist returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

mem compare compares the selected memory to a reference memory or file

mem display displays the memory contents of a selected instance to the screen

mem list displays a flattened list of all memory instances in the current or
specified context after a design has been elaborated

mem load updates the simulation memory contents of a specified instance

mem save saves the contents of a memory instance to a file in any of the
supported formats: Verilog binary, Verilog hex, and MTI memory
pattern data

mem search finds and prints to the screen the first occurring match of a
specified memory pattern in the specified memory instance

modelsim starts the ModelSim GUI without prompting you to load a design;
valid only for Windows platforms

noforce removes the effect of any active force commands on the selected
object

nolog suspends writing of data to the WLF file for the specified signals

notepad opens a simple text editor

Table 2-1. Commands (cont.)

Command name Action

ModelSim Reference Manual, v6.2g36

Commands

February 2007

noview closes a window or set of windows in the ModelSim GUI

nowhen deactivates selected when commands

onbreak specifies command(s) to be executed when running a macro that
encounters a breakpoint in the source code

onElabError specifies one or more commands to be executed when an error is
encountered during elaboration

onerror specifies one or more commands to be executed when a running
macro encounters an error

pause interrupts the execution of a macro

precision determines how real numbers display in the GUI

printenv echoes to the Main window the current names and values of all
environment variables

project performs common operations on new projects

pwd displays the current directory path in the Main window

quietly turns off transcript echoing for the specified command

quit exits the simulator

radix specifies the default radix to be used

report displays the value of all simulator control variables, or the value
of any simulator state variables relevant to the current simulation

restart reloads the design elements and resets the simulation time to zero

resume resumes execution of a macro file after a pause command or a
breakpoint

run advances the simulation by the specified number of timesteps

searchlog searches one or more of the currently open logfiles for a specified
condition

setenv sets an environment variable

shift shifts macro parameter values down one place

show lists objects and subregions visible from the current environment

simstats reports performance-related statistics about active simulations

status lists all currently interrupted macros

step steps to the next HDL statement

stop stops simulation in batch files; used with the when command

Table 2-1. Commands (cont.)

Command name Action

Commands

ModelSim Reference Manual, v6.2g 37
February 2007

tb displays a stack trace for the current process in the Transcript
pane

transcript controls echoing of commands executed in a macro file; also
works at top level in batch mode

transcript file sets or queries the pathname for the transcript file

tssi2mti converts a vector file in Fluence Technology (formerly TSSI)
Standard Events Format into a sequence of force and run
commands

unsetenv deletes an environment variable

vcd add adds the specified objects to the VCD file

vcd checkpoint dumps the current values of all VCD variables to the VCD file

vcd comment inserts the specified comment in the VCD file

vcd dumpports creates a VCD file that captures port driver data

vcd dumpportsall creates a checkpoint in the VCD file that shows the current values
of all selected ports

vcd dumpportsflush flushes the VCD buffer to the VCD file

vcd dumpportslimit specifies the maximum size of the VCD file

vcd dumpportsoff turns off VCD dumping and records all dumped port values as x

vcd dumpportson turns on VCD dumping and records the current values of all
selected ports

vcd file specifies the filename and state mapping for the VCD file created
by a vcd add command

vcd files specifies the filename and state mapping for the VCD file created
by a vcd add command; supports multiple VCD files

vcd flush flushes the contents of the VCD file buffer to the VCD file

vcd limit specifies the maximum size of the VCD file

vcd off turns off VCD dumping and records all VCD variable values as x

vcd on turns on VCD dumping and records the current values of all VCD
variables

vcd2wlf translates VCD files into WLF files

vcom compiles VHDL design units

vdel deletes a design unit from a specified library

vdir lists the contents of a design library

Table 2-1. Commands (cont.)

Command name Action

ModelSim Reference Manual, v6.2g38

Commands

February 2007

verror prints a detailed description of a message number

vgencomp writes a Verilog module’s equivalent VHDL component
declaration to standard output

view opens a ModelSim window and brings it to the front of the display

virtual count counts the number of currently defined virtuals that were not read
in using a macro file

virtual define prints the definition of a virtual signal or function in the form of a
command that can be used to re-create the object

virtual delete removes the matching virtuals

virtual describe prints a complete description of the data type of one or more
virtual signals

virtual expand produces a list of all the non-virtual objects contained in the
virtual signal(s)

virtual function creates a new signal that consists of logical operations on existing
signals and simulation time

virtual hide causes the specified real or virtual signals to not be displayed in
the Objects window

virtual log causes the sim-mode dependent signals of the specified virtual
signals to be logged by the simulator

virtual nohide redisplays a virtual previously hidden with virtual hide

virtual nolog stops the logging of the specified virtual signals

virtual region creates a new user-defined design hierarchy region

virtual save saves the definitions of virtuals to a file

virtual show lists the full path names of all the virtuals explicitly defined

virtual signal creates a new signal that consists of concatenations of signals and
subelements

virtual type creates a new enumerated type

vlib creates a design library

vlog compiles Verilog design units and SystemVerilog extensions

vmake creates a makefile that can be used to reconstruct the specified
library

vmap defines a mapping between a logical library name and a directory

vsim loads a new design into the simulator

Table 2-1. Commands (cont.)

Command name Action

Commands

ModelSim Reference Manual, v6.2g 39
February 2007

vsim<info> returns information about the current vsim executable

vsource specifies an alternative file to use for the current source file

wave commands for manipulating cursors, for zooming, and for
adjusting the wave display view in the Wave window

when instructs ModelSim to perform actions when the specified
conditions are met

where displays information about the system environment

wlf2log translates a ModelSim WLF file to a QuickSim II logfile

wlf2vcd translates a ModelSim WLF file to a VCD file

wlfman outputs information about or a new WLF file from an existing
WLF file

wlfrecover attempts to repair an incomplete WLF file

write format records the names and display options in a file of the objects
currently being displayed in the List or Wave window

write list records the contents of the List window in a list output file

write preferences saves the current GUI preference settings to a Tcl preference file

write report prints a summary of the design being simulated

write transcript writes the contents of the Main window transcript to the specified
file

write tssi records the contents of the List window in a “TSSI format” file

write wave records the contents of the Wave window in PostScript format

Table 2-1. Commands (cont.)

Command name Action

ModelSim Reference Manual, v6.2g40

Commands
abort

February 2007

abort
The abort command halts the execution of a macro file interrupted by a breakpoint or error.
When macros are nested, you may choose to abort the last macro only, abort a specified number
of nesting levels, or abort all macros. The abort command may be used within a macro to return
early.

Syntax

abort [<n> | all]

Arguments

• <n> | all

Specifies the number of nested macro levels to abort. Optional. Default setting is 1.

<n> — An integer giving the number of nested macro levels to abort

all — aborts all levels.

See also

onbreak, onElabError, onerror

Commands
add dataflow

ModelSim Reference Manual, v6.2g 41
February 2007

add dataflow
The add dataflow command adds the specified process, signal, net, or register to the Dataflow
window. Wildcards are allowed.

Syntax

add dataflow [<object>][-in] [-out] [-inout] [-internal] [-nofilter] [-out]
[-ports] [-recursive]

• <object>

Specifies a process, signal, net, or register that you want to add to the Dataflow window.
Required. Multiple objects separated by spaces may be specified. Wildcards are allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching objects with wildcard patterns.)

• -in

Specifies to add include ports of mode IN. Optional.

• -inout

Specifies to add include ports of mode INOUT. Optional.

• -internal

Specifies to add internal (non-port) objects. Optional.

• -nofilter

Specifies that the WildcardFilter Tcl preference variable be ignored when finding signals or
nets. Optional.

• -out

Specifies to add ports of mode OUT. Optional.

• -ports

Specifies to add all ports. Optional. Has the same effect as specifying -in, -out, and -inout
together.

• -recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region.

See also

Dataflow Window, WildcardFilter Preference Variable

ModelSim Reference Manual, v6.2g42

Commands
add list

February 2007

add list
The add list command adds the following objects and their values to the List window:

• VHDL signals and variables

• Verilog nets and registers

• User-defined buses

If no port mode is specified, add list will display all objects in the selected region with names
matching the object name specification.

Syntax

add list [-allowconstants] [-depth <level>] [-in] [-inout] [-internal] [-label <name>] [-nodelta]
[-notrigger | -trigger] [-out] [-ports] [-<radix>] [-recursive] [-width <n>]
[<object_name> | {<object_name> {sig1 sig2 sig3 …}}] …

Arguments

• -allowconstants

For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the List window. Optional. By default, constants are ignored because
they do not change.

• -depth <level>

Restricts a recursive search (specified with the -recursive argument) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify -
depth 1, the command descends only one level in the hierarchy. Optional.

• -in

For use with wildcard searches. Specifies that the scope of the search is to include ports of
mode IN if they match the object_name specification. Optional.

• -inout

For use with wildcard searches. Specifies that the scope of the search is to include ports of
mode INOUT if they match the object_name specification. Optional.

• -internal

For use with wildcard searches. Specifies that the scope of the search is to include internal
objects (non-port objects) if they match the object_name specification. VHDL variables are
not selected. Optional.

• -label <name>

Specifies an alternative signal name to be displayed as a column heading in the listing.
Optional. This alternative name is not valid in a force or examine command.

Commands
add list

ModelSim Reference Manual, v6.2g 43
February 2007

• -nodelta

Specifies that the delta column not be displayed when adding signals to the List window.
Optional. Identical to configure list -delta none.

• -notrigger

Specifies that objects are to be listed, but does not cause the List window to be updated
when the objects change value. Optional.

• -out

For use with wildcard searches. Specifies that the scope of the search is to include ports of
mode OUT if they match the object_name specification. Optional.

• -ports

For use with wildcard searches. Specifies that the scope of the search is to include all ports.
Optional. Has the same effect as specifying -in, -out, and -inout together.

• -<radix>

Specifies the radix for the objects that follow in the command. Optional. Valid entries (or
any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic, and
default. If no radix is specified for an enumerated type, the default representation is used.
You can change the default radix for the current simulation using the radix command. You
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

• -recursive

For use with wildcard searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional. If omitted, the search is limited to the selected region.
You can use the -depth argument to specify how far down the hierarchy to descend.

• -trigger

Specifies that objects are to be listed and causes the List window to be updated when the
objects change value. Optional. Default.

• -width <n>

Specifies the column width in characters. Optional.

• <object_name>

Specifies the name of the object to be listed. Optional. Wildcard characters are allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching objects with wildcard patterns.) Variables may be added if preceded by the
process name. For example,

add list myproc/int1

ModelSim Reference Manual, v6.2g44

Commands
add list

February 2007

• {<object_name> {sig1 sig2 sig3 …}}

Creates a user-defined bus with the specified object name. The ‘sigi’ entries are signals to be
concatenated within the user-defined bus. Optional. Specified objects may be either scalars
or various sized arrays as long as they have the same element enumeration type.

Examples

• List all objects in the design.

add list -r /*

• List all objects in the region.

add list *

• List all input ports in the region.

add list -in *

• Display a List window containing three columns headed a, sig, and array_sig(9 to 23).

add list a -label sig /top/lower/sig {array_sig(9 to 23)}

• List clk, a, b, c, and d only when clk changes.

add list clk -notrigger a b c d

• Lists clk, a, b, c, and d every 100 ns.

config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk a b c d

• Creates a user-defined bus named "mybus" consisting of three signals; the bus is
displayed in hex.

add list -hex {mybus {msb {opcode(8 downto 1)} data}}

• Lists the object vec1 using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vec4 in decimal.

add list vec1 -hex vec2 -dec vec3 vec4

See also

add wave, log, Extended Identifiers, WildcardFilter Preference Variable

Commands
add memory

ModelSim Reference Manual, v6.2g 45
February 2007

add memory
The add memory command displays the contents and sets the address and data radix of the
specified memory in the MDI frame of the Main window.

Syntax

add memory [-addressradix <radix>] [-dataradix <radix>] [-wordsperline <num>]
<object_name> …

Arguments

• -addressradix <radix>

Specifies the address radix for the memory display. <radix> can be specified as d (decimal)
or h (hex). Default is decimal. Optional.

• -dataradix <radix>

Specifies the data radix for the memory display. Optional. If unspecified, the global default
radix is used. Valid entries (or any unique abbreviations) are: binary, decimal, unsigned,
octal, hex, symbolic, and default. If no radix is specified for an enumerated type, the
symbolic representation is used. You can change the default radix for the current simulation
using the radix command. You can change the default radix permanently by editing the
DefaultRadix variable in the modelsim.ini file.

Changing the default radix does not change the radix of the currently-displayed memory.
Use the add memory command to re-add the memory with the desired radix, or change the
display radix from the Memory window Properties dialog.

• -wordsperline <num>

Determines how many words are displayed on each line in the memory window. Optional.
Default is to wrap display based on the width of the window.

• <object_name>

Specifies the hierarchical path of the memory to be displayed. Wildcard characters are
allowed. (Note that the WildcardFilter Tcl preference variable identifies types to ignore
when matching objects with wildcard patterns.)

See also

Memory Panes, WildcardFilter Preference Variable

ModelSim Reference Manual, v6.2g46

Commands
add watch

February 2007

add watch
The add watch command adds signals and variables to the Watch pane in the Main window.

Syntax

add watch <object_name> …

Arguments

• <object_name>

Specifies the name of the object to be added. Wildcard characters are allowed. (Note that the
WildcardFilter Tcl preference variable identifies types to ignore when matching objects
with wildcard patterns.) Variables must be preceded by the process name. For example,

add watch myproc/int1

See also

Watch Pane, WildcardFilter Preference Variable

Commands
add wave

ModelSim Reference Manual, v6.2g 47
February 2007

add wave
The add wave command adds the following objects to the Wave window:

• VHDL signals and variables

• Verilog nets and registers

• Dividers and user-defined buses.

If no port mode is specified, add wave will display all objects in the selected region with names
matching the object name specification.

Syntax

add wave [-allowconstants] [-color <standard_color_name>] [-depth <level>]
[-expand <signal_name>] [-<format>] [-group <group_name> [<sig_name1> ...]]
[-height <pixels>] [-in] [-inout] [-internal] [-noupdate] [-offset <offset>] [-out] [-ports]
[-<radix>] [-recursive] [-scale <scale>]
[[-divider <divider_name>…] | [-label <name> | {<object_name> {sig1 sig2 sig3 …}}] …]

Arguments

• -allowconstants

For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the Wave window. Optional. By default, constants are ignored because
they do not change.

• -color <standard_color_name>

Specifies the color used to display a waveform. Optional. These are the standard X Window
color names, or rgb value (e.g., #357f77); enclose 2-word names (“light blue”) in quotes.

• -depth <level>

Restricts a recursive search (specified with the -recursive option) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify -
depth 1, the command descends only one level in the hierarchy. Optional.

• -divider <divider_name>

Adds a divider to the Wave window. Optional. When a divider name is specified, that name
appears in the pathnames column. One or more names can be specified. All names listed
after -divider are taken to be divider names. Names that begin with a hyphen (-) are not
allowed; however, names beginning with a space are valid if enclosed with quotation marks
or curly braces. If a divider name is not specified, ModelSim will insert an unnamed divider.

• -expand <signal_name>

Causes a compound signal to be expanded immediately, but only one level down. Optional.
The <signal_name> is required, and may include wildcards.

ModelSim Reference Manual, v6.2g48

Commands
add wave

February 2007

• -<format>

Specifies the display format of the objects, optional:

literal — Literal waveforms are displayed as a box containing the object value.

logic — Logic signals may be U, X, 0, 1, Z, W, L, H, or ‘-’.

analog-step — Analog-step changes to the new time before plotting the new Y.

analog-interpolated — Analog-interpolated draws a diagonal line.

analog-backstep — Analog-backstep plots the new Y before moving to the new time.

Analog signals are sized by -scale and by -offset. Refer to “Formatting the Wave Window”
for more information.

• -group <group_name> [<sig_name1> ...]

Creates a wave group with the specified group_name. Optional. If signal names are not
specified, creates an empty wave group.

• -height <pixels>

Specifies the height (in pixels) of the waveform. Optional.

• -in

For use with wildcard searches. Specifies that the scope of the search is to include ports of
mode IN if they match the object_name specification. Optional.

• -inout

For use with wildcard searches. Specifies that the scope of the search is to include ports of
mode INOUT if they match the object_name specification. Optional.

• -internal

For use with wildcard searches. Specifies that the scope of the search is to include internal
objects (non-port objects) if they match the object_name specification. Optional.

• -label <name>

Specifies an alternative name for the signal being added to the Wave window. Optional. For
example,

add wave -label c clock

adds the clock signal, labeled as "c", to the Wave window.

This alternative name is not valid in a force or examine command.

• -noupdate

Prevents the Wave window from updating when a series of add wave commands are
executed in series. Optional.

• <object_name>

Specifies the names of objects to be included in the Wave window display. Optional.
Wildcard characters are allowed. Note that the WildcardFilter Tcl preference variable

Commands
add wave

ModelSim Reference Manual, v6.2g 49
February 2007

identifies types to ignore when matching objects with wildcard patterns. Variables may be
added if preceded by the process name. For example,

add wave myproc/int1

• {<object_name> {sig1 sig2 sig3 …}}

Creates a user-defined bus with the specified object name. The ‘sigi’ entries are signals to be
concatenated within the user-defined bus. Optional.

Note
You can also select Tools > Combine Signals (Wave window) to create a user-defined
bus.

• -offset <offset>

Modifies an analog waveform’s position on the display. Optional. The offset value is part of
the wave positioning equation (see -scale below).

• -out

For use with wildcard searches. Specifies that the scope of the search is to include ports of
mode OUT if they match the object_name specification. Optional.

• -ports

For use with wildcard searches. Specifies that the scope of the listing is to include ports of
modes IN, OUT, or INOUT. Optional.

• -<radix>

Specifies the radix for the objects that follow in the command. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii character, unsigned decimal,
octal, hex, symbolic, and default. If no radix is specified for an enumerated type, the default
representation is used. You can change the default radix for the current simulation using the
radix command. You can change the default radix permanently by editing the DefaultRadix
variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

• -recursive

For use with wildcard searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional. If omitted, the search is limited to the selected region.
You can use the -depth argument to specify how far down the hierarchy to descend.

• -scale <scale>

Scales analog waveforms. Optional. The scale value is part of the wave positioning equation
shown below. The position and size of the waveform is given by:

(signal_value + <offset>) * <scale>

ModelSim Reference Manual, v6.2g50

Commands
add wave

February 2007

If signal_value + <offset> = 0, the waveform will be aligned with its name. The <scale>
value determines the height of the waveform, 0 being a flat line.

Examples

• Display an object named out2. The object is specified as being a logic object presented
in gold.

add wave -logic -color gold out2

• Display a user-defined, hex formatted bus named address.

add wave -hex {address {a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0}}

• Wave all objects in the region.

add wave *

• Wave all input ports in the region.

add wave -in *

• Create a user-defined bus named "mybus" consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vector1 is of type std_logic_vector (7 downto 1). The
bus is displayed in hex.

add wave -hex {mybus {scalar1 vector1 scalar2}}

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:

add wave {vector3(1)}
add wave {vector3[1]}
add wave {vector3(4 downto 0)}
add wave {vector3[4:0]}

• Add the object vec1 to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

add wave vec1 -hex vec2 -dec vec3 vec4

• Add a divider with the name "-Example-". Note that for this to work, the first hyphen of
the name must be preceded by a space.

add wave -divider " -Example- "

• Add an unnamed divider.

add wave -divider
add wave -divider ""
add wave -divider {}

Commands
add wave

ModelSim Reference Manual, v6.2g 51
February 2007

See also

add list, log, Extended Identifiers, Concatenation Directives, WildcardFilter Preference
Variable

ModelSim Reference Manual, v6.2g52

Commands
add_cmdhelp

February 2007

add_cmdhelp
The add_cmdhelp command adds the specified command name, description, and command
arguments to the command-line help. You can then access the information using the help
command.

To delete an entry, invoke the command with an empty command description and arguments.
See examples.

Syntax

add_cmdhelp {<command_name>} {<command_description>} {<command_arguments>}

Arguments

• {<command_name>}

Specifies the command name that will be entered as an argument to the help command.
Required. The braces ’{}’ are required if the command name is two or more words. The
command_name must not interfere with an already existing ModelSim command_name.

• {<command_description>}

A description of the command. Required. Either braces ’{}’ or double-quotes must surround
the entry.

• {<command_arguments>}

A space-separated list of arguments for the command. Required. Either braces ’{}’ or
double-quotes must surround the entry. If the command doesn’t have any arguments, enter
{}.

Examples

• Add a command named "date" with no arguments.

add_cmdhelp date {Displays date and time.} {}

VSIM> help date
Displays data and time.
Usage: date

• Add the change date command.

add_cmdhelp {change date} {Modify date or time.} {-time|-date <arg>}

VSIM> help change date
Modify data or time.
Usage: change date -time|-date <arg>

• Deletes the change date command from the command-line help.

add_cmdhelp {change date} {} {}

Commands
alias

ModelSim Reference Manual, v6.2g 53
February 2007

alias
The alias command displays or creates user-defined aliases. Any arguments passed on
invocation of the alias will be passed through to the specified commands.

Returns nothing. Existing ModelSim commands (e.g., run, env, etc.) cannot be aliased.

Syntax

alias [<name> ["<cmds>"]]

Arguments

• <name>

Specifies the new procedure name to be used when invoking the commands.

• "<cmds>"

Specifies the command or commands to be evaluated when the alias is invoked.

Examples

• List all aliases currently defined.

alias

• List the alias definition for the specified name if one exists.

alias <name>

• Create a Tcl procedure, "myquit", that when executed, writes the contents of the List
window to the file mylist.save by invoking write list, and quits ModelSim by invoking
quit.

alias myquit "write list ./mylist.save; quit -f"

ModelSim Reference Manual, v6.2g54

Commands
batch_mode

February 2007

batch_mode
The batch_mode command returns a 1 if ModelSim is operating in batch mode, otherwise it
returns a 0. It is typically used as a condition in an if statement.

Syntax

batch_mode

Arguments

None

Examples

Some GUI commands do not exist in batch mode. If you want to write a script that will work in
or out of batch mode, you can use the batch_mode command to determine which command to
use. For example:

if [batch_mode] {
log /*

} else {
add wave /*

}

See also

“Modes of Operation”

Commands
bd

ModelSim Reference Manual, v6.2g 55
February 2007

bd
The bd command deletes a breakpoint. You must specify a filename and line number or a
specific breakpoint id#. You may specify multiple filename/line number pairs and id#s.

Syntax

bd <filename> <line_number> | <id#>

Arguments

• <filename>

Specifies the name of the source file in which the breakpoint is to be deleted. Required if an
id# is not specified. The filename must match the one used previously to set the breakpoint,
including whether a full pathname or a relative name was used.

• <line_number>

Specifies the line number of the breakpoint to be deleted. Required if an id# is not specified.

• <id#>

Specifies the id number of the breakpoint to be deleted. Required if a filename and line
number are not specified. If you are deleting a C breakpoint, the id# will have a "c" prefix.

Examples

• Delete the breakpoint at line 127 in the source file named alu.vhd.

bd alu.vhd 127

• Delete the breakpoint with id# 5.

bd 5

• Delete the breakpoint with id# 6 and the breakpoint at line 234 in the source file named
alu.vhd.

bd 6 alu.vhd 234

See also

bp, onbreak

ModelSim Reference Manual, v6.2g56

Commands
bookmark add wave

February 2007

bookmark add wave
{The bookmark add wave command creates a named reference to a specific zoom range and
scroll position in the specified Wave window. Bookmarks are saved in the wave format file and
are restored when the format file is read.

Syntax

bookmark add wave <label> [<zoomrange> [<topindex>]]

Arguments

• <label>

Specifies the name for the bookmark. Required.

• <zoomrange>

Specifies a list of two times with optional units. Optional. These two times must be enclosed
in braces ({}) or quotation marks (""). One number can be specified, which indicates a range
from 0 to <n>.

• <topindex>

Specifies the vertical scroll position of the window. Optional. Zoomrange must be specified
if you want to specify topindex. The number identifies which object the window should be
scrolled to. For example, specifying 20 means the Wave window will be scrolled down to
show the 20th object.

Examples

• Adds a bookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th object in the
window.

bookmark add wave foo {{10 ns} {1000 ns}} 20

See also

bookmark delete wave, bookmark goto wave, bookmark list wave, write format

Commands
bookmark delete wave

ModelSim Reference Manual, v6.2g 57
February 2007

bookmark delete wave
The bookmark delete wave command deletes bookmarks from the specified Wave window.

Syntax

bookmark delete wave <label> [-all]

Arguments

• <label>

Specifies the name of the bookmark to delete. Required unless the -all switch is used.

• -all

Specifies that all bookmarks in the window be deleted. Optional.

Examples

• Deletes the bookmark named "foo" from the current default Wave window.

bookmark delete wave foo

• Deletes all bookmarks from the Wave window named "wave1".

bookmark delete wave -all -window wave1

See also

bookmark add wave, bookmark goto wave, bookmark list wave, write format

ModelSim Reference Manual, v6.2g58

Commands
bookmark goto wave

February 2007

bookmark goto wave
The bookmark goto wave command zooms and scrolls a Wave window using the specified
bookmark.

Syntax

bookmark goto wave <label>

Arguments

• <label>

Specifies the bookmark to go to. Required.

See also

bookmark add wave, bookmark delete wave, bookmark list wave, write format

Commands
bookmark list wave

ModelSim Reference Manual, v6.2g 59
February 2007

bookmark list wave
The bookmark list wave command displays a list of available bookmarks in the Transcript
pane.

Syntax

bookmark list wave

Arguments

None

See also

bookmark add wave, bookmark delete wave, bookmark goto wave, write format

ModelSim Reference Manual, v6.2g60

Commands
bp

February 2007

bp
The bp or breakpoint command either sets a file-line breakpoint or returns a list of currently set
breakpoints.

A set breakpoint affects every instance in the design unless the -inst <region> argument is
used.

Syntax

bp <filename> <line_number> [-id <id#>] [-inst <region>] [-disable]
[-cond {<condition_expression>}]
[{<command>…}] | [-query <filename> [<line_number> [<line_number>]]]

Arguments

• <filename>

Specifies the name of the source file in which to set the breakpoint. Required if you are
setting HDL breakpoints.

• <line_number>

Specifies the line number at which the breakpoint is to be set. Required if you are setting
HDL breakpoints.

• -id <id#>

Attempts to assign this id number to the breakpoint. Optional. If the id number you specify
is already used, ModelSim will return an error.

Note
Ids for breakpoints are assigned from the same pool as those used for the when command.
So, even if you haven’t used an id number for a breakpoint, it’s possible it is used for a
when command.

• -inst <region>

Sets the breakpoint so it applies only to the specified region. Optional.

• -disable

Sets the breakpoint to a disabled state. Optional. You can enable the breakpoint later using
the enablebp command. By default, breakpoints are enabled when they are set.

• -cond {<condition_expression>}

Specifies condition(s) that determine whether the breakpoint is hit. Optional. If the
condition is true, the simulation stops at the breakpoint. If false, the simulation bypasses the
breakpoint. A condition cannot refer to a VHDL variable (only a signal).

Commands
bp

ModelSim Reference Manual, v6.2g 61
February 2007

The condition can be an expression with these operators:

The operands may be object names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1. The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation
 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ' EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>” | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals; i.e., Name = Name is not possible.

• {<command>…}

Specifies one or more commands that are to be executed at the breakpoint. Optional.
Multiple commands must be separated by semicolons (;) or placed on multiple lines. The
entire command must be placed in curly braces.

Any commands that follow a run or step command is ignored. A run or step command
terminates the breakpoint sequence. This applies if macros are used within the bp command
string as well.

If many commands are needed after the breakpoint, they can be placed in a macro file.

• -query <filename> [<line_number> [<line_number>]]

Returns information about the breakpoints set in the specified file. The information returned
varies depending on which arguments you specify. See the examples below for details.

Examples

• List all existing breakpoints in the design, including the source file names, line numbers,
breakpoint id#s, and any commands that have been assigned to breakpoints.

bp

• Set a breakpoint in the source file alu.vhd at line 147.

 Name Operator

equals ==, =

not equal !=, /=

AND &&, AND

OR ||, OR

ModelSim Reference Manual, v6.2g62

Commands
bp

February 2007

bp alu.vhd 147

• Execute the macro.do macro file when the breakpoint is hit.

bp alu.vhd 147 {do macro.do}

• Set a breakpoint on line 22 of test.vhd. When the breakpoint is hit, the values of
variables var1 and var2 are examined. This breakpoint is initially disabled; it can be
enabled with the enablebp command.

bp -disable test.vhd 22 {echo [exa var1]; echo [exa var2]}

• Set a breakpoint in every instantiation of the file test.vhd at line 14. When that
breakpoint is executed, the Tcl command is run. This Tcl command causes the simulator
to continue if the current simulation time is not 100.

bp test.vhd 14 {if {$now /= 100} then {cont}}

• List the line number and enabled/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.

bp -query testadd.vhd

• List details about the breakpoint on line 48. The output comprises six pieces of
information: the first item (0 or 1) designates whether a breakpoint exists on the
line (1 = exists, 0 = doesn’t exist); the second item is always 1; the third item is the file
name in the compiled source; the fourth item is the breakpoint line number; the fifth
item is the breakpoint id; and the sixth item (0 or 1) designates whether the breakpoint is
enabled (1) or disabled (0).

bp -query testadd.vhd 48

• List all executable lines in testadd.vhd between lines 2 and 59.

bp -query testadd.vhd 2 59

Note
Any breakpoints set in VHDL code and called by either resolution functions or functions
that appear in a port map are ignored.

See also

bd, disablebp, enablebp, onbreak, when

Commands
cd

ModelSim Reference Manual, v6.2g 63
February 2007

cd
The cd command changes the ModelSim local directory to the specified directory.

This command cannot be executed while a simulation is in progress. Also, executing a cd
command will close the current project.

Syntax

cd [<dir>]

Arguments

• <dir>

The directory to which to change. Optional. If no directory is specified, ModelSim changes
to your home directory.

ModelSim Reference Manual, v6.2g64

Commands
change

February 2007

change
The change command modifies the value of a:

• VHDL constant, generic, or variable

• Verilog register or variable

Syntax

change <variable> <value>

Arguments

• <variable>

Specifies the name of one of the following types of objects:

• VHDL

o Scalar variables, constants, and generics of all types except FILE.

The tool generates a warning when changing a VHDL constant or generic. You can
suppress this warning by setting the TCL variable WarnConstantChange to 0 or in
the [vsim] section of the modelsim.ini file.

o Scalar subelements of composite variables, constants, and generics of all types
except FILE

o One-dimensional arrays of enumerated character types (including slices)

o Access types (an access type pointer can be set to "null"; the value that an access
type points to can be changed as specified above)

• Verilog

o Parameters

o Registers and memories

o Integer, real, realtime, and time variables

o Subelements of register, integer, real, realtime, and time multi-dimensional arrays
(all dimensions must be specified)

o Bit-selects and part-selects of the above except for objects whose basic type is real

The name can be a full hierarchical name or a relative name. A relative name is relative to
the current environment. Wildcards cannot be used. Required.

• <value>

Defines a value for the variable. Required. The specified value must be appropriate for the
type of the variable. Values that contain spaces must be enclosed with quotation marks or
curly braces.

Commands
change

ModelSim Reference Manual, v6.2g 65
February 2007

Note that the initial type of a parameter determines the type of value that it can be given. For
example, if a parameter is initially equal to 3.14 then only real values can be set on it. Also
note that changing the value of a parameter or generic will not modify any design elements
that depended on the parameter or generic during elaboration (for example, sizes of arrays).

Examples

• Change the value of the variable count to the hexadecimal value FFFF.

change count 16#FFFF

• Change the value of the element of rega that is specified by the index (i.e., 16).

change {rega[16]} 0

• Change the value of the set of elements of foo that is specified by the slice (i.e., 20:22).

change {foo[20:22]} 011

• Set the Verilog register file_name to "test2.txt". Note that the quote marks are escaped
with ’\’.

change file_name \"test2.txt\"

• Set the time value of the mytimegeneric variable to 500 ps. The time value is enclosed
by curly braces (or quotation marks) because of the space between the value and the
units.

change mytimegeneric {500 ps}

See also

force

ModelSim Reference Manual, v6.2g66

Commands
configure

February 2007

configure
The configure command invokes the List or Wave widget configure command for the current
default List or Wave window.

To change the default window, use the view command.

Syntax

configure list | wave [<option> <value>]

---- List Window Arguments
[-delta [all | collapse | none]] [-gateduration [<duration_open>]] [-gateexpr [<expression>]]
[-usegating [<value>]] [-strobeperiod [<period>]] [-strobestart [<start_time>]]
[-usesignaltriggers [<value>]] [-usestrobe [<value>]]

---- Wave Window Arguments
[-childrowmargin [<pixels>]] [-cursorlockcolor [<color>]] [-gridcolor [<color>]]
[-griddelta [<pixels>]] [-gridoffset [<time>]] [-gridperiod [<time>]]
[-namecolwidth [<width>]] [-rowmargin [<pixels>]] [-signalnamewidth [<value>]]
[-timecolor [<color>]] [-timeline [<value>]] [-valuecolwidth [<width>]]
[-vectorcolor [<color>]] [-waveselectcolor [<color>]] [-waveselectenable [<value>]]

Description

The command works in three modes:

• without options or values it returns a list of all attributes and their current values

• with just an option argument (without a value) it returns the current value of that
attribute

• with one or more option-value pairs it changes the values of the specified attributes to
the new values

The returned information has five fields for each attribute: the command-line switch, the Tk
widget resource name, the Tk class name, the default value, and the current value.

Arguments

• list | wave

Specifies either the List or Wave widget to configure. Required.

• <option> <value>

-bg <color> — Specifies the window background color. Optional.

-fg <color> — Specifies the window foreground color. Optional.

-selectbackground <color> — Specifies the window background color when selected.
Optional.

-selectforeground <color> — Specifies the window foreground color when selected.
Optional.

Commands
configure

ModelSim Reference Manual, v6.2g 67
February 2007

-font — Specifies the font used in the widget. Optional.

-height <pixels> — Specifies the height in pixels of each row. Optional.

Arguments, List window only

• -delta [all | collapse | none]

The all option displays a new line for each time step on which objects change; collapse
displays the final value for each time step; and none turns off the display of the delta
column. To use -delta, -usesignaltriggers must be set to 1 (on). Optional.

• -gateduration [<duration_open>]

The duration for gating to remain open beyond when -gateexpr (below) becomes false,
expressed in x number of timescale units. Extends gating beyond the back edge (the last list
row in which the expression evaluates to true). Optional. The default value for normal
synchronous gating is zero. If -gateduration is set to a non-zero value, a simulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gateduration to zero).

• -gateexpr [<expression>]

Specifies the expression for trigger gating. Optional. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would normally
have displayed a row of data.

• -usegating [<value>]

Enables triggers to be gated on (a value of 1) or off (a value of 0) by an overriding
expression. Default is off. Optional. (Use the -gatexpr argument to specify the expression.)
Refer to “Using Gating Expressions to Control Triggering” for additional information on
using gating with triggers.

• -strobeperiod [<period>]

Specifies the period of the list strobe. When using a time unit, the time value and unit must
be placed in curly braces. Optional.

• -strobestart [<start_time>]

Specifies the start time of the list strobe. When using a time unit, the time value and unit
must be placed in curly braces. Optional.

• -usesignaltriggers [<value>]

If 1, uses signals as triggers; if 0, not. Optional.

• -usestrobe [<value>]

If 1, uses the strobe to trigger; if 0, not. Optional.

Arguments, Wave window only

• -childrowmargin [<pixels>]

Specifies the distance in pixels between child signals. Optional. Default is 2. Related Tcl
variable is PrefWave(childRowMargin).

ModelSim Reference Manual, v6.2g68

Commands
configure

February 2007

• -cursorlockcolor [<color>]

Specifies the color of a locked cursor. Default is red. Related Tcl variable is
PrefWave(cursorLockColor).

• -gridcolor [<color>]

Specifies the background grid color; the default is grey50. Optional. Related Tcl variable is
PrefWave(gridColor).

• -griddelta [<pixels>]

Specifies the closest (in pixels) two grid lines can be drawn before intermediate lines will be
removed. Optional. Default is 40. Related Tcl variable is PrefWave(gridDelta).

• -gridoffset [<time>]

Specifies the time (in user time units) of the first grid line. Optional. Default is 0. Related
Tcl variable is PrefWave(gridOffset).

• -gridperiod [<time>]

Specifies the time (in user time units) between subsequent grid lines. Optional. Default is 1.
Related Tcl variable is PrefWave(gridPeriod).

• -namecolwidth [<width>]

Specifies in pixels the width of the name column. Optional. Default is 150. Related Tcl
variable is PrefWave(nameColWidth).

• -rowmargin [<pixels>]

Specifies the distance in pixels between top-level signals. Default is 4. Related Tcl variable
is PrefWave(rowMargin).

• -signalnamewidth [<value>]

Controls the number of hierarchical regions displayed as part of a signal name shown in the
pathname pane. Optional. Default of 0 displays the full path. 1 displays only the leaf path
element, 2 displays the last two path elements, and so on. Related Tcl variable is
PrefWave(SignalNameWidth). Can also be set with the WaveSignalNameWidth variable in
the modelsim.ini file.

• -timecolor [<color>]

Specifies the time axis color. Default is green. Optional. Related Tcl variable is
PrefWave(timeColor).

• -timeline [<value>]

Specifies whether the horizontal axis displays simulation time (default) or grid period count.
Default is zero. When set to 1, the grid period count is displayed. Related Tcl variable is
PrefWave(timeline).

• -valuecolwidth [<width>]

Specifies in pixels the width of the value column. Default is 100. Related Tcl variable is
PrefWave(valueColWidth).

Commands
configure

ModelSim Reference Manual, v6.2g 69
February 2007

• -vectorcolor [<color>]

Specifies the vector waveform color. Default is #b3ffb3. Optional. Related Tcl variable is
PrefWave(vectorColor).

• -waveselectcolor [<color>]

Specifies the background highlight color of a selected waveform. Default is grey30. Related
Tcl variable is PrefWave(waveSelectColor).

• -waveselectenable [<value>]

Specifies whether the waveform background highlights when an object is selected. 1
enables highlighting; 0 disables highlighting. Default is 0. Related Tcl variable is
PrefWave(waveSelectEnabled).

There are more options than are listed here. See the output of a configure list or configure wave
command for all options.

Examples

• Display the current value of the strobeperiod attribute.

config list -strobeperiod

• Set the period of the list strobe and turns it on.

config list -strobeperiod {50 ns} -strobestart 0 -usestrobe 1

• Set the wave vector color to blue.

config wave -vectorcolor blue

• Set the display in the current Wave window to show only the leaf path of each signal.

config wave -signalnamewidth 1

See also

view, Simulator GUI Preferences

ModelSim Reference Manual, v6.2g70

Commands
dataset alias

February 2007

dataset alias
The dataset alias command assigns an additional name (alias) to a dataset. The dataset can then
be referenced by that alias. A dataset can have any number of aliases, but all dataset names and
aliases must be unique.

Syntax

dataset alias <dataset_name> [<alias_name>]

Arguments

• <dataset_name>

Specifies the name of the dataset to which to assign the alias. Required.

• <alias_name>

Specifies the alias name to assign to the dataset. Optional. If you don’t specify an
alias_name, ModelSim lists current aliases for the specified dataset_name.

See also

dataset list, dataset open, dataset save

Commands
dataset clear

ModelSim Reference Manual, v6.2g 71
February 2007

dataset clear
The dataset clear command removes all event data from the current simulation WLF file while
keeping all currently logged signals logged. Subsequent run commands will continue to
accumulate data in the WLF file.

Syntax

dataset clear

Example

• Clear data in the WLF file from time 0ns to 100000ns, then log data into the WLF file
from time 100000ns to 200000ns.

add wave *
run 100000ns
dataset clear
run 100000ns

See also

“WLF Files (Datasets) and Virtuals”, log

ModelSim Reference Manual, v6.2g72

Commands
dataset close

February 2007

dataset close
The dataset close command closes an active dataset. To open a dataset, use the dataset open
command.

Syntax

dataset close <logicalname> | [-all]

Arguments

• <logicalname>

Specifies the logical name of the dataset or alias you wish to close. Required if -all isn’t
used.

• -all

Closes all open datasets including the simulation. Optional.

See also

dataset open

Commands
dataset config

ModelSim Reference Manual, v6.2g 73
February 2007

dataset config
The dataset config command configures WLF file parameters after a WLF file has already
been opened.

Syntax

dataset config <dataset_name> [-wlfcachesize <n>] [-wlfdeleteonquit [0 | 1]] [-wlfopt [0 | 1]]

Arguments

• <dataset_name>

Specifies the logical name of the dataset or alias you wish to configure. Required.

• -wlfcachesize <n>

Sets the size in megabytes of the WLF reader cache. Optional. Does not affect the WLF
write cache.

• -wlfdeleteonquit

When set to 1 (enabled), deletes the WLF file automatically when the simulation exits.
Optional. Valid for the current simulation dataset only.

• -wlfopt

When set to 1 (enabled), optimizes the display of waveforms in the Wave window. Default.
Optional.

See also

“WLF File Parameter Overview”, vsim

ModelSim Reference Manual, v6.2g74

Commands
dataset info

February 2007

dataset info
The dataset info command reports a variety of information about a dataset.

Syntax

dataset info <option> <dataset_name>

Arguments

• <option>

Identifies what information you want reported. Required. Only one option per command is
allowed. The current options include:

name — Returns the actual name of the dataset. Useful for identifying the real dataset
name of an alias.

file — Returns the name of the WLF file associated with the dataset.

exists — Returns "1" if the dataset exists; "0" if it doesn’t.

• <dataset_name>

Specifies the name of the dataset or alias for which you want information. Optional. If you
do not specify a dataset name, ModelSim uses the dataset of the current environment (see
the environment command).

See also

dataset alias, dataset list, dataset open

Commands
dataset list

ModelSim Reference Manual, v6.2g 75
February 2007

dataset list
The dataset list command lists all active datasets.

Syntax

dataset list [-long]

Arguments

• -long

Lists the filename corresponding to each dataset’s logical name. Optional.

See also

dataset alias, dataset save

ModelSim Reference Manual, v6.2g76

Commands
dataset open

February 2007

dataset open
The dataset open command opens a WLF file (representing a prior simulation) and assigns it
the logical name that you specify. To close a dataset, use dataset close.

Syntax

dataset open <filename> [<logicalname>]

Arguments

• <filename>

Specifies the WLF file to open as a view-mode dataset. Required.

• <logicalname>

Specifies the logical name for the dataset. Optional. This is a prefix that will identify the
dataset in the current session. By default the dataset prefix will be the name of the specified
WLF file.

Examples

• Open the dataset file last.wlf and assigns it the logical name test.

dataset open last.wlf test

See also

dataset alias, dataset list, dataset save, vsim -view option

Commands
dataset rename

ModelSim Reference Manual, v6.2g 77
February 2007

dataset rename
The dataset rename command changes the logical name of a dataset to the new name you
specify.

Syntax

dataset rename <logicalname> <newlogicalname>

Arguments

• <logicalname>

Specifies the existing logical name of the dataset. Required.

• <newlogicalname>

Specifies the new logical name for the dataset. Required.

Examples

• Rename the dataset file "test" to "test2".

dataset rename test test2

See also

dataset alias, dataset list, dataset open

ModelSim Reference Manual, v6.2g78

Commands
dataset save

February 2007

dataset save
The dataset save command writes data from the current simulation to the specified file. This
lets you save simulation data while the simulation is still in progress.

Syntax

dataset save <datasetname> <filename>

Arguments

• <datasetname>

Specifies the name of the dataset you want to save. Required.

• <filename>

Specifies the name of the file to save. Required.

Examples

• Save all current log data in the sim dataset to the file "gold.wlf".

dataset save sim gold.wlf

See also

dataset snapshot

Commands
dataset snapshot

ModelSim Reference Manual, v6.2g 79
February 2007

dataset snapshot
The dataset snapshot command saves data from the current WLF file (vsim.wlf by default) at a
specified interval. This lets you take sequential or cumulative "snapshots" of your simulation
data.

Syntax

dataset snapshot [-dir <directory>] [-disable] [-enable] [-file <filename>]
[-filemode overwrite | increment] [-mode cumulative | sequential] [-report] [-reset]
[-size <file size> | -time <simulation time>]

Arguments

• -dir <directory>

Specifies a directory into which the files should be saved. Optional. Default is to save into
the directory where ModelSim is writing the current WLF file.

• -disable

Turns snapshotting off. Optional. All other options are ignored if you specify -disable.

• -enable

Turns snapshotting on. Optional. Default.

• -file <filename>

Specifies the name of the file to save. Optional. Default is "vsim_snapshot". ".wlf" will be
appended to the file and possibly an incrementing suffix if -filemode is set to "increment".

• -filemode overwrite | increment

Specifies whether to overwrite the snapshot file each time a snapshot occurs. Optional.
Default is "overwrite". If you specify "increment", a new file is created for each snapshot.
An incrementing suffix (1 to n) is added to each new file (e.g., vsim_snapshot_1.wlf).

• -mode cumulative | sequential

Specifies whether to keep all data from the time signals are first logged. Optional. Default is
"cumulative". If you specify "sequential", the current WLF file is cleared every time a
snapshot is taken. See the examples for further details.

• -report

Lists current snapshot settings in the Transcript pane. Optional. All other options are
ignored if you specify -report.

• -reset

Resets values back to defaults. Optional. The behavior is to reset to the default, then apply
the remainder of the arguments on the command line. See examples below. If specified by
itself without any other arguments, -reset disables dataset snapshot.

ModelSim Reference Manual, v6.2g80

Commands
dataset snapshot

February 2007

• -size <file size>

Specifies that a snapshot occurs based on WLF file size. You must specify either -size or
-time. See examples below.

• -time <simulation time>

Specifies that a snapshot occurs based on simulation time. You must specify either -time or
-size. See examples below.

Examples

• Create the file vsim_snapshot.wlf that is written to every time the current WLF file
reaches a multiple of 10 MB (i.e., at 10 MB, 20 MB, 30 MB, etc.).

dataset snapshot -size 10

• Similar to the previous example, but in this case the current WLF file is cleared every
time it reaches 10 MB.

dataset snapshot -size 10 -mode sequential

• Assuming simulator time units are ps, this command saves a file called gold_n.wlf every
1000000 ps. If you ran for 3000000 ps, you’d have three files: gold_1.wlf with data from
0 to 1000000 ps, gold_2.wlf with data from 1000001 to 2000000, and gold_3.wlf with
data from 2000001 to 3000000.

dataset snapshot -time 1000000 -file gold.wlf -mode sequential
-filemode increment

Note
Because this example uses "sequential" mode, if you ran the simulation for 3500000 ps,
the resulting vsim.wlf (the default log file) file will contain data only from 3000001 to
3500000 ps.

• Enable snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

dataset snapshot -reset -time 10000

See also

dataset save

Commands
delete

ModelSim Reference Manual, v6.2g 81
February 2007

delete
The delete command removes objects from either the List or Wave window.

Syntax

delete list | wave [-window <wname>] <object_name>

Arguments

• list | wave

Specifies the target window for the delete command. Required.

• -window <wname>

Specifies the name of the List or Wave window to target for the delete command (the view
command allows you to create more than one List or Wave window). Optional. If no
window is specified the default window is used; the default window is determined by the
most recent invocation of the view command.

• <object_name>

Specifies the name of an object. Required. Must match an object name used in an add list or
add wave command. Multiple object names may be specified. Wildcard characters are
allowed.

Examples

• Remove the object vec2 from the list2 window.

delete list -window list2 vec2

See also

add list, add wave, and Wildcard Characters

ModelSim Reference Manual, v6.2g82

Commands
describe

February 2007

describe
The describe command displays information about the specified HDL object or design region.

The description is displayed in the Transcript pane. The following kinds of objects can be
described:

• Design region

• VHDL — signals, variables, and constants

• Verilog — nets and registers

VHDL signals and Verilog nets and registers may be specified as hierarchical names.

Syntax

describe <name>

Arguments

• <name>

The name of an HDL object for which you want a description. HDL object names can be
full hierarchical names or relative names.

Examples

• Print the types of the three specified signals.

describe clk prw prdy

Commands
disablebp

ModelSim Reference Manual, v6.2g 83
February 2007

disablebp
The disablebp command turns off breakpoints and when commands. To turn the breakpoints or
when statements back on again, use the enablebp command.

Syntax

disablebp [<id#>]

Arguments

• <id#>

Specifies a breakpoint or when command id to disable. Optional. If you don’t specify an
id#, all breakpoints are disabled.

See also

bd, bp, enablebp, onbreak, resume, when

ModelSim Reference Manual, v6.2g84

Commands
do

February 2007

do
The do command executes commands contained in a macro file.

A macro file can have any name and extension. An error encountered during the execution of a
macro file causes its execution to be interrupted, unless an onerror command, onbreak
command, or the OnErrorDefaultAction Tcl variable has specified with the resume command.

Syntax

do <filename> [<parameter_value>]

Arguments

• <filename>

Specifies the name of the macro file to be executed. Required. The name can be a pathname
or a relative file name.

Pathnames are relative to the current working directory if the do command is executed from
the command line. If the do command is executed from another macro file, pathnames are
relative to the directory of the calling macro file. This allows groups of macro files to be
moved to another directory and still work.

• <parameter_value>

Specifies values that are to be passed to the corresponding parameters $1 through $9 in the
macro file. Optional. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (i.e., specify fewer parameter values than the
number of parameters actually used in the macro), you must use the argc simulator state
variable in the macro. Refer to “Making Macro Parameters Optional”.

Note that there is no limit on the number of parameters that can be passed to macros, but
only nine values are visible at one time. You can use the shift command to see the other
parameters.

Examples

• This command executes the file macros/stimulus, passing the parameter value 100 to $1
in the macro file.

do macros/stimulus 100

• If the macro file testfile contains the line bp $1 $2, this command would place a
breakpoint in the source file named design.vhd at line 127.

do testfile design.vhd 127

See also

“Tcl and Macros (DO Files)”, “Modes of Operation”, “Using a Startup File”, DOPATH
variable

Commands
drivers

ModelSim Reference Manual, v6.2g 85
February 2007

drivers
The drivers command displays the names and strength of all drivers of the specified object.

The driver list is expressed relative to the top-most design signal/net connected to the specified
object. If the object is a record or array, each subelement is displayed individually.

Syntax

drivers <object_name>

Arguments

• <object_name>

Specifies the name of the signal or net whose drivers are to be shown. Required. All signal
or net types are valid. Multiple names and wildcards are accepted.

Example

drivers /top/dut/pkt_cnt(4)
Drivers for /top/dut/pkt_cnt(4):
St0 : Net /top/dut/pkt_cnt[4]
St0 : Driver /top/dut/pkt_counter/#IMPLICIT-WIRE(cnt_out)#6

In some cases, the output may supply a strength value similar to 630 or 52x, which indicates an
ambiguous verilog strength. For more information, please refer to the Verilog LRM Std 1365-
2005 section 7.10.2 "Ambiguous strengths: sources and combinations".

See also

readers

ModelSim Reference Manual, v6.2g86

Commands
dumplog64

February 2007

dumplog64
The dumplog64 command dumps the contents of the specified WLF file in a readable format to
stdout. The WLF file cannot be opened for writing in a simulation when you use this command.

The dumplog64 command cannot be used in a DO file.

Syntax

dumplog64 <filename>

Arguments

• <filename>

The name of the WLF file to be read. Required.

Commands
echo

ModelSim Reference Manual, v6.2g 87
February 2007

echo
The echo command displays a specified message in the Transcript pane.

Syntax

echo [<text_string>]

Arguments

• <text_string>

Specifies the message text to be displayed. Optional. If the text string is surrounded by
quotes, blank spaces are displayed as entered. If quotes are omitted, two or more adjacent
blank spaces are compressed into one space.

Examples

• If the current time is 1000 ns, this command:

echo “The time is $now ns.”

produces the message:

The time is 1000 ns.

• If the quotes are omitted:

echo The time is $now ns.

all blank spaces of two or more are compressed into one space.

The time is $now ns.”

• echo can also use command substitution, such as:

echo The hex value of counter is [examine -hex counter].

If the current value of counter is 21 (15 hex), this command produces:

The hex value of counter is 15.

ModelSim Reference Manual, v6.2g88

Commands
edit

February 2007

edit
The edit command invokes the editor specified by the EDITOR environment variable. By
default, the specified filename will open in ModelSim Source editor.

Syntax

edit [<filename>]

Arguments

• <filename>

Specifies the name of the file to edit. Optional. If the <filename> is omitted, the editor opens
the current source file. If you specify a non-existent filename, it will open a new file.

See also

notepad, EDITOR environment variable

Commands
enablebp

ModelSim Reference Manual, v6.2g 89
February 2007

enablebp
The enablebp command turns on breakpoints and when commands that were previously
disabled.

Syntax

enablebp [<id#>]

Arguments

• <id#>

Specifies a breakpoint or when statement id to enable. Optional. If you don’t specify an id#,
all breakpoints are enabled.

See also

bd, bp, disablebp, onbreak, resume, when

ModelSim Reference Manual, v6.2g90

Commands
environment

February 2007

environment
The environment, or env command, allows you to display or change the current dataset and
region/signal environment.

Syntax

environment [-dataset] [-nodataset] [<pathname> | -forward | -back]

Arguments

• -dataset

Displays the specified environment pathname with a dataset prefix. Optional. Dataset
prefixes are displayed by default if more than one dataset is open during a simulation
session.

• -nodataset

Displays the specified environment pathname without a dataset prefix. Optional.

• <pathname>

Specifies the pathname to which the current region/signal environment is to be changed. See
Object Name Syntax for information on specifying pathnames. Optional.

If omitted the command causes the pathname of the current region/signal environment to be
displayed.

• -forward

Displays the next environment in your history of visited environments. Optional.

• -back

Displays the previous environment in your history of visited environments. Optional.

Refer to the section "Setting your Context by Navigating Source Files" in the User’s Manual
for more information about -forward and -back.

Examples

• Display the pathname of the current region/signal environment.

env

• Change all unlocked windows to the context of the "test" dataset.

env-dataset test

• Change all unlocked windows to the context "test: /top/foo".

env test:/top/foo

• Move down two levels in the design hierarchy.

env blk1/u2

Commands
environment

ModelSim Reference Manual, v6.2g 91
February 2007

• Move to the top level of the design hierarchy.

env /

ModelSim Reference Manual, v6.2g92

Commands
examine

February 2007

examine
The examine command examines one or more objects and displays current values (or the values
at a specified previous time) in the Transcript pane.

The following objects can be examined:

• VHDL — signals, shared variables, process variables, constants, and generics

• Verilog — nets, registers, parameters, and variables

To display a previous value, specify the desired time using the -time option.

Virtual signals and functions may also be examined within the GUI (actual signals are
examined in the kernel).

The following rules are used by the examine command to locate an HDL object:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

• If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name
and inside of a slice specification.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

See Design Object Names for more information on specifying names.

Syntax

examine [-delta <delta>] [-env <path>] [-in] [-out] [-inout] [-internal] [-ports]
[-expr <expression>] [-name] [-<radix>] [-time <time>] [-value] <name>…

Arguments

• -delta <delta>

Specifies a simulation cycle at the specified time from which to fetch the value. Optional.
The default is to use the last delta of the time step. The objects to be examined must be

Commands
examine

ModelSim Reference Manual, v6.2g 93
February 2007

logged via the add list, add wave, or log command in order for the examine command to be
able to return a value for a requested delta. This option can be used only with objects that
have been logged via the add list, add wave, or log command.

• -env <path>

Specifies a path in which to look for an object name. Optional.

• -expr <expression>

Specifies an expression to be evaluated. Optional. The objects to be examined must be
logged via the add list, add wave, or log command in order for the examine command to be
able to evaluate the specified expression. If the -time argument is present, the expression
will be evaluated at the specified time, otherwise it will be evaluated at the current
simulation time. See GUI_expression_format for the format of the expression. The
expression must be placed within curly braces.

• -in

Specifies that <name> include ports of mode IN. Optional.

• -out

Specifies that <name> include ports of mode OUT. Optional.

• -inout

Specifies that <name> include ports of mode INOUT. Optional.

• -internal

Specifies that <name> include internal (non-port) signals. Optional.

• -ports

Specifies that <name> include all ports. Optional. Has the same effect as specifying -in,
-inout, and -out together.

• -name

Displays object name(s) along with the value(s). Optional. Default is -value behavior (see
below).

• -<radix>

Specifies the radix for the objects that follow in the command. Valid entries (or any unique
abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic, and default. If no
radix is specified for an enumerated type, the default representation is used. You can change
the default radix for the current simulation using the radix command. You can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

• -time <time>

Specifies the time value between 0 and $now for which to examine the objects. Optional.
The objects to be examined must be logged via the add list, add wave, or log command in
order for the examine command to be able to return a value for a requested time.

ModelSim Reference Manual, v6.2g94

Commands
examine

February 2007

If the <time> field uses a unit, the value and unit must be placed in curly braces. For
example, the following are equivalent for ps resolution:

exa -time {3.6 ns} signal_a
exa -time 3600 signal_a

• -value

Returns value(s) as a curly-braces separated Tcl list. Default. Use to toggle off a previous
use of -name.

• <name>…

Specifies the name of any HDL object. Required. All object types are allowed, except those
of the type file. Multiple names and wildcards are accepted. Spaces, square brackets, and
extended identifiers require curly braces; see examples below for more details. To examine
a VHDL variable you can add a process label to the name. For example, (make certain to
use two underscore characters):

exa line__36/i

Examples

• Return the value of /top/bus1.

examine /top/bus1

• Return the value of the subelement of rega that is specified by the index (i.e., 16). Note
that you must use curly braces when examining subelements.examine

{rega[16]}

• Return the value of the contiguous subelements of foo specified by the slice (i.e., 20:22).
Note the curly braces.

examine {foo[20:22]}

• Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing '\' and before the closing '}'.

examine {/top/\My extended id\ }

• In this example, the -expr option specifies a signal path and user-defined Tcl variable.
The expression will be evaluated at 3450us.

examine -time {3450 us} -expr {/top/bus and $bit_mask}

• Using the ${fifo} syntax limits the variable to the simple name fifo, instead of
interpreting the parenthesis as part of the variable. Quotes are needed when spaces are
involved; and by using quotes (") instead of braces, the Tcl interpreter will expand
variables before calling the command.

examine -time $t -name $fifo "${fifo}(1 to 3)" ${fifo}(1)

Commands
examine

ModelSim Reference Manual, v6.2g 95
February 2007

• Because -time is not specified, this expression will be evaluated at the current
simulation time. Note the signal attribute and array constant specified in the expression.

examine -expr {clk’event && (/top/xyz == 16’hffae)}

Commands like find and examine return their results as a Tcl list (just a blank-separated
list of strings). You can do things like:

foreach sig [find ABC*] {echo "Signal $sig is [exa $sig]" …}

if {[examine -bin signal_12] == “11101111XXXZ”} {…}

examine -hex [find *]

See also

Design Object Names, Wildcard Characters

ModelSim Reference Manual, v6.2g96

Commands
exit

February 2007

exit
The exit command exits the simulator and the ModelSim application.

If you want to stop the simulation using a when command, you must use a stop command within
your when statement. DO NOT use an exit command or a quit command. The stop command
acts like a breakpoint at the time it is evaluated.

Syntax

exit [-force] [-code]

Argument

• -force

Quits without asking for confirmation. Optional; if this argument is omitted, ModelSim asks
you for confirmation before exiting.

• -code <integer>

Quits the simulation and issues an exit code.

<integer> — This is the value of the exit code. You should not specify an exit code that
already exists in the tool. Refer to the section "Exit Codes" in the User’s Manual for a
list of existing exit codes. You can also specify a variable in place of the <integer>.

You should always print a message before executing the exit -code command to explicitly
state the reason for exiting.

Examples

You can use the exit -code syntax to instruct a vmake run to exit when encountering an assertion
error. The onbreak command can specify commands to be executed upon an assert failure of
sufficient severity, upon which the simulator can be made to return an exit status, as shown in
the following example

set broken 0
onbreak {
 set broken 88
 resume
}
run -all
if { $broken } {
 puts "failure -- exit status $broken"
exit -code $broken

} else {
 puts "success"
}
quit -f

The resume command gives control back to the commands following the run -all to handle the
condition appropriately.

Commands
find

ModelSim Reference Manual, v6.2g 97
February 2007

find
The find command locates objects in the design whose names match the name specification you
provide. You must specify the type of object you want to find.

When searching for nets and signals, the find command returns the full pathname of all nets,
signals, registers, variables, and named events that match the name specification. When
searching for instances, the find command returns the primary design unit name.

When searching for nets and signals, the order in which arguments are specified is unimportant.
When searching for virtuals, however, all optional arguments must be specified before any
object names.

The following rules are used by the find command to locate an object:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

• If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name
and inside of a slice specification. Square bracket ’[]’ wildcards can also be used.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

• Because square brackets are wildcards in the find command, only parentheses ’()’ can be
used to index or slice arrays.

• The WildcardFilter Tcl preference variable is used by the find command to exclude the
specified types of objects when performing the search.

See Design Object Names for more information on specifying names.

Syntax

find nets | signals [-in] [-inout] [-internal] <object_name> … [-nofilter] [-out] [-ports]
[-recursive]

find instances | blocks [-recursive] <object_name> …

ModelSim Reference Manual, v6.2g98

Commands
find

February 2007

find virtuals [-kind <kind>] [-unsaved] <object_name> …

find classes [<class_name>]

find objects [-class <class_name>] [-isa <class_name>] [<object_name>]

Arguments for nets and signals

• -in

Specifies that the scope of the search is to include ports of mode IN. Optional.

• -inout

Specifies that the scope of the search is to include ports of mode INOUT. Optional.

• -internal

Specifies that the scope of the search is to include internal (non-port) objects. Optional.

• <object_name> …

Specifies the net or signal for which you want to search. Required. Multiple nets and signals
and wildcard characters are allowed. Wildcards cannot be used inside of a slice
specification. Spaces, square brackets, and extended identifiers require special syntax; see
the examples below for more details.

• -nofilter

Specifies that the WildcardFilter Tcl preference variable be ignored when finding signals or
nets. Optional.

• -out

Specifies that the scope of the search is to include ports of mode OUT. Optional.

• -ports

Specifies that the scope of the search is to include all ports. Optional. Has the same effect as
specifying -in, -out, and -inout together.

• -recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region.

Arguments for instances and blocks

• -recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region.

• <object_name> …

Specifies the instance or block for which you want to search. Required. Multiple instances
and wildcard characters are allowed.

Commands
find

ModelSim Reference Manual, v6.2g 99
February 2007

Arguments for virtuals

• -kind <kind>

Specifies the kind of virtual object for which you want to search. Optional. <kind> can be
one of designs, explicits, functions, implicits, or signals.

• -unsaved

Specifies that ModelSim find only virtuals that have not been saved to a format file.

• <object_name> …

Specifies the virtual object for which you want to search. Required. Multiple virtuals and
wildcard characters are allowed.

Arguments for classes

• <class_name>

Specifies the incrTcl class for which you want to search. Optional. Wildcard characters are
allowed. The options for class_name include nets, objects, signals, and virtuals. If you do
not specify a class name, the command returns all classes in the current namespace context.
See "incrTcl commands" in the Tcl Man Pages for more information.

Arguments for objects

• -class <class_name>

Restricts the search to objects whose most-specific class is class_name. Optional.

• -isa <class_name>

Restricts the search to those objects that have class_name anywhere in their heritage.
Optional.

• <object_name>

Specifies the incrTcl object for which you want to search. Optional. Wildcard characters are
allowed. If you do not specify an object name, the command returns all objects in the
current namespace context. See "incrTcl commands" in the Tcl Man Pages for more
information.

Examples

• Find all signals in the entire design.

find signals -r /*

• Find all input signals in region /top that begin with the letters "xy".

find nets -in /top/xy*

• Find all signals in the design hierarchy at or below the region <current_context>/u1/u2
whose names begin with "cl".

find signals -r u1/u2/cl*

ModelSim Reference Manual, v6.2g100

Commands
find

February 2007

• Find a signal named s1. Note that you must enclose the object in curly braces because of
the square bracket wildcard characters.

find signals {s[1]}

• Find signals s1, s2, or s3.

find signals {s[123]}

• Find the element of signal s that is indexed by the value 1. Note that the find command
uses parentheses, not square brackets, to specify a subelement index.

find signals s(1)

• Find a 4-bit array named data. Note that you must use curly braces due to the spaces in
the array slice specification.

find signals {/top/data(3 downto 0)}

• Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing '\' and before the closing '}'.

find signals {/top/\My extended id\ }

• If /dut/core/pclk exists, prints the message "pclk does exist" in the transcript. This would
typically be run in a Tcl script.

if {[find signals /dut/core/pclk] != ""} {
echo "pclk does exist"

}

See also

Design Object Names, Wildcard Characters

Commands
find infiles

ModelSim Reference Manual, v6.2g 101
February 2007

find infiles
The find infiles command searches the specified files and prints to the Transcript pane those
lines from the files that match the specified pattern.

You can double-click on the results in the Transcript pane to open the specific file and display
the referenced line.

When you use this command in command-line mode, outside of the GUI, the results are sent to
stdout and you do not have the capability to view the file by double-clicking the result.

Syntax

find infiles <string_pattern> {<file_pattern> [<file_pattern> ...]}

Arguments

• <string_pattern>

The string you are searching for. You can use regular expression wildcards to further restrict
the search capability.

• <file_pattern> [<file_pattern> ...]

The file(s) you are searching. You can use regular expression wildcards to further restrict
the search capability.

ModelSim Reference Manual, v6.2g102

Commands
find insource

February 2007

find insource
The find insource command searches all source files related to the current design and prints to
the Transcript pane those lines from the files that match the specified pattern.

You can double-click on the results in the Transcript pane to open the specific file and display
the referenced line.

When you use this command in command-line mode, outside of the GUI, the results are sent to
stdout and you do not have the capability to view the file by double-clicking the result.

Syntax

find insource <pattern>

Arguments

• <pattern>

The string you are searching for. You can use regular expression wildcards to further restrict
the search capability.

Commands
formatTime

ModelSim Reference Manual, v6.2g 103
February 2007

formatTime
The formatTime command provides global format control for all time values displayed in the
GUI. This command always returns the current state of its three arguments.

Syntax

formatTime +|-commas | +|-nodefunits | +|-bestunits

Arguments

• +|-commas

Insert commas into the time value to make it easier to read. Optional. A leading ’+’ turns the
argument on; a leading ’-’ turns the argument off. Default is off.

• +|-nodefunits

Do not include default unit in the time. Optional. A leading ’+’ turns the argument on; a
leading ’-’ turns the argument off. Default is off.

• +|-bestunits

Use the largest unit value possible. Optional. A leading ’+’ turns the argument on; a leading
’-’ turns the argument off. Default is off.

Examples

• Display commas in time values.

formatTime +commas

Instead of displaying 6458131 ps, the GUI will display 6,458,131 ps.

• Use largest unit value possible.

formatTime +bestunits

Displays 8 us instead of 8,000 ns.

ModelSim Reference Manual, v6.2g104

Commands
force

February 2007

force
The force command allows you to apply stimulus interactively to VHDL signals and Verilog
nets.

Since force commands (like all commands) can be included in a macro file, it is possible to
create complex sequences of stimuli.

When you do not specify any arguments, this command returns a list of the most recently
applied force commands.

There are a number of constraints on what you can and cannot force:

• You cannot force VHDL or Verilog variables (time or realtime); these must be changed.
See the change command.

• In VHDL and mixed models, you cannot force an input port that is mapped at a higher
level. In other words, you can force the signal at the top of the hierarchy connected to
the input port but you cannot force the input port directly.

• You cannot force bits or slices of a register; you can force only the entire register.

• You cannot force a VHDL alias of a VHDL signal.

• You cannot force an input port that has a conversion function on the input.

• You can force “Virtual Signals” if the number of bits corresponds to the signal value.
You cannot force virtual functions.

Syntax

force [-freeze | -drive | -deposit] [-cancel <time>] [-repeat <time>] <object_name> <value>
[<time>] [, <value> <time> …]

Arguments

• -freeze

Freezes the object at the specified value until it is forced again or until it is unforced with a
noforce command. Optional.

• -drive

Attaches a driver to the object and drives the specified value until the object is forced again
or until it is unforced with a noforce command. Optional.

This option is illegal for unresolved signals signals.

• -deposit

Sets the object to the specified value. The value remains until there is a subsequent driver
transaction, or until the object is forced again, or until it is unforced with a noforce
command. Optional.

If one of the -freeze, -drive, or -deposit options is not used, then -freeze is the default for
unresolved objects and -drive is the default for resolved objects.

Commands
force

ModelSim Reference Manual, v6.2g 105
February 2007

If you prefer -freeze as the default for resolved and unresolved VHDL signals, change the
default force kind in the DefaultForceKind preference variable.

• -cancel <time>

Cancels the force command at the specified <time>. The time is relative to the current time
unless an absolute time is specified by preceding the value with the character @.
Cancellation occurs at the last simulation delta cycle of a time unit. A value of zero cancels
the force at the end of the current time period. Optional.

-cancel 520 ns \\ Relative Time
-cancel @520 ns \\ Absolute Time

• -repeat <time>

Repeats the force command, where <time> is the time at which to start repeating the cycle.
The time is relative to the current time. A repeating force command will force a value
before other non-repeating force commands that occur in the same time step. Optional.

• <object_name>

Specifies the name of the HDL object to be forced. Required. A wildcard is permitted only
if it matches one object. See Design Object Names for the full syntax of an object name. The
object name must specify a scalar type or a one-dimensional array of character enumeration.
You may also specify a record subelement, an indexed array, or a sliced array, as long as the
type is one of the above. Required.

• <value>

Specifies the value to which the object is to be forced. The specified value must be
appropriate for the type. Required.

A VHDL one-dimensional array of character enumeration can be forced as a sequence of
character literals or as a based number with a radix of 2, 8, 10 or 16. For example, the
following values are equivalent for a signal of type bit_vector (0 to 3):

Note
For based numbers in VHDL, ModelSim translates each 1 or 0 to the appropriate value
for the number’s enumerated type. The translation is controlled by the translation table in
the pref.tcl file. If ModelSim cannot find a translation for 0 or 1, it uses the left bound of
the signal type (type’left) for that value.

Value Description

1111 character literal sequence

2#1111 binary radix

10#15 decimal radix

16#F hexadecimal radix

ModelSim Reference Manual, v6.2g106

Commands
force

February 2007

• <time>

Specifies the time to which the value is to be applied. The time is relative to the current time
unless an absolute time is specified by preceding the value with the character @. If the time
units are not specified, then the default is the resolution units selected at simulation start-up.
Optional.

A zero-delay force command causes the change to occur in the current (rather than the next)
simulation delta cycle.

Examples

• Force input1 to 0 at the current simulator time.

force input1 0

• Force bus1 to 01XZ at 100 nanoseconds after the current simulator time.

force bus1 01XZ 100 ns

• Force bus1 to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

force bus1 16#f @200

• Force input1 to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. This cycle repeats starting at 100 time units after
the current simulation time, so the next transition is to 1 at 100 time units after the
current simulation time.

force input1 1 10, 0 20 -r 100

• Similar to the previous example, but also specifies the time units. Time unit expressions
preceding the "-r" must be placed in curly braces.

force input1 1 10 ns, 0 {20 ns} -r 100ns

• Force signal s to alternate between values 1 and 0 every 100 time units until time 1000.
Cancellation occurs at the last simulation delta cycle of a time unit.

force s 1 0, 0 100 -repeat 200 -cancel 1000

So,

force s 1 0 -cancel 0

will force signal s to 1 for the duration of the current time period.

• Force siga to decimal value 85 whenever the value on the signal is 1.

when {/mydut/siga = 10#1} {
force -deposit /mydut/siga 10#85

}

Commands
force

ModelSim Reference Manual, v6.2g 107
February 2007

See also

noforce, change

Note
You can configure defaults for the force command by setting the DefaultForceKind
variable in the modelsim.ini file. Refer to “Force Command Defaults”.

ModelSim Reference Manual, v6.2g108

Commands
help

February 2007

help
The help command displays in the Transcript pane a brief description and syntax for the
specified command.

Syntax

help [<command> | <topic>]

Arguments

• <command>

Specifies the command for which you want help. The entry is case and space sensitive.
Optional.

• <topic>

Specifies a topic for which you want help. The entry is case and space sensitive. Optional.
Specify one of the following six topics:

Topic Description

commands Lists all available commands and
topics

debugging Lists debugging commands

execution Lists commands that control
execution of your simulation.

Tcl Lists all available Tcl commands.

Tk Lists all available Tk commands

incrTCL Lists all available incrTCL
commands

Commands
history

ModelSim Reference Manual, v6.2g 109
February 2007

history
The history command lists the commands you have executed during the current session.
History is a Tcl command. For more information, consult the Tcl Man Pages.

Syntax

history [clear] [keep <value>]

Arguments

• clear

Clears the history buffer. Optional.

• keep <value>

Specifies the number of executed commands to keep in the history buffer. Optional. The
default is 50.

ModelSim Reference Manual, v6.2g110

Commands
layout

February 2007

layout
The layout command loads, saves, lists, or deletes custom GUI layouts.

The command options include:

• layout load opens the specified layout

• layout save saves the current layout to the specified name

• layout names lists all known layouts

• layout current lists the current layout

• layout delete removes the current layout from the .modelsim file (UNIX/Linux) or
Registry (Windows)

See “Layouts and Modes of Operation” for more information.

Syntax

layout load <name>

layout save <name>

layout names

layout current

layout delete <name>

Arguments

• <name>

Specifies the name of the layout. Required.

Commands
log

ModelSim Reference Manual, v6.2g 111
February 2007

log
The log command creates a wave log format (WLF) file containing simulation data for all HDL
objects whose names match the provided specifications.

Objects that are displayed using the add list and add wave commands are automatically
recorded in the WLF file. The log is stored in a WLF file in the working directory. By default
the file is named vsim.wlf. You can change the default name using the -wlf option of the vsim
command.

If no port mode is specified, the WLF file contains data for all objects in the selected region
whose names match the object name specification.

The WLF file is the source of data for the List and Wave windows. An object that has been
logged and is subsequently added to the List or Wave window will have its complete history
back to the start of logging available for listing and waving.

Syntax

log [-depth <level>] [-flush] [-howmany] [-in] [-inout] [-internal] [-out] [-ports]
[-recursive] <object_name> …

Arguments

• -depth <level>

Restricts a recursive search (specified with the -recursive argument) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify -
depth 1, the command descends only one level in the hierarchy. Optional.

• -flush

Adds region data to the WLF file after each individual log command. Optional. Default is to
add region data to the log file only when a command that advances simulation time is
executed (e.g., run, step, etc.) or when you quit the simulation.

• -howmany

Returns an integer indicating the number of signals found. Optional.

• -in

Specifies that the WLF file is to include data for ports of mode IN whose names match the
specification. Optional.

• -inout

Specifies that the WLF file is to include data for ports of mode INOUT whose names match
the specification. Optional.

• -internal

Specifies that the WLF file is to include data for internal (non-port) objects whose names
match the specification. Optional.

ModelSim Reference Manual, v6.2g112

Commands
log

February 2007

• -out

Specifies that the WLF file is to include data for ports of mode OUT whose names match
the specification. Optional.

• -ports

Specifies that the scope of the search is to include all ports. Optional.

• -recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region. You can use the -depth argument to
specify how far down the hierarchy to descend.

• <object_name>

Specifies the object name which you want to log. Required. Multiple object names may be
specified. Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference
variable identifies types to ignore when matching objects with wildcard patterns.)

Examples

• Log all objects in the design.

log -r /*

• Log all output ports in the current design unit.

log -out *

See also

add list, add wave, nolog, “WLF Files (Datasets) and Virtuals”, and Wildcard Characters

Note
The log command is also known as the "add log" command.

Commands
lshift

ModelSim Reference Manual, v6.2g 113
February 2007

lshift
The lshift command takes a Tcl list as an argument and shifts it in-place, one place to the left,
eliminating the left-most element.

The number of shift places may also be specified. Returns nothing.

Syntax

lshift <list> [<amount>]

Arguments

• <list>

Specifies the Tcl list to target with lshift. Required.

• <amount>

Specifies the number of places to shift. Optional. Default is 1.

Examples

proc myfunc args {
throws away the first two arguments
lshift args 2
...
}

See also

See the Tcl man pages (Help > Tcl Man Pages) for details.

ModelSim Reference Manual, v6.2g114

Commands
lsublist

February 2007

lsublist
The lsublist command returns a sublist of the specified Tcl list that matches the specified Tcl
glob pattern.

Syntax

lsublist <list> <pattern>

Arguments

• <list>

Specifies the Tcl list to target with lsublist. Required.

• <pattern>

Specifies the pattern to match within the <list> using Tcl glob-style matching. Required.

Examples

• In the example below, variable ‘t’ returns "structure signals source".

set window_names "structure signals variables process source wave
list dataflow"
set t [lsublist $window_names s*]

See also

The set command is a Tcl command. See the Tcl man pages (Help > Tcl Man Pages) for
details.

Commands
mem compare

ModelSim Reference Manual, v6.2g 115
February 2007

mem compare
The mem compare command compare selected memory to reference memory or file. Must
have the "diff" utility installed and visible in your search path in order to run the mem compare
command.

Syntax

mem compare [[-mem <ref_mem>] | [-file <ref_file>]] [actual_mem]

Arguments

• -mem <ref_mem>

Specifies a reference memory to be compared.

• -file <ref_file>

Specifies a reference file to be compared.

• actual_mem

Specifies the name of the memory to be compared against the reference data.

ModelSim Reference Manual, v6.2g116

Commands
mem display

February 2007

mem display
The mem display command prints to the Transcript pane the memory contents of the specified
instance. As a shorthand, if the given instance path contains only a single array signal or
variable, the signal or variable name need not be specified.

Address radix, data radix, and address range for the output can also be specified, as well as
special output formats.

You can redirect the output of the mem display command into a file for later use with the mem
load command. The output file can also be read by the Verilog $readmem system tasks if the
memory module is a Verilog module and Verilog memory format (hex or binary) is specified.
The format settings are stored at the top of this file as a pseudo comment so that subsequent
mem load commands can correctly interpret the data. Do not edit this data when manipulating a
saved file.

By default, identical data lines are printed. To replace identical lines with a single line
containing the asterisk character, you can enable compression with the -compress argument.

Syntax

mem display [-format [bin | hex | mti]] [-addressradix <radix>] [-dataradix <radix>]
[-wordsperline <Nwords>] [-startaddress <st>] [-endaddress <end>] [-noaddress]
[-compress] [<path>]

Arguments

• -format [bin | hex | mti]

Specifies the output format of the contents. Optional. The default format is mti. For details
on mti format, see the description contained in mem load.

• -addressradix <radix>

Specifies the address radix for the default (mti) formatted files. The <radix> can be
specified as: d (decimal) or h (hex). Optional. If the output format is mti, the default is d.

• -dataradix <radix>

Specifies the data radix for the default (mti) formatted files. Optional. If unspecified, the
global default radix is used. Valid entries (or any unique abbreviations) are: binary, decimal,
unsigned, octal, hex, symbolic, and default. If no radix is specified for an enumerated type,
the symbolic representation is used. You can change the default radix for the current
simulation using the radix command. You can change the default radix permanently by
editing the DefaultRadix variable in the modelsim.ini file.

• -wordsperline <Nwords>

Specifies how many words are to be printed on each line, with the default assuming an 80
column display width. <Nwords> is an unsigned integer. Optional.

Commands
mem display

ModelSim Reference Manual, v6.2g 117
February 2007

• -startaddress <st>

Specifies the start address for a range of addresses to be displayed. The <st> can be
specified as any valid address in the memory. Optional. If unspecified, the default is the start
of the memory.

• -endaddress <end>

Specifies the end address for a range of addresses to be displayed. The <end> can be
specified as any valid address in the memory. Optional. If unspecified, the default is the end
of the memory.

• -noaddress

Specifies that addresses not be printed. Optional.

• -compress

Specifies that identical lines not be printed. Optional. Reduces the file size by replacing
exact matches with a single line containing an asterisk. These compressed files are
automatically expanded during a mem load operation.

• <path>

Specifies the full path to the memory instance. Optional. The default is the current context,
as shown in the Structure tab of the Workspace. Indexes can be specified.

Examples

• This command displays the memory contents of instance /top/m/mru_mem, addresses 5
to 10 to the screen as follows:

mem display -startaddress 5 -endaddress 10/top/c/mru_mem

5: 110 110 110 110 110 000

• Display the memory contents of the same instance to the screen in hex format, as
follows:

mem display -format hex -startaddress 5 -endaddress 10
/top/c/mru_mem

5: 6 6 6 6 6 0

See Also

mem load

ModelSim Reference Manual, v6.2g118

Commands
mem list

February 2007

mem list
The mem list command displays a flattened list of all memory instances in the current or
specified context after a design has been elaborated.

Each instance line is prefixed by "VHDL:" or "Verilog:", depending on the type of model.

Returns the signal/variable name, address range, and depth and width of the memory.

Syntax

mem list [-recursive] [<path>]

Arguments

• -recursive

Recursively descends into sub-modules when listing memories. Optional.

• <path>

The hierarchical path to the location the search should start. Optional. The default is the
current context, as shown in the Structure tab of the Workspace pane.

Examples

• Recursively lists all memories at the top level of the design.

mem list -r /

Returns:

Verilog: /top/m/mem[0:255](256d x 16w)
#

• Recursively lists all memories in /top2/uut.

mem list /top2/uut -r

Returns:

Verilog: /top2/uut/mem[0:255] x 16w

Commands
mem load

ModelSim Reference Manual, v6.2g 119
February 2007

mem load
The mem load command updates the simulation memory contents of a specified instance. You
can upload contents either from a memory data file, a memory pattern, or both. If both are
specified, the pattern is applied only to memory locations not contained in the file.

A relocatable memory file is one that has been saved without address information. You can load
a relocatable memory file into the instance of a memory core by specifying an address range on
the mem load command line. If no address range (starting and ending address) is specified, the
memory is loaded starting at the first location.

The order in which the data is placed into the memory depends on the format specified by the -
format option. If you choose bin or hex format, the memory is filled low to high, to be
compatible with $readmem commands. This is in contrast to the default mti format, which fills
the memory according to the memory declaration, from left index to right index.

For Verilog objects and VHDL integers and std_logic types: if the word width in a file is wider
than the word width of the memory, the leftmost bits (msb’s) in the data words are ignored. To
allow wide words use the -truncate option which will ignore the msb bits that exceed the
memory word size. If the word width in the file is less than the width of the memory, and the
left-most digit of the file data is not ’X’, then the left-most bits are zero filled. Otherwise, they
are X-filled.

The type of data required for the -filldata argument is dependent on the -filltype specified: a
fixed value, or one that governs an incrementing, decrementing, or random sequence.

• For fixed pattern values, the fill pattern is repeatedly tiled to initialize the memory block
specified. The pattern can contain multiple word values for this option.

• For incrementing or decrementing patterns, each memory word is treated as an unsigned
quantity, and each successive memory location is filled in with a value one higher or
lower than the previous value. The initial value must be specified.

• For a random pattern, a random data sequence will be generated to fill in the memory
values. The data type in the sequence will match the type stored in the memory. For
std_logic and associated types, unsigned integer sequences are generated. A seed value
may be specified on the command line. For any given seed, the generated sequence is
identical.

The interpretation of the pattern data is performed according to the default system radix setting.
However, this can be overridden with a standard Verilog-style ‘<radix_char><data>
specification.

Syntax

mem load [-infile <infile> -format [bin | hex | mti]] [-filltype <filltype>]
[-filldata <patterndata>] [-fillradix <radix>] [-skip <Nwords>] [-truncate]
[-startaddress <st>] [-endaddress <end>] [<path>]

ModelSim Reference Manual, v6.2g120

Commands
mem load

February 2007

Arguments

• -infile <infile>

Updates memory data from the specified file. Required unless the -filltype argument is
used.

• -endaddress <end>

Specifies the end address for a range of addresses to be loaded. The <end> can be specified
as any valid address in the memory. Optional.

• -format [bin | hex | mti]

Specifies the format of the file to be loaded. The <formtype> can be specified as: bin, hex,
or mti. bin and hex are the standard Verilog hex and binary memory pattern file formats.
These can be used with Verilog memories, and with VHDL memories composed of
std_logic types.

In the MTI memory data file format, internal file address and data radix settings are stored
within the file itself. Thus, there is no need to specify these settings on the mem load
command line. If a format specified on the command line and the format signature stored
internally within the file do not agree, the file cannot be loaded.

• -filltype <filltype>

Fills in memory data patterns algorithmically. The <filltype> can be specified as: value, inc,
dec, or rand. Required unless the -infile argument is used, in which case it is optional.
Default is value.

• -filldata <patterndata>

Specifies the pattern parameters, value for fixed-value fill operations, and seed or starting
point for random, increment, or decrement fill operations. Required if -filltype is used.

A fill pattern covers any of the selected address range that is not populated from file values.
If a fill pattern is used without a file option, the entire memory or specified address range is
initialized with the fill pattern.

• -fillradix <radix>

Specifies radix of the data specified by "-filldata" option. Valid entries (or any unique
abbreviations) are: binary, decimal, unsigned, octal, hex, symbolic, and default.

• -skip <Nwords>

Specifies the number of words to be skipped between each fill pattern value. <Nwords> is
specified as an unsigned integer. Optional. Used with -filltype and -filldata.

• -truncate

Ignores any most significant bits (msb) in a memory word which exceed the memory word
size. By default, when memory word size is exceeded, an error results. Optional.

Commands
mem load

ModelSim Reference Manual, v6.2g 121
February 2007

• -startaddress <st>

Specifies the start address for a range of addresses to be loaded. The <st> can be specified as
any valid address in the memory. Optional.

• <path>

The hierarchical path to the memory instance. If the memory instance name is unique,
shorthand instance names can be used. Optional. The default is the current context, as
shown in the Structure tab of the Workspace pane.

Memory address indexes can be specified in the instance name also. If addresses are
specified both in the instance name and the file, only the intersection of the two address
ranges is populated with memory data.

Examples

• Load the memory pattern from the file vals.mem to the memory instance /top/m/mem,
filling the rest of the memory with the fixed-value 1‘b0.

mem load -infile vals.mem -format bin -filltype value -filldata 1‘b0
/top/m/mem

When you enter the mem display command on memory addresses 0 through 12, you see
the following:

mem display -startaddress 0 -endaddress 12 /top/m/mem
0: 0000000000000000 0000000000000001 0000000000000010 0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110 0000000000000111
8: 0000000000001000 0000000000001001 0000000000000000 0000000000000000
12: 0000000000000000

• Load the memory pattern from the file vals.mem to the memory instance
/top/m/mru_mem, filling the rest of the memory with the fixed-value 16’Hbeef.

mem load -infile vals.mem -format hex -st 0 -end 12 -filltype value
-filldata 16’Hbeef /top/m/mru_mem

• Load memory instance /top/mem2 with two words of memory data using the Verilog
Hex format, skipping 3 words after each fill pattern sequence.

mem load -filltype value -filldata "16’hab 16’hcd" /top/mem2 -skip 3

• Truncate the msb bits that exceed the maximum word size (specified in HDL code).

mem load -format h -truncate -infile data_files/data.out
/top/m_reg_inc/mem

See also

mem save

ModelSim Reference Manual, v6.2g122

Commands
mem save

February 2007

mem save
The mem save command saves the contents of a memory instance to a file in any of the
supported formats: Verilog binary, Verilog hex, and MTI memory pattern data.

This command works identically to the mem display command, except that its output is written
to a file rather than a display.

The order in which the data is placed into the saved file depends on the format specified by the -
format argument. If you choose bin or hex format, the file is populated from low to high, to be
compatible with $readmem commands. This is in contrast to the default mti format, which
populates the file according to the memory declaration, from left index to right index.

You can use the mem save command to generate relocatable memory data files. The
-noaddress option omits the address information from the memory data file. You can later load
the generated memory data file using the memory load command.

Syntax

mem save [-format bin | hex | mti] [-addressradix <radix>] [-dataradix <radix>]
[-wordsperline <Nwords>] [-startaddress <st> -endaddress <end>] [-noaddress]
[-compress] [<path>] -outfile <filename>

Arguments

• -format bin | hex | mti

Specifies the output format. The <format_spec> can be specified as bin, hex, or mti.
Optional. The default format is mti. The MTI memory pattern data format is described in
mem load.

• -addressradix <radix>

Specifies the address radix for the default mti formatted files. Optional. The <radix> can be
specified as: dec or hex. The default is the decimal representation.

• -dataradix <radix>

Specifies the data radix for the default mti formatted files. Optional. The <radix> can be
specified as symbolic, binary, octal, decimal, unsigned, or hex. You can change the default
radix for the current simulation using the radix command. You can change the default radix
permanently by editing the DefaultRadix variable in the modelsim.ini file.

• -wordsperline <Nwords>

Specifies how many memory values are to be printed on each line. Optional. The default
assumes an 80 character display width. The <Nwords> is specified as an unsigned integer.

• -startaddress <st>

Specifies the start address for a range of addresses to be saved. The <st> can be specified as
any valid address in the memory. Optional.

Commands
mem save

ModelSim Reference Manual, v6.2g 123
February 2007

• -endaddress <end>

Specifies the end address for a range of addresses to be saved. The <end> can be specified
as any valid address in the memory. Optional.

• -noaddress

Prevents addresses from being printed. Optional. Mutually exclusive with the -compress
option.

• -compress

Specifies that only unique lines are printed, identical lines are not printed. Optional.
Mutually exclusive with the -noaddress option.

• -outfile <filename>

Specifies that the memory contents be stored in <filename>. Required.

• <path>

The hierarchical path to the location of the memory instance. Optional. The default is the
current context, as shown in the Structure tab of the Workspace pane.

Examples

• Save the memory contents of the instance /top/m/mem(0:10) to memfile, written in the
mti radix.

mem save -format mti -outfile memfile -start 0 -end 10 /top/m/mem

The contents of memfile are as follows:

// memory data file (do not edit the following line - required for
mem load use)
// format=mti addressradix=d dataradix=s version = 1.0
0: 0000000000000000 0000000000000001 0000000000000010
0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110
0000000000000111
8: 0000000000001000 0000000000001001 xxxxxxxxxxxxxxxx

See also

mem display, mem load

ModelSim Reference Manual, v6.2g124

Commands
mem search

February 2007

mem search
The mem search command finds and prints to the screen the first occurring match of a
specified memory pattern in the specified memory instance. Shorthand instance names are
accepted.

Optionally, you can instruct the command to print all occurrences. The search pattern can be
one word or a sequence of words.

Syntax

mem search [-addressradix <radix>] [-dataradix <radix>] [-all] [-replace <word>[<word>…]]
[-startaddress <address>] [-endaddress <address>] [<path>]
{-glob <word>[<word>…] | -regexp <word>[<word>…]}

Arguments

• -addressradix <radix>

Specifies the radix for the address being displayed. The <radix> can be specified as decimal
or hexadecimal. Default is decimal. Optional.

• -dataradix <radix>

Specifies the radix for the memory data being displayed. The <radix> can be specified as
symbolic, binary, octal, decimal, unsigned, or hex. Optional. By default the radix displayed
is the system default.

• -all

Searches the specified memory range and prints out all matching occurrences to the screen.
Optional. By default only the first matching occurrence is printed.

• -replace <word>[<word>…]

Replaces the found patterns with a designated pattern. Optional. If this option is used, each
pattern specified by the -pattern argument must have a corresponding pattern specified by
the -replace argument. Multiple word patterns are accepted, separated by a single white
space. No wildcards are allowed in the replaced pattern.

• -startaddress <address>

Specifies the start address for a range of addresses to search. The <address> can be specified
as any valid address in the memory. Optional.

• -endaddress <address>

Specifies the end address for a range of addresses to search. The <address> can be specified
as any valid address in the memory. Optional.

• <path>

Specifies the hierarchical path to the location of the memory instance. Optional. The default
is the current context value, as shown in the Structure tab of the Workspace pane.

Commands
mem search

ModelSim Reference Manual, v6.2g 125
February 2007

• -glob <word>[<word>…]

Specifies the value of the pattern, accepting standard Perl glob pattern syntax for the search.
Required. This argument and -regexp and -pattern are mutually exclusive arguments. This
argument is functionally identical to the -pattern argument, which is being deprecated for
this release. Multiple word patterns are accepted, separated by a single white space.
Wildcards are accepted in the pattern.

• -regexp <word>[<word>…]

Specifies the value of the pattern, accepting regular expression syntax for the search. This
argument and -glob and -pattern are mutually exclusive arguments. Required. Multiple
word patterns are accepted, separated by a single white space. Wildcards are accepted in the
pattern.

• -pattern <word>[<word>…]

Specifies the value of the pattern for the search. This argument and -regexp and
-glob are mutually exclusive arguments. The-pattern argument is functionally equivalent to
the -glob argument, the recommended argument to use for the mem search command, as the
-pattern argument is likely to be removed in a future release.

Examples

• Search for and print to the screen all occurrences of the pattern 16‘Hbeef in
/uut/u0/mem3:

mem search -glob 16‘Hbeef -dataradix hex /uut/u0/mem3

Returns:

#7845: beef
#7846: beef
#100223: beef

• Search for and print only the first occurrence of 16‘Hbeef in the address range
7845:150000, replacing it with 16‘Hcafe in /uut/u1/mem3:

mem search -glob 16‘Hbeef -d hex -replace 16‘Hcafe -st 7846 -end
150000 /uut/u1/mem3

Returns:

#7846: cafe

• Replace all occurrences of 16‘Hbeef with 16‘Habe in /uut/u1/mem3:

mem search -glob 16‘Hbeef -r 16‘Habe -addressadix hex -all
/uut/u1/mem3

Returns:

#1ea5: 2750
#1ea6: 2750
#1877f: 2750

ModelSim Reference Manual, v6.2g126

Commands
mem search

February 2007

• Search for and print the first occurrence any pattern ending in f:

mem search -glob "*f"

• Search for and print the first occurrence of this multiple word pattern:

mem search -glob "abe cafe" /uut/u1/mem3

• Search for patterns "10.. 0000 0000" or "10.. 0001 0000" in m/mem:

mem search -data hex -regexp {^10* 000[0|1] 0{4}} m/mem -all

• Search for a pattern that has any number of 0s followed by any number of 1s as a
memory location, and which has a memory location containing digits as the value:

mem search -regexp {^0+1+$ \d+} m/mem -all

• Search for any initialized location in a VHDL memory:

mem search -regexp {[^U]} -all <vhdl_memory>

Commands
modelsim

ModelSim Reference Manual, v6.2g 127
February 2007

modelsim
The modelsim command starts the ModelSim GUI without prompting you to load a design.

This command is valid only for Windows platforms and may be invoked in one of three ways:

• from the DOS prompt

• from a ModelSim shortcut

• from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the shortcut’s
properties. (Arguments work on the DOS command line too, of course.)

The simulator may be invoked from either the ModelSim> prompt after the GUI starts or from a
DO file called by modelsim.

Syntax

modelsim [-do <macrofile>] [-nosplash]

Arguments

• -do <macrofile>

Specifies the DO file to execute when modelsim is invoked. Optional.

Note
In addition to the macro called by this argument, if a DO file is specified by the
STARTUP variable in modelsim.ini, it will be called when the vsim command is invoked.

• -nosplash

Disables the splash screen. Optional.

See also

vsim, do, “Using a Startup File”

ModelSim Reference Manual, v6.2g128

Commands
noforce

February 2007

noforce
The noforce command removes the effect of any active force commands on the selected HDL
objects.

The noforce command also causes the object’s value to be re-evaluated.

Syntax

noforce <object_name> …

Arguments

• <object_name>

Specifies the name of an object. Required. Must match an object name used in a previous
force command. Multiple object names may be specified. Wildcard characters are allowed.

See also

force and Wildcard Characters

Commands
nolog

ModelSim Reference Manual, v6.2g 129
February 2007

nolog
The nolog command suspends writing of data to the wave log format (WLF) file for the
specified signals.

A flag is written into the WLF file for each signal turned off, and the GUI displays "-No Data-"
for the signal(s) until logging (for the signal(s)) is turned back on. Logging can be turned back
on by issuing another log command or by doing a nolog -reset.

Because use of the nolog command adds new information to the WLF file, WLF files created
when using the nolog command cannot be read by older versions of the simulator. If you are
using dumplog64.c, you will need to get an updated version.

Syntax

nolog [-all] [-depth <level>] [-howmany] [-in] [-inout] [-internal] [-out] [-ports] [-recursive]
[-reset] [<object_name>…]

Arguments

• -all

Turns off logging for all signals currently logged. Optional.

• -depth <level>

Restricts a recursive search (specified with the -recursive argument) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify -
depth 1, the command descends only one level in the hierarchy. Optional.

• -howmany

Returns an integer indicating the number of signals found. Optional.

• -in

Turns off logging only for ports of mode IN whose names match the specification. Optional.

• -inout

Turns off logging only for ports of mode INOUT whose names match the specification.
Optional.

• -internal

Turns off logging only for internal (non-port) objects whose names match the specification.
Optional.

• -out

Turns off logging only for ports of mode OUT whose names match the specification.
Optional.

• -ports

Specifies that the scope of the search is to include all ports. Optional.

ModelSim Reference Manual, v6.2g130

Commands
nolog

February 2007

• -recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region. You can use the -depth argument to
specify how far down the hierarchy to descend.

• -reset

Turns logging back on for all unlogged signals. Optional.

• <object_name>…

Specifies the object name which you want to unlog. Optional. Multiple object names may be
specified. Wildcard characters are allowed.

Examples

• Unlog all objects in the design.

nolog -r /*

• Turn logging back on for all unlogged signals.

nolog -reset

See also

add list, add wave, log

Commands
notepad

ModelSim Reference Manual, v6.2g 131
February 2007

notepad
The notepad command opens a simple text editor. It may be used to view and edit ASCII files
or create new files.

This mode can be changed from the Notepad Edit menu.

Returns nothing.

Syntax

notepad [<filename>] [-r | -edit]

Arguments

• <filename>

Name of the file to be displayed. Optional.

• -r | -edit

Selects the notepad editing mode: -r for read-only, and -edit for edit mode. Optional. Edit
mode is the default.

ModelSim Reference Manual, v6.2g132

Commands
noview

February 2007

noview
The noview command closes a window/pane in the ModelSim GUI. To open a window/pane,
use the view command.

Syntax

noview [<class>] [<window_name>…]

Arguments

• <class>

Specifies a class of windows in the MDI frame to close. All windows in that class will close.
Valid values include: Source, List, Wave, and Memory. Optional.

• <window_name>…

Specifies the window/pane to close. Wildcards and multiple window/pane types may be
used. At least one type (or wildcard) is required. Available window types are:

dataflow, list, locals, memory, objects, process, profilemain,
profiledetails, signals, structure, variables, wave, watch, and
workspace

You can also close Source windows using the tab or file name.

Examples

• Close the Wave window named "wave1".

noview wave1

• Close all List windows.

noview List

See also

view

Commands
nowhen

ModelSim Reference Manual, v6.2g 133
February 2007

nowhen
The nowhen command deactivates selected when commands.

Syntax

nowhen [<label>]

Arguments

• <label>

Specifies an individual when command. Optional. Wildcards may be used to select more
than one when command.

Examples

• This nowhen command deactivates the when command labeled 99.

when -label 99 b {echo “b changed”}
…
nowhen 99

• This nowhen command deactivates all when commands.

nowhen *

ModelSim Reference Manual, v6.2g134

Commands
onbreak

February 2007

onbreak
The onbreak command is used within a macro, placed before a run command. It specifies one
or more commands to be executed when running a macro that encounters a breakpoint in the
source code.

Using the onbreak command without arguments will return the current onbreak command
string. Use an empty string to change the onbreak command back to its default behavior (i.e.,
onbreak ""). In that case, the macro will be interrupted after a breakpoint occurs (after any
associated bp command string is executed).

onbreak commands can contain macro calls.

Syntax

onbreak {[<command> [; <command>] …]}

Arguments

• <command>

Any command can be used as an argument to onbreak. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines. The
entire command string must be placed in curly braces. You must use the onbreak command
before a run, run -continue, or step command. It is an error to execute any commands
within an onbreak command string following any of the run commands. This restriction
applies to any macros or Tcl procedures used in the onbreak command string. Optional.

Examples

• Examine the value of the HDL object data when a breakpoint is encountered. Then
continue the run command.

onbreak {exa data ; cont}

• Resume execution of the macro file on encountering a breakpoint.

onbreak {resume}

• This set of commands test for assertions. Assertions are treated as breakpoints if the
severity level is greater than or equal to the current BreakOnAssertion variable setting
(refer to “Simulator Control Variables”). By default a severity level of failure or above
causes a breakpoint; a severity level of error or below does not.

Commands
onbreak

ModelSim Reference Manual, v6.2g 135
February 2007

set broken 0
onbreak {
set broken 1
resume

}
run -all
if { $broken } {
puts "failure"

} else {

puts "success"
}

See also

abort, bd, bp, do, onerror, resume, status

ModelSim Reference Manual, v6.2g136

Commands
onElabError

February 2007

onElabError
The onElabError command specifies one or more commands to be executed when an error is
encountered during elaboration. The command is used by placing it within a macro.

Use the onElabError command without arguments to return to a prompt.

Syntax

onElabError {[<command> [; <command>] …]}

Arguments

• <command>

Any command can be used as an argument to onElabError. If you want to use more than
one command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. Optional.

See also

do

Commands
onerror

ModelSim Reference Manual, v6.2g 137
February 2007

onerror
The onerror command is used within a macro, placed before a run command; it specifies one
or more commands to be executed when a running macro encounters an error.

Using the onerror command without arguments will return the current onerror command
string. Use an empty string to change the onerror command back to its default behavior (i.e.,
onerror ""). Use onerror with a resume command to allow an error message to be printed
without halting the execution of the macro file.

You can also set the global OnErrorDefaultAction Tcl variable to dictate what action ModelSim
takes when an error occurs. To set the variable on a permanent basis, you must define the
variable in a modelsim.tcl file (Refer to “The modelsim.tcl File” for details).

The onerror command is invoked only when an error occurs in the macro file that contains the
onerror command. Conversely, OnErrorDefaultAction will run even if the macro does not
contain a local onerror command. This can be useful when you run a series of macros from one
script, and you want the same behavior across all macros.

Syntax

onerror {[<command> [; <command>] …]}

Arguments

• <command>

Any command can be used as an argument to onerror. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines. The
entire command string must be placed in curly braces. Optional.

Example

• Force the simulator to quit if an error is encountered while the macro is running.

onerror {quit -f}

See also

abort, do, onbreak, resume, status

ModelSim Reference Manual, v6.2g138

Commands
pause

February 2007

pause
The pause command placed within a macro interrupts the execution of that macro.

Syntax

pause

Arguments

• None.

Description

When you execute a macro and that macro gets interrupted, the prompt will change to:

VSIM(paused)>

This “pause” prompt reminds you that a macro has been interrupted.

When a macro is paused, you may invoke another macro, and if that one gets interrupted, you
may even invoke another — up to a nesting level of 50 macros.

If the status of nested macros gets confusing, use the status command. It will show you which
macros are interrupted, at what line number, and show you the interrupted command.

To resume the execution of the macro, use the resume command. To abort the execution of a
macro use the abort command.

See also

abort, do, resume, run

Commands
precision

ModelSim Reference Manual, v6.2g 139
February 2007

precision
The precision command determines how real numbers display in the graphic interface (e.g.,
Objects, Wave, Locals, and List windows). It does not affect the internal representation of a real
number and therefore precision values over 17 are not allowed.

Using the precision command without any arguments displays the current precision setting.

Syntax

precision [<digits>[#]]

Arguments

• <digits>[#]

Specifies the number of digits to display. Optional. Default is 6. Trailing zeros are not
displayed unless you append the ’#’ sign. See examples for more details.

Examples

• Results in 4 digits of precision.

precision 4

For example:

1.234 or 6543

• Results in 8 digits of precision including trailing zeros.

precision 8#

For example:

1.2345600 or 6543.2100

• Results in 8 digits of precision but doesn’t print trailing zeros.

precision 8

For example:

1.23456 or 6543.21

ModelSim Reference Manual, v6.2g140

Commands
printenv

February 2007

printenv
The printenv command prints to the Transcript pane the current names and values of all
environment variables.

If variable names are given as arguments, prints only the names and values of the specified
variables.

Syntax

printenv [<var>…]

Arguments

• <var>…

Specifies the name(s) of the environment variable(s) to print. Optional.

Examples

• Print all environment variable names and their current values.

printenv

For example,

CC = gcc
DISPLAY = srl:0.0
…

• Print the specified environment variables:

printenv USER HOME

USER = vince
HOME = /scratch/srl/vince

Commands
project

ModelSim Reference Manual, v6.2g 141
February 2007

project
The project command is used to perform common operations on projects. Some of the project
commands must be used outside of a simulation session.

Syntax

project [addfile <filename>] | [calculateorder] | [close] | [compile] | [compileall [-n]] |
[compileorder] | [compileoutofdate [-n]] | [delete <filename>] | [env] | [history] |
[new <home_dir> <proj_name> [<defaultlibrary>] [<intialini>] [<reference>]] | [open
<project>] | [removefile <filename>]

Arguments

• addfile <filename>

Adds the specified file to the current open project. Optional.

• calculateorder

Determines the compile order for the project by compiling each file, then moving any
compiles that fail to the end of the list. This is repeated until there are no more compile
errors. Optional.

• close

Closes the current project. Optional.

• compile

Compiles all files in the current project. Optional.

• compileall [-n]

Compiles all files in the project using the defined compile order. Optional. The -n option
will return a list of the compile commands this command would execute, without actually
executing the compiles.

• compileorder

Returns the current compile order list. Optional.

• compileoutofdate [-n]

Compiles all files that have a newer date/time stamp than the last time the file was compiled.
Optional. The -n option will return a list of the compile commands this command would
execute, without actually executing the compiles.

• delete <filename>

Deletes the specified project (.mpf) file. Optional.

• env

Returns the current project file. Optional.

ModelSim Reference Manual, v6.2g142

Commands
project

February 2007

• history

Lists a history of manipulated projects. Optional. Must be used outside of a simulation
session.

• new <home_dir> <proj_name> [<defaultlibrary>] [<intialini>] [<reference>]

Creates a new project under a specified home directory with a specified name and optionally
a default library. Optional. The name of the work library will default to "work" unless
specified. An optional modelsim.ini file can be specified as a seed for the project file by
using the initialini option. If initialini is an empty string, then ModelSim uses the current
modelsim.ini file when creating the project. You must specify a default library if you want
to specify initialini. A new project cannot be created while a project is currently open or a
simulation is in progress. The boolean "reference" option indicates if library mappings will
include an "others" clause back to the initial .ini file (1) or copy all the mappings into the
new file (0).

• open <project>

Closes any currently opened project and opens a specified project file (must be a valid .mpf
file), making it the current project. Changes the current working directory to the project's
directory. Optional. Must be used outside of a simulation session.

• removefile <filename>

Removes the specified file from the current project. Optional.

Examples

• Make /user/george/design/test3/test3.mpf the current project and changes the current
working directory to /user/george/design/test3.

project open /user/george/design/test3/test3.mpf

• Execute current project library build scripts.

project compileall

Commands
pwd

ModelSim Reference Manual, v6.2g 143
February 2007

pwd
The Tcl pwd command displays the current directory path in the Transcript pane.

Syntax

pwd

Arguments

• None

ModelSim Reference Manual, v6.2g144

Commands
quietly

February 2007

quietly
The quietly command turns off transcript echoing for the specified command.

Syntax

quietly <command>

Arguments

• <command>

Specifies the command for which to disable transcript echoing. Required. Any results
normally echoed by the specified command will not be written to the Transcript pane. To
disable echoing for all commands use the transcript command with the -quietly option.

See also

transcript

Commands
quit

ModelSim Reference Manual, v6.2g 145
February 2007

quit
The quit command exits the simulator.

If you want to stop the simulation using a when command, you must use a stop command within
your when statement, you must not use an exit or a quit command. The stop command acts like
a breakpoint at the time it is evaluated.

Syntax

quit [-f | -force] [-sim] [-code <integer>]

Arguments

• -f | -force

Quits without asking for confirmation. Optional. If omitted, ModelSim asks you for
confirmation before exiting. (The -f and -force arguments are equivalent.)

• -sim

Unloads the current design in the simulator without exiting ModelSim. All files opened by
the simulation will be closed including the WLF file (vsim.wlf).

• -code <integer>

Quits the simulation and issues an exit code.

<integer> — This is the value of the exit code. You should not specify an exit code that
already exists in the tool. Refer to the section "Exit Codes" in the User’s Manual for a
list of existing exit codes. You can also specify a variable in place of the <integer>.

You should always print a message before executing the quit -code command to explicitly
state the reason for exiting.

Examples

Refer to the Examples section of the exit command for an example of using the -code argument.
The quit and exit commands behave similarly in this regard.

ModelSim Reference Manual, v6.2g146

Commands
radix

February 2007

radix
The radix command specifies the default radix to be used for the current simulation.

The command can be used at any time. The specified radix is used for all commands (force,
examine, change, etc.) as well as for displayed values in the Objects, Locals, Dataflow, List, and
Wave windows. You can change the default radix permanently by editing the DefaultRadix
variable in the modelsim.ini file or from the Simulate > Runtime Options menu item (Defaults
tab > Default Radix box).

Syntax

radix [-symbolic | -binary | -octal | -decimal | -hexadecimal | -unsigned | -ascii]

Arguments

• Entries may be truncated to any length. For example, -symbolic could be expressed as
-s or -sy, etc. Optional.

• Also, -signed may be used as an alias for -decimal. The -unsigned radix will display as
unsigned decimal. The -ascii radix will display a Verilog object as a string equivalent
using 8 bit character encoding.

• If no arguments are used, the command returns the current default radix.

Commands
readers

ModelSim Reference Manual, v6.2g 147
February 2007

readers
The readers command displays the names of all readers of the specified object.

The reader list is expressed relative to the top-most design signal/net connected to the specified
object.

Syntax

readers <object_name>

Arguments

• <object_name>

Specifies the name of the signal or net whose readers are to be shown. Required. All signal
or net types are valid. Multiple names and wildcards are accepted.

See also

drivers

ModelSim Reference Manual, v6.2g148

Commands
report

February 2007

report
The report command displays the value of all simulator control variables, or the value of any
simulator state variables relevant to the current simulation.

Syntax

report simulator control | simulator state

Arguments

• simulator control

Displays the current values for all simulator control variables.

• simulator state

Displays the simulator state variables relevant to the current simulation.

Examples

• Display all simulator control variables.

report simulator control

UserTimeUnit = ns
RunLength = 100
IterationLimit = 5000
BreakOnAssertion = 3
DefaultForceKind = default
IgnoreNote = 0
IgnoreWarning = 0
IgnoreError = 0
IgnoreFailure = 0
CheckpointCompressMode = 1
NumericStdNoWarnings = 0
StdArithNoWarnings = 0
PathSeparator = /
DefaultRadix = symbolic
DelayFileOpen = 0
WLFFilename = vsim.wlf

• Display all simulator state variables. Only the variables that relate to the design being
simulated are displayed:

report simulator state

now = 0.0
delta = 0
library = work
entity = type_clocks
architecture = full
resolution = 1ns

Commands
report

ModelSim Reference Manual, v6.2g 149
February 2007

Viewing preference variables

Preference variables have more to do with the way things look (but not entirely) rather than
controlling the simulator. You can view preference variables from the Preferences dialog box.
Select Tools > Edit Preferences (Main window).

See also

Simulator Control Variables, Simulator GUI Preferences

ModelSim Reference Manual, v6.2g150

Commands
restart

February 2007

restart
The restart command reloads the design elements and resets the simulation time to zero. Only
design elements that have changed are reloaded. (Note that SDF files are always reread during a
restart.)

Shared libraries are handled as follows during a restart:

• Shared libraries that implement VHDL foreign architectures only are reloaded at each
restart when the architecture is elaborated (unless the -keeploaded option to the vsim
command is used).

• Shared libraries loaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded (unless you specify the -keeploaded
argument to vsim).

• Shared libraries that implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for a foreign architecture.

You can configure defaults for the restart command by setting the DefaultRestartOptions
variable in the modelsim.ini file. Refer to “Restart Command Defaults”.

To handle restarts with Verilog PLI applications, you need to define a Verilog user-defined task
or function, and register a misctf class of callback. To handle restarts with Verilog VPI
applications, you need to register reset callbacks. To handle restarts with VHDL FLI
applications, you need to register restart callbacks. Refer to “Verilog PLI/VPI/DPI” for more
information on the Verilog PLI/VPI/DPI and the ModelSim FLI Reference for more information
on the FLI.

Syntax

restart [-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Arguments

• -force

Specifies that the simulation will be restarted without requiring confirmation in a popup
window. Optional.

• -nobreakpoint

Specifies that all breakpoints will be removed when the simulation is restarted. Optional.
The default is for all breakpoints to be reinstalled after the simulation is restarted.

• -nolist

Specifies that the current List window environment will not be maintained after the
simulation is restarted. Optional. The default is for all currently listed HDL objects and their
formats to be maintained.

Commands
restart

ModelSim Reference Manual, v6.2g 151
February 2007

• -nolog

Specifies that the current logging environment will not be maintained after the simulation is
restarted. Optional. The default is for all currently logged objects to continue to be logged.

• -nowave

Specifies that the current Wave window environment will not be maintained after the
simulation is restarted. Optional. The default is for all objects displayed in the Wave
window to remain in the window with the same format.

See also

vsim

ModelSim Reference Manual, v6.2g152

Commands
resume

February 2007

resume
The resume command is used to resume execution of a macro file after a pause command or a
breakpoint.

It may be input manually or placed in an onbreak command string. (Placing a resume command
in a bp command string does not have this effect.) The resume command can also be used in an
onerror command string to allow an error message to be printed without halting the execution of
the macro file.

Syntax

resume

Arguments

• None

See also

abort, do, onbreak, onerror, pause

Commands
run

ModelSim Reference Manual, v6.2g 153
February 2007

run
The run command advances the simulation by the specified number of timesteps.

Syntax

run [<timesteps>[<time_units>]] | [-all] | [-continue] | [-next] | [-step] | [-over]

Arguments

• <timesteps>[<time_units>]

Specifies the number of timesteps for the simulation to run. The number may be fractional,
or may be specified absolute by preceding the value with the character @. Optional. In
addition, optional <time_units> may be specified as:

fs, ps, ns, us, ms, or sec

The default <timesteps> and <time_units> specifications can be changed during a
ModelSim session by selecting Simulate > Simulation Options (Main window). Time
steps and time units may also be set with the RunLength and UserTimeUnit variables in the
modelsim.ini file.

• -all

Causes the simulator to run the current simulation forever, or until it hits a breakpoint or
specified break event. Optional.

• -continue

Continues the last simulation run after a step command, step -over command or a
breakpoint. A run -continue command may be input manually or used as the last command
in a bp command string. Optional.

• -next

Causes the simulator to run to the next event time. Optional.

• -step

Steps the simulator to the next HDL statement. Optional.

• -over

Specifies that VHDL procedures, functions and Verilog tasks are to be executed but treated
as simple statements instead of entered and traced line by line. Optional.

Examples

• Advance the simulator 1000 timesteps.

run 1000

• Advance the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run 10.4 ms

ModelSim Reference Manual, v6.2g154

Commands
run

February 2007

• Advance the simulator to timestep 8000.

run @8000

See also

step

Commands
runStatus

ModelSim Reference Manual, v6.2g 155
February 2007

runStatus
The runStatus command returns the current state of your simulation after issuing a run or step
command.

Syntax

runStatus [-full]

Arguments

• -full

appends additional information to the output of the runStatus command.

Results

The output of the runStatus command is described in Table 2-2 (runStatus results) and
Table 2-3 (runStatus -full results).

Table 2-2. runStatus Command States

State Description

ready The design is loaded and is ready to run.

break The simulation stopped before completing the requested run.

error The simulation stopped due to an error condition.

loading The simulation is currently elaborating.

nodesign There is no design loaded.

checkpoint A checkpoint is being created, do not interrupt this process.

cready The design is loaded and is ready to run in C debug mode.

initializing The user interface initialization is in progress.

Table 2-3. runStatus -full Command Information

-full Information Description

bkpt stopped at breakpoint

bkpt_builtin stopped at breakpoint on builtin process

end reached end of requested run

fatal_error encountered fatal error (such as, divide by 0)

iteration_limit iteration limit reached, possible feedback loop

silent_halt mti_BreakSilent() called,

step run -step completed

step_builtin run -step completed on builtin process

ModelSim Reference Manual, v6.2g156

Commands
runStatus

February 2007

step_wait_suspend run -step completed, time advanced.

user_break run interrupted do to break-key or ^C (SIGINT)

user_halt mti_Break() called.

user_stop stop or finish requested from vpi, stop command, etc.

gate_oscillation Verilog gate iteration limit reached.

simulation_stop pli stop_simulation() called.

Table 2-3. runStatus -full Command Information

-full Information Description

Commands
searchlog

ModelSim Reference Manual, v6.2g 157
February 2007

searchlog
The searchlog command searches one or more of the currently open logfiles for a specified
condition.

It can be used to search for rising or falling edges, for signals equal to a specified value, or for
when a generalized expression becomes true.

Syntax

searchlog [-count <n>] [-deltas] [-env <path>] [-expr {<expr>}] [-reverse]
[-rising | -falling | -anyedge] [-startDelta <num>] [-value <string>] <startTime> <pattern>

Description

If at least one match is found, it returns the time (and optionally delta) at which the last match
occurred and the number of matches found, in a Tcl list:

{{<time>} <matchCount>}

where <time> is in the format <number> <unit>. If the -deltas option is specified, the delta of
the last match is also returned:

{{<time>} <delta> <matchCount>}

If no matches are found, a TCL_ERROR is returned. If one or more matches are found, but less
than the number requested, it is not considered an error condition, and the time of the farthest
match is returned, with the count of the matches found.

Arguments

• -count <n>

Specifies to search for the nth occurrence of the match condition, where <n> is a positive
integer. Optional.

• -deltas

Indicates to test for a match on simulation delta cycles. Otherwise, matches are only tested
for at the end of each simulation time step. Optional.

• -env <path>

Provides a design region in which to look for the signal names. Optional.

• -expr {<expr>}

Specifies a general expression of signal values and simulation time. Optional. searchlog
will search until the expression evaluates to true. The expression must have a boolean result
type. See GUI_expression_format for the format of the expression.

• -reverse

Specifies to search backwards in time from <startTime>. Optional.

ModelSim Reference Manual, v6.2g158

Commands
searchlog

February 2007

• -rising | -falling | -anyedge

Specifies an edge to look for on a scalar signal. Optional. This option is ignored for
compound signals. If no options are specified, the default is -anyedge.

• -startDelta <num>

Indicates a simulation delta cycle on which to start. Optional.

• -value <string>

Specifies to search until a single scalar or compound signal takes on this value. Optional.

• <startTime>

Specifies the simulation time at which to start the search. Required. The time may be
specified as an integer number of simulation units, or as {<num> <timeUnit>}, where
<num> can be integer or with a decimal point, and <timeUnit> is one of the standard VHDL
time units (fs, ps, ns, us, ms, sec).

• <pattern>

Specifies one or more signal names or wildcard patterns of signal names to search on.
Required unless the -expr argument is used.

See also

virtual signal, virtual log, virtual nolog

Commands
see

ModelSim Reference Manual, v6.2g 159
February 2007

see
The see command displays the specified number of source file lines around the current
execution line. By default, five lines will be displayed before and four lines after.

Syntax

see [<n> | <pre> <post>]

Arguments

• <n>

Designates the number of lines to display before and after the current execution line.
Optional.

• <pre>

Designates the number of lines to display before the current execution line. Optional.

• <post>

Designates the number of lines to display after the current execution line. Optional.

Example

• Display 8 lines before and 6 lines after the current execution line.

see 8 6

ModelSim Reference Manual, v6.2g160

Commands
setenv

February 2007

setenv
The setenv command changes or reports the current value of an environment variable. The
setting is not persistent–it is valid only for the current ModelSim session.

Syntax

setenv <varname> [<value>]

Arguments

• <varname>

The name of the environment variable you wish to set or check. Required.

• <value>

The value for the environment variable. Optional. If you don’t specify a value, ModelSim
reports the variable’s current value.

See also

unsetenv, printenv

Commands
shift

ModelSim Reference Manual, v6.2g 161
February 2007

shift
The shift command shifts macro parameter values left one place, so that the value of parameter
\$2 is assigned to parameter \$1, the value of parameter \$3 is assigned to \$2, etc. The previous
value of \$1 is discarded.

The shift command and macro parameters are used in macro files. If a macro file requires more
than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc variable.

Syntax

shift

Arguments

• None

Description

For a macro file containing nine macro parameters defined as $1 to $9, one shift command
shifts all parameter values one place to the left. If more than nine parameters are named, the
value of the tenth parameter becomes the value of $9 and can be accessed from within the
macro file.

See also

do

ModelSim Reference Manual, v6.2g162

Commands
show

February 2007

show
 The show command lists HDL objects and subregions visible from the current environment.

The objects listed include:

• VHDL — signals, processes, constants, variables, and instances

• Verilog — nets, registers, tasks, functions, instances, variables, and memories

The show command returns formatted results to stdout. To eliminate formatting (to use the
output in a Tcl script), use the Show command instead.

Syntax

show [-all] [<pathname>]

Arguments

• -all

Displays all names at and below the specified path recursively. Optional.

• <pathname>

Specifies the pathname of the environment for which you want the objects and subregions to
be listed. Optional; if omitted, the current environment is assumed.

Examples

• List the names of all the objects and subregion environments visible in the current
environment.

show

• List the names of all the objects and subregions visible in the environment named /uut.

show /uut

• List the names of all the objects and subregions visible in the environment named
sub_region which is directly visible in the current environment.

show sub_region

See also

find

Commands
simstats

ModelSim Reference Manual, v6.2g 163
February 2007

simstats
The simstats command returns performance-related statistics about elaboration and simulation.
The statistics measure the simulation kernal process (vsimk) for a single invocation of vsim. If
you invoke vsim a second time, or restart the simulation, the current statistics are discarded and
new values are collected.

If executed without arguments, the command returns a list of pairs like the following:

{{elab memory} 0} {{elab working set} 7245824} {{elab time} 0.942645}
{{elab cpu time} 0.190274} {{elab context} 0} {{elab page faults} 1549}
{memory 0} {{working set} 0} {time 0} {{cpu time} 0} {context 0}
{{page faults} 0}

The elaboration statistics are measured one time at the end of elaboration. The simulation
memory statistics are measured at the time you invoke simstats. The simulation time statistics
are updated at the end of each run command. See the arguments below for descriptions of each
statistic.

Units for time values are in seconds. Units for memory values vary by platform:

• For SunOS and Linux, the memory size is reported in Kbytes

• For HP-UX, the memory size is reported in the number of pages

• For Windows, the memory size is reported in bytes.

Some of the values may not be available on all platforms and other values may be approximates.
Different operating systems report these numbers differently.

Syntax

simstats [memory | working | time | cpu | context | faults]

Arguments

• memory

Returns the amount of virtual memory that the OS has allocated for vsimk. Optional.

• working

Returns the portion of allocated virtual memory that is currently being used by vsimk.
Optional. If this number exceeds the actual memory size, you will encounter performance
degradation.

• time

Returns the cumulative "wall clock time" of all run commands. Optional.

• cpu

Returns the cumulative processor time of all run commands. Optional. Processor time
differs from wall clock time in that processor time is only counted when the cpu is actually
running vsimk. If vsimk is swapped out for another process, cpu time does not increase.

ModelSim Reference Manual, v6.2g164

Commands
simstats

February 2007

• context

Returns the number of context swaps (vsimk being swapped out for another process) that
occurred during all run commands. Optional.

• faults

Returns the number of page faults that occurred during all run commands. Optional.

Commands
status

ModelSim Reference Manual, v6.2g 165
February 2007

status
The status command lists summary information about currently interrupted macros.

If invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak or onerror commands that have been defined for each interrupted macro.

Syntax

status [file | line]

Arguments

• file

Reports the file pathname of the current macro.

• line

Reports the line number of the current macro.

Examples

The transcript below contains examples of resume, and status commands.

VSIM(paused)> status
Macro resume_test.do at line 3 (Current macro)
command executing: "pause"
is Interrupted
ONBREAK commands: "resume"
Macro startup.do at line 34
command executing: "run 1000"
processing BREAKPOINT
is Interrupted
ONBREAK commands: "resume"
VSIM(paused)> resume
Resuming execution of macro resume_test.do at line 4

See also

abort, do, pause, resume

ModelSim Reference Manual, v6.2g166

Commands
step

February 2007

step
The step command steps to the next HDL or C statement. Current values of local HDL variables
may be observed at this time using the Locals window.

VHDL procedures and functions, Verilog tasks and functions, and C functions can optionally be
skipped over. When a wait statement or end of process is encountered, time advances to the next
scheduled activity. The Process and Source windows will then be updated to reflect the next
activity.

Syntax

step [-over] [<n>]

Arguments

• -over

Specifies that VHDL procedures and functions, Verilog tasks and functions, and C functions
should be executed but treated as simple statements instead of entered and traced line by
line. Optional.

• <n>

Any integer. Optional. Will execute ‘n’ steps before returning.

See also

run

Commands
stop

ModelSim Reference Manual, v6.2g 167
February 2007

stop
The stop command is used with the when command to stop simulation in batch files.

The stop command has the same effect as hitting a breakpoint. The stop command may be
placed anywhere within the body of the when command.

Syntax

stop

Arguments

• None.

Description

Use the run command with the -continue option to continue the simulation run, or the resume
command to continue macro execution. If you want macro execution to resume automatically,
put the resume command at the top of your macro file:

onbreak {resume}

Note
If you want to stop the simulation using a when command, you must use a stop command
within your when statement. DO NOT use an exit command or a quit command. The stop
command acts like a breakpoint at the time it is evaluated.

See also

bp, resume, run, when

ModelSim Reference Manual, v6.2g168

Commands
tb

February 2007

tb
The tb (traceback) command displays a stack trace for the current process in the Transcript
pane. This lists the sequence of HDL function calls that have been entered to arrive at the
current state for the active process.

Syntax

tb

Arguments

• None

Commands
Time

ModelSim Reference Manual, v6.2g 169
February 2007

Time
There are several Time commands that allow you to perform comparisons between, operations
on, and conversions of time values.

Syntax

eqTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> and <time2> are equal.

neqTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> and <time2> are not equal.

ltTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> is less than <time2>.

gtTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> is greater than <time2>.

lteTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> is less than or equal to <time2>.

gteTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> is greater than or equal to <time2>.

addTime <time1> <time2>

Returns the value of adding <time1> to <time2>

subTime <time1> <time2>

Returns the value of subtracting <time2> from <time1>

mulTime <time1> <integer>

Returns the value of multiplying <time1> by an <integer>

divTime <time1> <time2>

Returns an integer, which is the value of dividing <time1> by <time2>. Specifying 0 for
<time2> results in an error.

intToTime <high_32bit_int> <low_32bit_int>

Returns a 64-bit time value based on two 32-bit parts of a 64-bit integer. This command is
useful when you’ve performed an integer calculation that results in a 64-bit value and need
to convert it to a time unit.

scaleTime <time1> <scale_factor>

Returns a time value scaled by a real number and truncated to the current time resolution.

RealToTime <real>

ModelSim Reference Manual, v6.2g170

Commands
Time

February 2007

Returns a time value equivalent to the specified real number and truncated to the current
time resolution.

validTime <time>

Returns a 1 (true) or 0 (false) if the given string is a valid time for use with any of these
Time calculations.

formatTime {+ | -} commas | {+ | -}nodefunit | {+ | -}bestunits

Sets display properties for time values.

Arguments

• <time> —

<number> — the command assumes that the <time_unit> is the current simulation time
unit, as defined by the Resolution variable in the modelsim.ini file or the -t switch to
the vsim command.

<number><time_unit> — note that there is no space is between the values.

<number> <time_unit> — note that if you put a space between the values, you must
enclose the argument in braces ({ }) or double-quotes (" ").

• <time_unit> —

fs — femtosecond (10-15 seconds)

ps — picosecond (10-12 seconds)

ns — nanosecond (10-9 seconds)

us — microsecond (10-6 seconds)

ms — millisecond (10-3 seconds)

sec — second

min — minute (60 seconds)

hr — hour (3600 seconds)

• <high_32bit_int> | <low_32bit_int>

<high_32bit_int> — The "high" part of the 64-bit integer.

<low_32bit_int> — The "low" part of the 64-bit integer.

• <scale_factor> — a real number to be used as scaling factor. Common values can include:

0.25, 0.5, 1.5, 2, 10, 100
• {+ | -} commas — controls whether commas are displayed in time values.

+commas — time values include commas

-commas — time values do not include commas

• {+ | -}nodefunit — controls whether time values display time units

+nodefunit — time values do not include time units and will be in current time
resolution

Commands
Time

ModelSim Reference Manual, v6.2g 171
February 2007

-nodefunit — time values may include time units

• {+ | -}bestunits — controls whether time values display the largest possible time unit, for
example 8 us instead of 8,000 ns.

+bestunits — time values display the largest possible time unit

-bestunits — time values display the default time unit

Examples

• The following transcript shows examples of the Time commands and their output:

>ltTime 100ns 1ms
1

>addTime {1545 ns} {455 ns}
2 us

>gteTime "1000 ns" "1 us"
1

>divTime 1us 10ns
100

>formatTime +bestunit
>scaleTime 3ms 1000
3 sec

>RealToTime 1.345e04
13450 ns

ModelSim Reference Manual, v6.2g172

Commands
transcript

February 2007

transcript
The transcript command controls echoing of commands executed in a macro file.

If no option is specified, the current setting is reported.

Syntax

transcript [on | off | -q | quietly]

Arguments

• on

Specifies that commands in a macro file will be echoed to the Transcript pane as they are
executed. Optional.

• off

Specifies that commands in a macro file will not be echoed to the Transcript pane as they
are executed. Optional.

• -q

Returns "0" if transcripting is turned off or "1" if transcripting is turned on. Useful in a Tcl
conditional expression. Optional.

• quietly

Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command. Optional.

Examples

• Commands within a macro file will be echoed to the Transcript pane as they are
executed.

transcript on

• If issued immediately after the previous example, the message:

transcript

Macro transcripting is turned ON.

appears in the Transcript pane.

See also

Transcript, echo

Commands
transcript file

ModelSim Reference Manual, v6.2g 173
February 2007

transcript file
The transcript file command sets or queries the pathname for the transcript file. You can use
this command to clear a transcript in batch mode or to limit the size of a transcript file. It offers
an alternative to setting the PrefMain(file) Tcl preference variable.

Syntax

transcript file [<filename>]

Arguments

• <filename>

Specifies the full path and filename for the transcript file. Optional. If you specify a new
file, the existing transcript file is closed and a new transcript file opened. If you specify an
empty string (""), the existing file is closed and no new file is opened. If you don’t specify
this argument, the current setting is returned.

Examples

• Close the current transcript file and stops writing data to the file. This is a method for
reducing the size of your transcript.

transcript file ""

• This series of commands results in the transcript containing only data from the second
millisecond of the simulation. The first transcript file command closes the transcript so
no data is being written to it. The second transcript file command opens a new
transcript and records data from 1 ms to 2 ms.

transcript file ""
run 1 ms
transcript file transcript
run 1 ms

See also

Transcript

ModelSim Reference Manual, v6.2g174

Commands
tssi2mti

February 2007

tssi2mti
The tssi2mti command is used to convert a vector file in Fluence Technology (formerly TSSI)
Standard Events Format into a sequence of force and run commands.

The stimulus is written to the standard output.

The source code for tssi2mti is provided in the file tssi2mti.c in the examples directory.

Syntax

tssi2mti <signal_definition_file> [<sef_vector_file>]

Arguments

• <signal_definition_file>

Specifies the name of the Fluence Technology signal definition file describing the format
and content of the vectors. Required.

• <sef_vector_file>

Specifies the name of the file containing vectors to be converted. If none is specified,
standard input is used. Optional.

Examples

• The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mti trigger.def trigger.sef > trigger.do

• This example is the same as the previous one, but uses the standard input instead.

tssi2mti trigger.def < trigger.sef > trigger.do

See also

force, run, write tssi

Commands
unsetenv

ModelSim Reference Manual, v6.2g 175
February 2007

unsetenv
The unsetenv command deletes an environment variable. The deletion is not permanent–it is
valid only for the current ModelSim session.

Syntax

unsetenv <varname>

Arguments

• <varname>

The name of the environment variable you wish to delete. Required.

See also

setenv, printenv

ModelSim Reference Manual, v6.2g176

Commands
vcd add

February 2007

vcd add
 The vcd add command adds the specified objects to a VCD file.

The allowed objects are Verilog nets and variables and VHDL signals of type bit, bit_vector,
std_logic, and std_logic_vector (other types are silently ignored). The command works with
mixed HDL designs.

All vcd add commands must be executed at the same simulation time. The specified objects are
added to the VCD header and their subsequent value changes are recorded in the specified VCD
file. By default all port driver changes and internal variable changes are captured in the file.
You can filter the output using arguments detailed below.

Related Verilog tasks: $dumpvars, $fdumpvars

Syntax

vcd add [-r] [-in] [-out] [-inout] [-internal] [-ports] [-file <filename>] [-dumpports]
<object_name> ...

Arguments

• -r

Specifies that signal and port selection occurs recursively into subregions. Optional. If
omitted, included signals and ports are limited to the current region.

• -in

Includes only port driver changes from ports of mode IN. Optional.

• -out

Includes only port driver changes from ports of mode OUT. Optional.

• -inout

Includes only port driver changes from ports of mode INOUT. Optional.

• -internal

Includes only internal variable or signal changes. Excludes port driver changes. Optional.

• -ports

Includes only port driver changes. Excludes internal variable or signal changes. Optional.

• -file <filename>

Specifies the name of the VCD file. This option should be used only when you have created
multiple VCD files using the vcd files command.

• -dumpports

Specifies port driver changes to be added to an extended VCD file. Optional. When the vcd
dumpports command cannot specify all port driver changes that will appear within the
VCD file, multiple vcd add -dumpports commands can be used to specify additional port
driver changes.

Commands
vcd add

ModelSim Reference Manual, v6.2g 177
February 2007

• <object_name> ...

Specifies the Verilog or VHDL object or objects to add to the VCD file. Required. Multiple
objects may be specified by separating names with spaces. Wildcards are accepted.

See also

“Value Change Dump (VCD) Files”. Verilog tasks are documented in the IEEE 1364 standard.

ModelSim Reference Manual, v6.2g178

Commands
vcd checkpoint

February 2007

vcd checkpoint
The vcd checkpoint command dumps the current values of all VCD variables to the specified
VCD file. While simulating, only value changes are dumped.

Related Verilog tasks: $dumpall, $fdumpall

Syntax

vcd checkpoint [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or "dump.vcd" if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”

Commands
vcd comment

ModelSim Reference Manual, v6.2g 179
February 2007

vcd comment
The vcd comment command inserts the specified comment in the specified VCD file.

Syntax

vcd comment <comment string> [<filename>]

Arguments

• <comment string>

Comment to be included in the VCD file. Required. Must be quoted by double quotation
marks or curly braces.

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or "dump.vcd" if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”

ModelSim Reference Manual, v6.2g180

Commands
vcd dumpports

February 2007

vcd dumpports
The vcd dumpports command creates an extended VCD file that includes port driver data.

By default all port driver changes are captured in the file. You can filter the output using
arguments detailed below. Related Verilog task: $dumpports

Syntax

vcd dumpports [-compress] [-direction] [-file <filename>] [-in] [-inout] [-out]
[-no_strength_range] [-unique] [-vcdstim] <object_name> ...

Arguments

• -compress

Produces a compressed VCD file. Optional. ModelSim uses the gzip compression
algorithm. If you specify a .gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compress argument.

• -direction

Includes driver direction data in the VCD file. Optional.

• -file <filename>

Specifies the path and name of a VCD file to create. Optional. Defaults to the current
working directory and the filename dumpports.vcd. Multiple filenames can be opened
during a single simulation.

• -in

Includes ports of mode IN. Optional.

• -inout

Includes ports of mode INOUT. Optional.

• -out

Includes ports of mode OUT. Optional.

• -no_strength_range

Ignores strength ranges when resolving driver values. Optional. This argument is an
extension to the IEEE 1364 specification. Refer to “Resolving Values” for additional
information.

• -unique

Generates unique VCD variable names for ports even if those ports are connected to the
same collapsed net. Optional.

• -vcdstim

Ensures that port name order in the VCD file matches the declaration order in the instance’s
module or entity declaration. Optional. Refer to “Port Order Issues” for further information.

Commands
vcd dumpports

ModelSim Reference Manual, v6.2g 181
February 2007

• <object_name> ...

Specifies the Verilog or VHDL object or objects to add to the VCD file. Required. Multiple
objects may be specified by separating names with spaces. Wildcards are accepted.

Examples

• Create a VCD file named counter.vcd of all IN ports in the region /test_design/dut/.

vcd dumpports -in -file counter.vcd /test_design/dut/*

• These two commands resimulate a design from a VCD file. Refer to “Simulating with
Input Values from a VCD File” for further details.

vcd dumpports -file addern.vcd /testbench/uut/*
vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

• This series of commands creates VCD files for the instances proc and cache and then re-
simulates the design using the VCD files in place of the instance source files. Refer to
“Replacing Instances with Output Values from a VCD File” for more information.

vcd dumpports -vcdstim -file proc.vcd /top/p/*
vcd dumpports -vcdstim -file cache.vcd /top/c/*
run 1000

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd

ModelSim Reference Manual, v6.2g182

Commands
vcd dumpportsall

February 2007

vcd dumpportsall
The vcd dumpportsall command creates a checkpoint in the VCD file which shows the value
of all selected ports at that time in the simulation, regardless of whether the port values have
changed since the last timestep.

Related Verilog task: $dumpportsall

Syntax

vcd dumpportsall [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”

Commands
vcd dumpportsflush

ModelSim Reference Manual, v6.2g 183
February 2007

vcd dumpportsflush
The vcd dumpportsflush command flushes the contents of the VCD file buffer to the specified
VCD file.

Related Verilog task: $dumpportsflush

Syntax

vcd dumpportsflush [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”

ModelSim Reference Manual, v6.2g184

Commands
vcd dumpportslimit

February 2007

vcd dumpportslimit
The vcd dumpportslimit command specifies the maximum size of the VCD file (by default,
limited to available disk space). When the size of the file exceeds the limit, a comment is
appended to the file and VCD dumping is disabled.

Related Verilog task: $dumpportslimit

Syntax

vcd dumpportslimit <dumplimit> [<filename>]

Arguments

• <dumplimit>

Specifies the maximum VCD file size in bytes. Required.

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”

Commands
vcd dumpportsoff

ModelSim Reference Manual, v6.2g 185
February 2007

vcd dumpportsoff
The vcd dumpportsoff command turns off VCD dumping and records all dumped port values
as x.

Related Verilog task: $dumpportsoff

Syntax

vcd dumpportsoff [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”

ModelSim Reference Manual, v6.2g186

Commands
vcd dumpportson

February 2007

vcd dumpportson
The vcd dumpportson command turns on VCD dumping and records the current values of all
selected ports. This command is typically used to resume dumping after invoking vcd
dumpportsoff.

Related Verilog task: $dumpportson

Syntax

vcd dumpportson [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”

Commands
vcd file

ModelSim Reference Manual, v6.2g 187
February 2007

vcd file
The vcd file command specifies the filename and state mapping for the VCD file created by a
vcd add command. The vcd file command is optional. If used, it must be issued before any vcd
add commands.

Related Verilog task: $dumpfile

Syntax

vcd file [-dumpports] [-direction] [<filename>] [-map <mapping pairs>] [-no_strength_range]
[-nomap] [-unique]

Arguments

• -dumpports

Capture detailed port driver data for Verilog ports and VHDL std_logic ports. Optional.
This option works only on ports, and any subsequent vcd add command will accept only
qualifying ports (silently ignoring all other specified objects).

• -direction

Includes driver direction data in the VCD file. Optional.

• <filename>

Specifies the name of the VCD file that is created (the default is dump.vcd). Optional.

• -map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the default
mappings. The mapping is specified as a list of character pairs. The first character in a pair
must be one of the std_logic characters UX01ZWLH- and the second character is the
character you wish to be recorded in the VCD file. For example, to map L and H to z:

vcd file -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

• -no_strength_range

Ignores strength ranges when resolving driver values. Optional. This argument is an
extension to the IEEE 1364 specification. Refer to “Resolving Values” for additional
information.

• -nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values recorded
in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-. This option
results in a non-standard VCD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

ModelSim Reference Manual, v6.2g188

Commands
vcd file

February 2007

• -unique

Generates unique VCD variable names for ports even if those ports are connected to the
same collapsed net. Optional.

See also

“Value Change Dump (VCD) Files”, Verilog tasks are documented in the IEEE 1364 standard.

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z

Commands
vcd files

ModelSim Reference Manual, v6.2g 189
February 2007

vcd files
The vcd files command specifies a filename and state mapping for a VCD file created by a vcd
add command. The vcd files command is optional. If used, it must be issued before any vcd add
commands.

Related Verilog task: $fdumpfile

Syntax

vcd files [-compress] [-direction] <filename> [-map <mapping pairs>] [-no_strength_range]
[-nomap] [-unique]

Arguments

• -compress

Produces a compressed VCD file. Optional. ModelSim uses the gzip compression
algorithm. If you specify a .gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compress argument.

• -direction

Includes driver direction data in the VCD file. Optional.

• <filename>

Specifies the name of a VCD file to create. Required. Multiple files can be opened during a
single simulation; however, you can create only one file at a time. If you want to create
multiple files, invoke vcd files multiple times.

• -map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the default
mappings. The mapping is specified as a list of character pairs. The first character in a pair
must be one of the std_logic characters UX01ZWLH- and the second character is the
character you wish to be recorded in the VCD file. For example, to map L and H to z:

vcd files -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

• -no_strength_range

Ignores strength ranges when resolving driver values. Optional. This argument is an
extension to the IEEE 1364 specification. Refer to “Resolving Values” for additional
information.

• -nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values recorded
in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-. This option

ModelSim Reference Manual, v6.2g190

Commands
vcd files

February 2007

results in a non-standard VCD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

• -unique

Generates unique VCD variable names for ports even if those ports are connected to the
same collapsed net. Optional.

Examples

The following example shows how to "mask" outputs from a VCD file until a certain time after
the start of the simulation. The example uses two vcd files commands and the vcd on and vcd
off commands to accomplish this task.

vcd files in_inout.vcd
vcd files output.vcd
vcd add -in -inout -file in_inout.vcd /*
vcd add -out -file output.vcd /*
vcd off output.vcd
run 1us
vcd on output.vcd
run -all

See also

“Value Change Dump (VCD) Files”, Verilog tasks are documented in the IEEE 1364 standard.

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z

Commands
vcd flush

ModelSim Reference Manual, v6.2g 191
February 2007

vcd flush
The vcd flush command flushes the contents of the VCD file buffer to the specified VCD file.
This command is useful if you want to create a complete VCD file without ending your current
simulation.

Related Verilog tasks: $dumpflush, $fdumpflush

Syntax

vcd flush [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”, Verilog tasks are documented in the IEEE 1364 standard.

ModelSim Reference Manual, v6.2g192

Commands
vcd limit

February 2007

vcd limit
The vcd limit command specifies the maximum size of a VCD file (by default, limited to
available disk space).

When the size of the file exceeds the limit, a comment is appended to the file and VCD dumping
is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit

Syntax

vcd limit <filesize> [<filename>]

Arguments

• <filesize>

Specifies the maximum VCD file size in bytes. Required.

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”. Verilog tasks are documented in the IEEE 1364 standard.

Commands
vcd off

ModelSim Reference Manual, v6.2g 193
February 2007

vcd off
The vcd off command turns off VCD dumping to the specified file and records all VCD
variable values as x.

Related Verilog tasks: $dumpoff, $fdumpoff

Syntax

vcd off [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”. Verilog tasks are documented in the IEEE 1364 standard.

ModelSim Reference Manual, v6.2g194

Commands
vcd on

February 2007

vcd on
The vcd on command turns on VCD dumping to the specified file and records the current
values of all VCD variables.

By default, vcd on is automatically performed at the end of the simulation time that the vcd add
commands are performed.

Related Verilog tasks: $dumpon, $fdumpon

Syntax

vcd on [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”. Verilog system tasks are documented in the IEEE 1364
standard.

Commands
vcd2wlf

ModelSim Reference Manual, v6.2g 195
February 2007

vcd2wlf
vcd2wlf is a utility that translates a VCD (Value Change Dump) file into a WLF file that can be
displayed in ModelSim using the vsim -view argument.

Syntax

vcd2wlf [-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>]
<vcd filename> <wlf filename>

Arguments

• -splitio

Specifies that extended VCD port values are to be split into their corresponding input and
output components by creating 2 signals instead of just 1 in the resulting .wlf file. Optional.
By default the new input-component signal keeps the same name as the original port name
while the output-component name is the original name with "__o" appended to it.

• -splitio_in_ext <extension>

Specifies an extension to add to input-component signal names created by using -splitio.
Optional.

• -splitio_out_ext <extension>

Specifies an extension to add to output-component signal names created by using -splitio.
Optional.

• <vcd filename>

Specifies the name of the VCD file you want to translate into a WLF file. Required.

• <wlf filename>

Specifies the name of the output WLF file. Required.

ModelSim Reference Manual, v6.2g196

Commands
vcom

February 2007

vcom
 The vcom command compiles VHDL source code into a specified working library (or to the
work library by default).

This command may be invoked from within ModelSim or from the operating system command
prompt. This command may also be invoked during simulation.

Compiled libraries are major-version dependent. When moving between major versions, you
have to refresh compiled libraries using the -refresh argument to vcom. This is not true for
minor versions (letter releases).

All arguments to the vcom command are case sensitive: -WORK and -work are not equivalent.

Syntax

vcom [-87] [-93] [-2002] [-bindAtCompile] [-bindAtLoad] [-check_synthesis] [-debugVA]
[-error <msg_number>[,<msg_number>,…]] [-explicit] [-f <filename>]
[-fatal <msg_number>[,<msg_number>,…]] [-force_refresh <design_unit>]
[-gen_xml <design_unit> <filename>] [-help] [-ignoredefaultbinding] [-ignorevitalerrors]
[-just abcep] [-line <number>] [-lint] [-no1164] [-noaccel <package_name>]
[-nocasestaticerror] [-nocheck] [-noindexcheck] [-nologo] [-nonstddriverinit]
[-noothersstaticerror] [-norangecheck] [-note <msg_number> [,<msg_number>, …]]
[-novital] [-novitalcheck][-nowarn <category_number>] [-O0]
[-pedanticerrors] [-performdefaultbinding][-quiet] [-rangecheck] [-refresh] [-s]
[-skip abcep] [-source] [-suppress <msg_number>[,<msg_number>,…]] [-time] [-version]
[-warning <msg_number>[,<msg_number>,…]] [-work <library_name>] <filename>

Arguments

• -87

Disables support for VHDL-1993 and 2002. Optional. Default is -2002. See additional
discussion in the examples. You can modify the VHDL93 variable in the modelsim.ini file
to set this permanently (Refer to “Simulator Control Variables”).

• -93

Disables support for VHDL-1987 and 2002. Optional. Default is -2002. See additional
discussion in the examples. You can modify the VHDL93 variable in the modelsim.ini file
to set this permanently.

• -2002

Specifies that the compiler is to support VHDL-2002. Optional. This is the default.

• -bindAtCompile

Forces ModelSim to perform default binding at compile time rather than at load time.
Optional. Refer to “Default Binding” for more information. You can change the permanent
default by editing the BindAtCompile variable in the modelsim.ini.

Commands
vcom

ModelSim Reference Manual, v6.2g 197
February 2007

• -bindAtLoad

Forces ModelSim to perform default binding at load time rather than at compile time.
Optional. Default.

• -check_synthesis

Turns on limited synthesis rule compliance checking. Specifically, it checks to see that
signals read by a process are in the sensitivity list. Optional. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis variable in the modelsim.ini
file to set a permanent default.

• -debugVA

Prints a confirmation if a VITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration. Optional.

• -error <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "error." Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -explicit

Directs the compiler to resolve ambiguous function overloading by favoring the explicit
function definition over the implicit function definition. Optional. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools choose
explicit operators over implicit operators. Using this switch makes ModelSim compatible
with common industry practice.

• -f <filename>

Specifies a file with more command-line arguments. Optional. Allows complex argument
strings to be reused without retyping. Allows gzipped input files. Nesting of -f options is
allowed.

The file syntax basically follows what you type on the command line with the exception that
newline characters are ignored. Environment variable expansion (for example in a
pathname) does not occur in -f files.

• -fatal <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "fatal." Optional. Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -force_refresh <design_unit>

Forces the refresh of all specified design units. Optional. By default, the work library is
updated; use -work <library_name>, in conjunction with -force_refresh, to update a
different library (for example, vcom -work <your_lib_name> -force_refresh).

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the tool’s dependency checking algorithm

ModelSim Reference Manual, v6.2g198

Commands
vcom

February 2007

changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

 ** Error: (vsim-13) Recompile /u/test/dware/dware_61e_beta.dwpackages
because /home/users/questasim/linux/../synopsys.attributes has changed.

The -force_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -refresh argument.

A more conservative approach to working around -refresh dependency checks is to
recompile the source code, if it is available.

• -gen_xml <design_unit> <filename>

Produces an XML-tagged file containing the interface definition of the specified entity.
Optional. This option requires a two-step process where you must 1) compile <filename>
into a library with vcom (without -gen_xml) then 2) execute vcom with the -gen_xml
switch, for example:

vlib work
vcom counter.vhd
vcom -gen_xml counter counter.xml

• -help

Displays the command’s options and arguments. Optional.

• -ignoredefaultbinding

Instructs the compiler not to generate a default binding during compilation. Optional. You
must explicitly bind all components in the design to use this switch.

• -ignorevitalerrors

Directs the compiler to ignore VITAL compliance errors. Optional. The compiler still
reports that VITAL errors exist, but it will not stop the compilation. You should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

• -just abcep

Directs the compiler to “just” include:

a — architectures

b — bodies

c — configurations

e — entities

p — packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

Commands
vcom

ModelSim Reference Manual, v6.2g 199
February 2007

• -line <number>

Starts the compiler on the specified line in the VHDL source file. Optional. By default, the
compiler starts at the beginning of the file.

• -lint

Optional. Enables better checking on case statement rules. Also enables warning messages
for the following situations: 1) the result of the built-in concatenation operator ("&") is the
actual for a subprogram formal parameter of an unconstrained array type; 2) the entity to
which a component instantiation is bound has a port that is not on the component, and for
which there is no error otherwise; 3) a direct recursive subprogram call; and 4) in cases
involving class SIGNAL formal parameters, as described in IEEE Standard VHDL
Language Reference Manual 1076-1993, section 2.1.1.2 entitled "Signal parameters", line
115. This last check only applies to designs compiled using 87. If you were to compile in 93,
it would be flagged as a warning or error, even without the -lint argument. Can also be
enabled using the Show_Lint variable in the modelsim.ini file.

• -no1164

Causes the source files to be compiled without taking advantage of the built-in version of
the IEEE std_logic_1164 package. Optional. This will typically result in longer simulation
times for VHDL programs that use variables and signals of type std_logic.

• -noaccel <package_name>

Turns off acceleration of the specified package in the source code using that package.

• -nocasestaticerror

Suppresses case statement static warnings. Optional. VHDL standards require that case
statement alternative choices be static at compile time. However, some expressions which
are globally static are allowed. This switch prevents the compiler from warning on such
expressions. If the -pedanticerrors switch is specified, this switch is ignored.

• -nocheck

Disables index and range checks. Optional. You can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

• -noindexcheck

Disables checking on indexing expressions to determine whether indices are within declared
array bounds. Optional.

• -nologo

Disables display of the startup banner. Optional.

• -nonstddriverinit

Forces ModelSim to match pre-5.7c behavior in initializing drivers in a particular case.
Optional. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly initialized
drivers if the port did not have an explicit initialization value and the actual signal connected
to the port had explicit initial values. Depending on a number of factors, ModelSim could
incorrectly use the actual signal's initial value when initializing lower level drivers. Note

ModelSim Reference Manual, v6.2g200

Commands
vcom

February 2007

that the argument does not cause all lower-level drivers to use the actual signal's initial
value. It does this only in the specific cases where older versions used the actual signal's
initial value.

• -noothersstaticerror

Disables warnings that result from array aggregates with multiple choices having "others"
clauses that are not locally static. Optional. If the -pedanticerrors switch is specified, this
switch is ignored.

• -norangecheck

Disables run time range checking. In some designs, this results in a 2X speed increase.
Range checking is enabled by default or, once disabled, can be enabled using -rangecheck.
Refer to “Range and Index Checking” for additional information.

• -note <msg_number> [,<msg_number>, …]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -novital

Causes vcom to use VHDL code for VITAL procedures rather than the accelerated and
optimized timing and primitive packages built into the simulator kernel. Optional. Allows
breakpoints to be set in the VITAL behavior process and permits single stepping through the
VITAL procedures to debug your model. Also all of the VITAL data can be viewed in the
Locals or Objects windows.

• -novitalcheck

Disables Vital level 1 checks and also Vital level 0 checks defined in section 4 of the Vital-
95 Spec (IEEE Std 1076.4-1995). Optional.

• -nowarn <category_number>

Selectively disables a category of warning messages. Optional. Multiple -nowarn switches
are allowed. Warnings may be disabled for all compiles via the Main window Compile >
Compile Options menu command or the modelsim.ini file (Refer to “VHDL Compiler
Control Variables”).

The warning message categories are:

1 unbound component

2 process without a wait statement

3 null range

4 no space in time literal

5 multiple drivers on unresolved signal

6 VITAL compliance checks

7 VITAL optimization messages

Commands
vcom

ModelSim Reference Manual, v6.2g 201
February 2007

• -O0

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to work
around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out. Add the DisableOpt variable
to the [vcom] section of the modelsim.ini file to set a permanent default.

• -pedanticerrors

Forces ModelSim to error (rather than warn) on a variety of conditions. Refer to “Enforcing
Strict 1076 Compliance” for a complete list. Optional. This argument overrides -
nocasestaticerror and -noothersstaticerror (see above).

• -performdefaultbinding

Enables default binding when it has been disabled via the
RequireConfigForAllDefaultBinding option in the modelsim.ini file. Optional.

• -quiet

Disables ’Loading’ messages. Optional.

• -rangecheck

Enables run time range checking. Default. Range checking can be disabled using the
-norangecheck argument. Refer to “Range and Index Checking” for additional information.

• -refresh

Regenerates a library image. Optional. By default, the work library is updated; use -work
<library_name>, in conjunction with -refresh, to update a different library (for example,
vcom -work <your_lib_name> -refresh). If a dependency checking error occurs which
prevents the refresh, use the vcom -force_refresh argument. See the vcom Examples for
more information.

• -s

Instructs the compiler not to load the standard package. Optional. This argument should
only be used if you are compiling the standard package itself.

• -skip abcep

Directs the compiler to skip all:

a — architectures

8 lint checks

9 signal value used in expression evaluated at
elaboration

10 VHDL-1993 constructs in VHDL-1987 code

13 constructs that code coverage can't handle

14 locally static error deferred until simulation
run

ModelSim Reference Manual, v6.2g202

Commands
vcom

February 2007

b — bodies

c — configurations

e — entities

p — packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

• -source

Displays the associated line of source code before each error message that is generated
during compilation. Optional. By default, only the error message is displayed.

• -suppress <msg_number>[,<msg_number>,…]

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. You cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Changing Message Severity Level” for more information.

• -time

Reports the "wall clock time" vcom takes to compile the design. Optional. Note that if many
processes are running on the same system, wall clock time may differ greatly from the
actual "cpu time" spent on vcom.

• -version

Returns the version of the compiler as used by the licensing tools. Optional.

• -warning <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Changing
Message Severity Level” for more information.

• -work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical library
work. Optional; by default, the compiled design units are added to the work library. The
specified pathname overrides the pathname specified for work in the project file.

• <filename>

Specifies the name of a file containing the VHDL source to be compiled. One filename is
required; multiple filenames can be entered separated by spaces or wildcards may be used
(e.g., *.vhd).

If you don’t specify a filename, and you are using the GUI, a dialog box pops up allowing
you to select the options and enter a filename.

Examples

• Compile the VHDL source code contained in the file example.vhd.

Commands
vcom

ModelSim Reference Manual, v6.2g 203
February 2007

vcom example.vhd

• ModelSim supports designs that use elements conforming to the 1987, 1993, and 2002
standards. Compile the design units separately using the appropriate switches.

vcom -87 o_units1.vhd o_units2.vhd
vcom -93 n_unit91.vhd n_unit92.vhd

• When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieee library.

vcom -noaccel numeric_std example.vhd

• Although it is not obvious, the = operator is overloaded in the std_logic_1164 package.
All enumeration data types in VHDL get an “implicit” definition for the = operator. So
while there is no explicit = operator, there is an implicit one. This implicit declaration
can be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in a different package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

vcom -explicit example.vhd

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

ARITHMETIC."="(left, right)

• The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of ModelSim (4.6 and
later only).

vcom -work mylib -refresh

ModelSim Reference Manual, v6.2g204

Commands
vdel

February 2007

vdel
 The vdel command deletes a design unit from a specified library.

Syntax

vdel [-help] [-lib <library_name>] [-verbose] [-all | <design_unit> [<arch_name>]

Arguments

• -all

Deletes an entire library. Optional. BE CAREFUL! Libraries cannot be recovered once
deleted, and you are not prompted for confirmation.

• <arch_name>

Specifies the name of an architecture to be deleted. Optional. If omitted, all of the
architectures for the specified entity are deleted. Invalid for a configuration or a package.

• <design_unit>

Specifies the entity, package, configuration, or module to be deleted. Required unless -all is
used.

• -help

Displays the command’s options and arguments. Optional.

• -lib <library_name>

Specifies the logical name or pathname of the library that holds the design unit to be deleted.
Optional. By default, the design unit is deleted from the work library.

• -verbose

Displays progress messages. Optional.

Examples

• Delete the work library.

vdel -all

• Delete the synopsys library.

vdel -lib synopsys -all

• Delete the entity named xor and all its architectures from the work library.

vdel xor

• Delete the architecture named behavior of the entity xor from the work library.

vdel xor behavior

• Delete the package named base from the work library.

Commands
vdel

ModelSim Reference Manual, v6.2g 205
February 2007

vdel base

ModelSim Reference Manual, v6.2g206

Commands
vdir

February 2007

vdir
The vdir command lists the contents of a design library.

This command can also be used to check compatibility of a vendor library. If vdir cannot read a
vendor-supplied library, the library may not be ModelSim compatible.

Syntax

vdir [-help] [-l| [-prop <prop>] [-r] [-all] | [-lib <library_name>] [<design_unit>]

Arguments

• -help

Displays the command’s options and arguments. Optional.

• -l

Prints the version of vcom or vlog with which each design unit was compiled as well as any
compilation options used. Also prints the object-code version number that indicates which
versions of vcom/vlog and ModelSim are compatible.

• -prop <prop>

Reports on the designated design unit property as listed in Table 2-4 below. Optional. If no
<prop> is designated, all will be reported.

Table 2-4. Design Unit Properties

<prop> Description

archcfg configuration for arch

bbox blackbox for optimized design

body needs a body

default default options

dir source directory

dpnd depends on

entcfg configuration for entity

extern package reference number

inline module inlined

lrm language standard

mtime source modified time

name short name

opcode opcode format

options compile options

Commands
vdir

ModelSim Reference Manual, v6.2g 207
February 2007

• -r

Prints architecture information for each entity in the output.

• -all

Lists the contents of all libraries listed in the [Library] section of the active modelsim.ini
file. Optional. Refer to “Library Path Variables” for more information.

• -lib <library_name>

Specifies the logical name or the pathname of the library to be listed. Optional. By default,
the contents of the work library are listed.

• <design_unit>

Indicates the design unit to search for within the specified library. If the design unit is a
VHDL entity, its architectures are listed. Optional. By default all entities, configurations,
modules, packages, and optimized design units in the specified library are listed.

Examples

• The following example lists the architectures associated with the entity named my_asic
that reside in the HDL design library called design.

vdir -lib design my_asic

• This example shows the output of vdir -l including any compilation options used to
compile the library:

> # MODULE ram_tb
> # Verilog Version: RV9i]?9FGhibjG<jXXV_`1
> # Version number: CRW2<UhheaW;LIL2_B5o31
> # Source modified time: 1132284874
> # Source file: ram_tb.v
> # Version number: CRW2<UhheaW;LIL2_B5o31
> # Opcode format: 6.1c; VLOG SE Object version 31
> # Optimized Verilog design root: 1
> # Language standard: 1
> # Compile options: -cover bcst
> # Compile defaults: GenerateLoopIterationMax=100000
> # Source directory: C:\Verif\QuestaSim_6.1c

\examples\tutorials\verilog\memory

root optimized Verilog design root

src source file

top top level model

ver version number

vlogv Verilog version

voptv Verilog optimized version

Table 2-4. Design Unit Properties

<prop> Description

ModelSim Reference Manual, v6.2g208

Commands
vdir

February 2007

Commands
verror

ModelSim Reference Manual, v6.2g 209
February 2007

verror
The verror command prints a detailed description about a message number. It may also point to
additional documentation related to the error.

Syntax

verror [-all [-kind <tool>]] [-fmt] [-ranges] <msgNum>…

Arguments

• -all [-kind <tool>]

Prints all error messages. Optional. If you specify -kind <tool>, it prints just those error
messages associated with the specified tool.

• -fmt

Prints the format string that is used in the actual error message. Optional.

• -ranges

Prints the numeric ranges of error message numbers by tool. Optional.

• <msgNum>

Specifies the message number of a ModelSim message. Required unless you specify the -all
argument. The message number can be obtained from messages that have the format:

** <Level>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedMsg>

Example

• Say you see the following message in the transcript:

** Error (vsim-3061) foo.v(22): Too many Verilog port connections.

You would type:

verror 3061

and receive the following output:

Message # 3061:
Too many Verilog ports were specified in a mixed VHDL/Verilog
instantiation. Verify that the correct VHDL/Verilog connection is
being made and that the number of ports matches.
[DOC: ModelSim User's Manual - Mixed VHDL and Verilog Designs
Chapter]

ModelSim Reference Manual, v6.2g210

Commands
vgencomp

February 2007

vgencomp
Once a Verilog module is compiled into a library, you can use the vgencomp command to write
its equivalent VHDL component declaration to standard output.

Optional switches allow you to generate bit or vl_logic port types; std_logic port types are
generated by default.

Syntax

vgencomp [-help] [-lib <library_name>] [-b] [-s] [-v] <module_name>

Arguments

• -help

Displays the command’s options and arguments. Optional.

• -lib <library_name>

Specifies the pathname of the working library. If not specified, the default library work is
used. Optional.

• -b

Causes vgencomp to generate bit port types. Optional.

• -s

Used for the explicit declaration of default std_logic port types. Optional.

• -v

Causes vgencomp to generate vl_logic port types. Optional.

• <module_name>

Specifies the name of the Verilog module to be accessed. Required.

Examples

• This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

module top(i1, o1, o2, io1);
parameter width = 8;
parameter delay = 4.5;
parameter filename = "file.in";

input i1;
output [7:0] o1;
output [4:7] o2;
inout [width-1:0] io1;

endmodule

After compiling, vgencomp is invoked on the compiled module:

vgencomp top

Commands
vgencomp

ModelSim Reference Manual, v6.2g 211
February 2007

and writes the following to stdout:

component top
generic(
width : integer := 8;
delay : real := 4.500000;
filename : string := "file.in"

);
port(

i1 : in std_logic;
o1 : out std_logic_vector(7 downto 0);
o2 : out std_logic_vector(4 to 7);
io1 : inout std_logic_vector

);
end component;

ModelSim Reference Manual, v6.2g212

Commands
view

February 2007

view
 The view command displays a stand-alone window or Main window pane.

To remove a window, use the noview command.

The view command without arguments returns a list of window class names of all the windows
currently open.

The view command with one or more options and no window classes or window names
specified applies the options to the currently open windows. See examples for additional details.

Syntax

view [*] [-height <n>] [-icon] [-title {New Window Title}] [-undock | -dock]
[-width <n>] [-x <n>] [-y <n>] <window_type>…

Arguments

• *

Specifies that all windows be opened. Optional.

• -height <n>

Specifies the window height in pixels. Valid only for stand-alone windows, not panes in the
Main window. Optional.

• -icon

Toggles the view between window and icon. Valid only for stand-alone windows, not panes
in the Main window. Optional.

• -title {New Window Title}

Specifies the window title of the designated window. Curly braces are only needed for titles
that include spaces. Double quotes can be used in place of braces, for example "New
Window Title". If the new window title does not include spaces, no braces or quotes are
needed. For example: -title new_wave wave assigns the title new_wave to the Wave
window.

• -undock

Opens the specified pane as a standalone window, undocked from the Main window.
Optional.

• -dock

Docks the specified standalone window into the Main window.

• -width <n>

Specifies the window width in pixels. Valid only for stand-alone windows, not panes in the
Main window. Optional.

Commands
view

ModelSim Reference Manual, v6.2g 213
February 2007

• <window_type>…

Specifies the window/pane type to view. Required. You do not need to type the full type
(see examples below); implicit wildcards are accepted; multiple window types may be used.
Available window/pane types are:

dataflow, list, locals, memory, objects, process, profiledetails, profilemain, signals,
structure, variables, wave, watch, and workspace

• -x <n>

Specifies the window upper-left-hand x-coordinate in pixels. Valid only for stand-alone
windows, not panes in the Main window. Optional.

• -y <n>

Specifies the window upper-left-hand y-coordinate in pixels. Valid only for stand-alone
windows, not panes in the Main window. Optional.

Examples

• Undock the Wave pane from the Main window and makes it a standalone window.

view -undock wave

• Undock all currently open panes in the Main window.

view -undock

• Display the Watch and Wave panes.

view w

• Display the Objects and Active Process panes.

view ob pr

• Open a new Wave window with My Wave Window as its title.

view -title {My Wave Window} wave

See also

noview

ModelSim Reference Manual, v6.2g214

Commands
virtual count

February 2007

virtual count
The virtual count command counts the number of currently defined virtuals that were not read
in using a macro file.

Syntax

virtual count [-kind <kind>] [-unsaved]

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

• -unsaved

Specifies that the count include only those virtuals that have not been saved to a macro file.
Optional.

See also

virtual define, virtual save, virtual show, “Virtual Objects”

Commands
virtual define

ModelSim Reference Manual, v6.2g 215
February 2007

virtual define
The virtual define command prints to the Transcript pane the definition of the virtual signal or
function in the form of a command that can be used to re-create the object.

Syntax

virtual define [-kind <kind>] <pathname>

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

• <pathname>

Specifies the path to the virtual(s) for which you want definitions. Required. Wildcards can
be used.

Examples

• Show the definitions of all the virtuals you have explicitly created.

virtual define -kind explicits *

See also

virtual describe, virtual show, “Virtual Objects”

ModelSim Reference Manual, v6.2g216

Commands
virtual delete

February 2007

virtual delete
The virtual delete command removes the matching virtuals.

Syntax

virtual delete [-kind <kind>] <pathname>

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

• <pathname>

Specifies the path to the virtual(s) you want to delete. Required. Wildcards can be used.

Examples

• Delete all of the virtuals you have explicitly created.

virtual delete -kind explicits *

See also

virtual signal, virtual function, “Virtual Objects”

Commands
virtual describe

ModelSim Reference Manual, v6.2g 217
February 2007

virtual describe
The virtual describe command prints to the Transcript pane a complete description of the data
type of one or more virtual signals.

Similar to the existing describe command.

Syntax

virtual describe [-kind <kind>] <pathname>

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

• <pathname>

Specifies the path to the virtual(s) for which you want descriptions. Required. Wildcards
can be used.

Examples

• Describe the data type of all virtuals you have explicitly created.

virtual describe -kind explicits *

See also

virtual define, virtual show, “Virtual Objects”

ModelSim Reference Manual, v6.2g218

Commands
virtual expand

February 2007

virtual expand
The virtual expand command produces a list of all the non-virtual objects contained in the
specified virtual signal(s).

This can be used to create a list of arguments for a command that does not accept or understand
virtual signals.

Syntax

virtual expand [-base] <pathname>

Arguments

• -base

Causes the root signal parent to be output in place of a subelement. Optional. For example:

vcd add [virtual expand -base myVirtualSignal]

the resulting command after substitution would be:

vcd add signala signalb signalc

• <pathname>

Specifies the path to the signals and virtual signals to expand. Required. Wildcards can be
used. Any number of paths can be specified.

Examples

• Add the elements of a virtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand …"), then the result substituted into the surrounding
command.

vcd add [virtual expand myVirtualSignal]

So if myVirtualSignal is a concatenation of signala, signalb.rec1 and signalc(5 downto
3), the resulting command after substitution would be:

vcd add signala signalb.rec1 {signalc(5 downto 3)}

The slice of signalc is quoted in curly braces, because it contains spaces.

See also

virtual signal, “Virtual Objects”

Commands
virtual function

ModelSim Reference Manual, v6.2g 219
February 2007

virtual function
The virtual function command creates a new signal, known only by the GUI (not the kernel),
that consists of logical operations on existing signals and simulation time, as described in
<expressionString>.

It cannot handle bit selects and slices of Verilog registers. Please see Syntax and Conventions
for more details on syntax.

If the virtual function references more than a single scalar signal, it will display as an
expandable object in the Wave and Objects windows. The children correspond to the inputs of
the virtual function. This allows the function to be "expanded" in the Wave window to see the
values of each of the input waveforms, which could be useful when using virtual functions to
compare two signal values.

Virtual functions can also be used to gate the List window display.

Syntax

virtual function [-env <path>] [-install <path>] [-delay <time>] {<expressionString>} <name>

Arguments

Arguments for virtual function are the same as those for virtual signal, except for the contents
of the expression string.

• -env <path>

Specifies a hierarchical context for the signal names in <expressionString> so they don't all
have to be full paths. Optional.

• -install <path>

Causes the newly-created signal to become a child of the specified region. If -install is not
specified, the newly-created signal becomes a child of the nearest common ancestor of all
objects appearing in <expressionString>. If the expression references more than one WLF
file (dataset), the virtual signal will automatically be placed in region virtuals:/Functions.
Optional.

• -delay <time>

Specifies a value by which the virtual function will be delayed. Optional. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

• {<expressionString>}

A text string expression in the MTI GUI expression format. Required. See
GUI_expression_format for more information.

• <name>

The name you define for the virtual signal. Required. Case is ignored unless installed in a
Verilog region. Use alpha, numeric, and underscore characters only, unless you are using

ModelSim Reference Manual, v6.2g220

Commands
virtual function

February 2007

VHDL extended identifier notation. If using VHDL extended identifier notation, <name>
needs to be quoted with double quotes or with curly braces.

Examples

• Create a signal /chip/section1/clk_n that is the inverse of /chip/section1/clk.

virtual function { not /chip/section1/clk } clk_n

• Create a std_logic_vector equivalent of a Verilog register rega and installs it as
/chip/rega_slv.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega
} rega_slv

• Create a boolean signal /chip/addr_eq_fab that is true when /chip/addr[11:0] is equal to
hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { /chip/addr[11:0] == 0xfab } addr_eq_fab

• Create a signal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff is installed
in region virtuals:/Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being
compared.

virtual function { gate:/chip/siga XOR rtl:/chip/siga } siga_diff

• Create a virtual signal consisting of the logical "AND" function of /top/signalA with
/top/signalB, and delays it by 10 ns.

virtual function -delay {10 ns} {/top/signalA AND /top/signalB}
myDelayAandB

• Create a one-bit signal outbus_diff which is non-zero during times when any bit of
/chip/outbus in the gate-level version doesn’t match the corresponding bit in the rtl
version.

This expression uses the "OR-reduction" operator, which takes the logical OR of all the
bits of the vector argument.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) }
outbus_diff

Commands fully compatible with virtual functions

add log
log

delete describe
("virtual describe" is a little faster)

Commands
virtual function

ModelSim Reference Manual, v6.2g 221
February 2007

Commands not currently compatible with virtual functions

See also

examine find restart

searchlog show

drivers force noforce

vcd add when

virtual count virtual define virtual delete

virtual describe virtual expand virtual hide

virtual log virtual nohide virtual nolog

virtual region virtual save virtual show

virtual signal virtual type “Virtual Objects

ModelSim Reference Manual, v6.2g222

Commands
virtual hide

February 2007

virtual hide
The virtual hide command causes the specified real or virtual signals to not be displayed in the
Objects window. This is used when you want to replace an expanded bus with a user-defined
bus.

You make the signals reappear using the virtual nohide command.

Syntax

virtual hide [-kind <kind>]|[-region <path>] <pattern>

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

• -region <path>

Used in place of -kind to specify a region of design space in which to look for the signal
names. Optional.

• <pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals to
hide. Required. Any number of names or wildcard patterns may be used.

See also

virtual nohide, “Virtual Objects”

Commands
virtual log

ModelSim Reference Manual, v6.2g 223
February 2007

virtual log
The virtual log command causes the simulation-mode dependent signals of the specified virtual
signals to be logged by the kernel.

If wildcard patterns are used, it will also log any normal signals found, unless the -only option is
used. You unlog the signals using the virtual nolog command.

Syntax

virtual log [-kind <kind>] | [-region <path>] [-recursive] [-only] [-in] [-out] [-inout] [-internal]
[-ports] <pattern>

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

• -region <path>

Used in place of -kind to specify a region of design space in which to look for signals to log.
Optional.

• -recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region.

• -only

Can be used with a wildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be logged. Optional.

• -in

Specifies that the kernel log data for ports of mode IN whose names match the specification.
Optional.

• -out

Specifies that the kernel log data for ports of mode OUT whose names match the
specification. Optional.

• -inout

Specifies that the kernel log data for ports of mode INOUT whose names match the
specification. Optional.

• -internal

Specifies that the kernel log data for internal (non-port) objects whose names match the
specification. Optional.

• -ports

Specifies that the kernel log data for all ports. Optional.

ModelSim Reference Manual, v6.2g224

Commands
virtual log

February 2007

• <pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals to
log. Required. Any number of names or wildcard patterns may be used.

See also

virtual nolog, “Virtual Objects”

Commands
virtual nohide

ModelSim Reference Manual, v6.2g 225
February 2007

virtual nohide
The virtual nohide command reverses the effect of a virtual hide command, causing the
specified real or virtual signals to reappear the Objects window.

Syntax

virtual nohide [-kind <kind>]|[-region <path>] <pattern>

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

• -region <path>

Used in place of -kind to specify a region of design space in which to look for the signal
names. Optional.

• <pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals to
expose. Required. Any number of names or wildcard patterns may be used.

See also

virtual hide, “Virtual Objects”

ModelSim Reference Manual, v6.2g226

Commands
virtual nolog

February 2007

virtual nolog
The virtual nolog command reverses the effect of a virtual log command. It causes the
simulation-dependent signals of the specified virtual signals to be excluded ("unlogged") by the
kernel.

If wildcard patterns are used, it will also unlog any normal signals found, unless the -only
option is used.

Syntax

virtual nolog [-kind <kind>] | [-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

• -region <path>

Used in place of -kind to specify a region of design space in which to look for signals to
unlog. Optional.

• -recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region.

• -only

Can be used with a wildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be unlogged. Optional.

• -in

Specifies that the kernel exclude data for ports of mode IN whose names match the
specification. Optional.

• -out

Specifies that the kernel exclude data for ports of mode OUT whose names match the
specification. Optional.

• -inout

Specifies that the kernel exclude data for ports of mode INOUT whose names match the
specification. Optional.

• -internal

Specifies that the kernel exclude data for internal (non-port) objects whose names match the
specification. Optional.

Commands
virtual nolog

ModelSim Reference Manual, v6.2g 227
February 2007

• -ports

Specifies that the kernel exclude data for all ports. Optional.

• <pattern>

Indicates which signal names or wildcard pattern should be used in finding the signals to
unlog. Required. Any number of names or wildcard patterns may be used.

See also

virtual log, “Virtual Objects”

ModelSim Reference Manual, v6.2g228

Commands
virtual region

February 2007

virtual region
The virtual region command creates a new user-defined design hierarchy region.

Syntax

virtual region <parentPath> <regionName>

Arguments

• <parentPath>

The full path to the region that will become the parent of the new region. Required.

• <regionName>

The name you want for the new region. Required.

See also

virtual function, virtual signal, “Virtual Objects”

Note
Virtual regions cannot be used in the when command.

Commands
virtual save

ModelSim Reference Manual, v6.2g 229
February 2007

virtual save
The virtual save command saves the definitions of virtuals to a file.

Syntax

virtual save [-kind <kind>] [-append] [<filename>]

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

• -append

Specifies to save only virtuals that are not already saved or weren’t read in from a macro
file. These unsaved virtuals are then appended to the specified or default file. Optional.

• <filename>

Used for writing the virtual definitions. Optional. If you don’t specify <filename>, the
default virtual filename (virtuals.do) will be used. You can specify a different default in
the pref.tcl file.

See also

virtual count, “Virtual Objects”

ModelSim Reference Manual, v6.2g230

Commands
virtual show

February 2007

virtual show
The virtual show command lists the full path names of all explicitly defined virtuals.

Syntax

virtual show [-kind <kind>]

Arguments

• -kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be implicits and explicits.
Unique abbreviations are accepted.

See also

virtual define, virtual describe, “Virtual Objects”

Commands
virtual signal

ModelSim Reference Manual, v6.2g 231
February 2007

virtual signal
The virtual signal command creates a new signal, known only by the GUI (not the kernel), that
consists of concatenations of signals and subelements as specified in <expressionString>.

It cannot handle bit selects and slices of Verilog registers. Please see Concatenation of Signals
or Subelements for more details on syntax.

Syntax

virtual signal [-env <path>] [-install <path>] [-delay <time>] {<expressionString>} <name>

Arguments

• -env <path>

Specifies a hierarchical context for the signal names in <expressionString>, so they don't
all have to be full paths. Optional.

• -install <path>

Causes the newly-created signal to become a child of the specified region. If -install is not
specified, the newly-created signal becomes a child of the nearest common ancestor of all
objects appearing in <expressionString>. If the expression references more than one WLF
file (dataset), the virtual signal will automatically be placed in region virtuals:/Signals.
Optional.

• -delay <time>

Specifies a value by which the virtual signal will be delayed. Optional. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

• {<expressionString>}

A text string expression in the MTI GUI expression format that defines the signal and
subelement concatenation. Can also be a literal constant or computed subexpression.
Required. For details on syntax, please see Syntax and Conventions.

• <name>

The name you define for the virtual signal. Required. Case is ignored unless installed in a
Verilog region. Use alpha, numeric, and underscore characters only, unless you are using
VHDL extended identifier notation. If using VHDL extended identifier notation, <name>
needs to be quoted with double quotes or with curly braces.

Examples

• Reconstruct a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a_ii are all scalars of the same type.

virtual signal -env sim:/chip/alu { (concat_range (4 downto 0))(a_04
& a_03 & a_02 & a_01 & a_00) } a

ModelSim Reference Manual, v6.2g232

Commands
virtual signal

February 2007

• Reconstruct a bus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -env sim:chip.alu
{ (concat_range [4:0])&{a_04, a_03, a_02, a_01, a_00} } a

• Create a signal sim:/testbench/stuff which is a record type with three fields
corresponding to the three specified signals. The example assumes /chipa/mode is of
type integer, /chipa/alu/a is of type std_logic_vector, and /chipa/decode/inst is a user-
defined enumeration.

virtual signal -install sim:/testbench
{ /chipa/alu/a(19 downto 13) & /chipa/decode/inst & /chipa/mode }
stuff

• Create a virtual signal that is the same as /top/signalA except it is delayed by 10 ps.

virtual signal -delay {10 ps} {/top/signalA} myDelayedSignalA

• Create a three-bit signal, chip.address_mode, as an alias to the specified bits.

virtual signal { chip.instruction[23:21] } address_mode

• Concatenate signals a, b, and c with the literal constant ’000’.

virtual signal {a & b & c & 3'b000} myextendedbus

• Add three missing bits to the bus num, creates a virtual signal fullbus, and then adds that
signal to the Wave window.

virtual signal {num & "000"} fullbus
add wave -unsigned fullbus

• Reconstruct a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (i.e. num28, num27, etc.)
represented by the … in the syntax above.

virtual signal { num31 & num30 & num29 & ... & num4 & num3 & "000" }
fullbus
add wave -unsigned fullbus

• Create a two-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit is true (1).
Alternatively, if bold does not equal bnew, the second bit is false (0). Each
subexpression is evaluated independently.

virtual signal {(aold == anew) & (bold == bnew)} myequalityvector

• Create signal newbus that is a concatenation of bus1 (bit-reversed) and bus2[7:4] (bit-
reversed). Assuming bus1 has indices running 7 downto 0, the result will be
newbus[11:0] with the upper 8 bits being bus1[0:7] and the lower 4 bits being bus2[4:7].
See Concatenation Directives for further details.

Commands
virtual signal

ModelSim Reference Manual, v6.2g 233
February 2007

virtual signal {(concat_reverse)(bus1 & bus2[7:4])} newbus

Commands fully compatible with virtual signals

Commands compatible with virtual signals using [virtual expand <signal>]

Commands not currently compatible with virtual signals

when

See also

add list add log
log

add wave

delete describe ("virtual describe" is
a little faster)

examine

find force
noforce

restart

searchlog show

drivers vcd add

virtual count virtual define virtual delete

virtual describe virtual expand virtual hide

virtual log virtual nohide virtual nolog

virtual region virtual save virtual show

virtual function virtual type “Virtual Objects

ModelSim Reference Manual, v6.2g234

Commands
virtual type

February 2007

virtual type
The virtual type command creates a new enumerated type, known only by the GUI, not the
kernel. Virtual types are used to convert signal values to character strings. The command works
with signed integer values up to 64 bits.

Virtual types cannot be used in the when command.

Syntax

virtual type -delete <name> | {<list_of_strings>} <name>

Arguments

• -delete <name>

Deletes a previously defined virtual type. <name> is the name you gave the virtual type
when you originally defined it. Required if not defining a type.

• {<list_of_strings>}

A list of values and their associated character strings. Required if -delete is not used. Values
can be expressed in decimal or based notation and can include "don’t-cares" (see examples
below). Three kinds of based notation are supported: Verilog, VHDL, and C-language
styles. The values are interpreted without regard to the size of the bus to be mapped. Bus
widths up to 64 bits are supported.

There is currently no restriction on the contents of each string, but if strings contain spaces
they would need to be quoted, and if they contain characters treated specially by Tcl (square
brackets, curly braces, backslashes…), they would need to be quoted with curly braces.

See the examples below for further syntax.

• <name>

The user-defined name of the virtual type. Required if -delete is not used. Case is not
ignored. Use alpha, numeric, and underscore characters only, unless you are using VHDL
extended identifier notation. If using VHDL extended identifier notation, <name> needs to
be quoted with double quotes or with curly braces.

Examples

• Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSignal is
displayed in the Wave, List, or Objects window, the string "state0" will appear when
mysignal == 0, "state1" when mysignal == 1, "state2" when mysignal == 2, etc.

virtual type {state0 state1 state2 state3} mystateType
virtual function {(mystateType)mysignal} myConvertedSignal
add wave myConvertedSignal

• Use sparse mapping of bus values to alphanumeric strings for an 8-bit, one-hot
encoding. It shows the variety of syntax that can be used for values. The value "default"
has special meaning and corresponds to any value not explicitly specified.

Commands
virtual type

ModelSim Reference Manual, v6.2g 235
February 2007

virtual type {{0 NULL_STATE} {1 st1} {2 st2} {0x04 st3} {16'h08 st4} \
{'h10 st5} {16#20 st6} {0b01000000 st7} {0x80 st8} \
{default BAD_STATE}} myMappedType

virtual function {(myMappedType)mybus} myConvertedBus
add wave myConvertedBus

• Delete the virtual type "mystateType".

virtual type -delete mystateType

• Create a virtual type that includes "don’t-cares" (the ’-’ character).

virtual type {{0x01-- add}{0x02-- sub}{default bad}} mydecodetype

• Create a virtual type using a mask for "don’t-cares." The middle field is the mask, and
the mask should have bits set to 1 for the bits that are don't care.

virtual type {{0x0100 0xff add}{0x0200 0xff sub}{default bad}}
mydecodetype

See also

virtual function, “Virtual Objects”

ModelSim Reference Manual, v6.2g236

Commands
vlib

February 2007

vlib
The vlib command creates a design library. You must use vlib rather than operating system
commands to create a library directory or index file.

If the specified library already exists as a valid ModelSim library, the vlib command will exit
with a warning message without touching the library.

Syntax

vlib [-archive [-compact <percent>]] [-help] [-dos | -short | -unix | -long]
<name>

Arguments

• -archive [-compact <percent>]

Causes design units that are compiled into the created library to be stored in archives rather
than in subdirectories. Optional. Refer to “Archives” for more details.

You may optionally specify a decimal number between 0 and 1 that denotes the allowed
percentage of wasted space before archives are compacted. By default archives are
compacted when 50% (.5) of their space is wasted. See an example below.

• -help

Displays the command’s options and arguments. Optional.

• -dos

Specifies that subdirectories in a library have names that are compatible with DOS. Not
recommended if you use the vmake utility. Optional. Default for PE and Designer.

• -short

Interchangeable with the -dos argument. Optional.

• -unix

Specifies that subdirectories in a library may have long file names that are NOT compatible
with DOS. Optional. Default for SE.

• -long

Interchangeable with the -unix argument. Optional.

• <name>

Specifies the pathname or archive name of the library to be created. Required.

Examples

• Create the design library design. You can define a logical name for the library using the
vmap command or by adding a line to the library section of the modelsim.ini file that is
located in the same directory.

vlib design

Commands
vlib

ModelSim Reference Manual, v6.2g 237
February 2007

• Create the design library uut and specifies that any design units compiled into the library
are created as archives. Also specifies that each archive be compacted when 30% of its
space is wasted.

vlib -archive -compact .3 uut

ModelSim Reference Manual, v6.2g238

Commands
vlog

February 2007

vlog
The vlog command compiles Verilog source code and SystemVerilog extensions into a
specified working library (or to the work library by default).

The vlog command may be invoked from within ModelSim or from the operating system
command prompt. It may also be invoked during simulation.

Compiled libraries are major-version dependent. When moving between major versions, you
have to refresh compiled libraries using the -refresh argument to vlog. This is not true for minor
versions (letter releases).

All arguments to the vlog command are case sensitive: -WORK and -work are not equivalent.

The IEEE P1800 Draft Standard for SystemVerilog requires that the default behavior of the
vlog command is to treat each Verilog design file listed on the command line as a separate
compilation unit. This behavior is a change in vlog from versions prior to 6.2, wherein all files
in a single command line were concatenated into a single compilation unit. To treat multiple
files listed within a single command line as a single compilation unit, use either the vlog -mfcu
argument or the MultiFileCompilationUnit modelsim.ini file variable.

Syntax

vlog [-93] [-compat] [-compile_uselibs[=<directory_name>]] [-cuname]
[+define+<macro_name>[=<macro_text>]] [+delay_mode_distributed]
[+delay_mode_path] [+delay_mode_unit] [+delay_mode_zero]
[-dpiheader <filename>] [-error <msg_number>[,<msg_number>,…]] [-f <filename>]
[-fatal <msg_number>[,<msg_number>,…]] [-gen_xml <design_unit> <filename>]
[-hazards] [-help] [+incdir+<directory>] [-incr] [-isymfile]
[+libext+<suffix>] [-libmap <pathname>] [-libmap_verbose] [+librescan] [-line <number>]
[-lint] [+maxdelays] [+mindelays] [-mfcu] [-noincr] [+nolibcell] [-nologo] [+nospecify]
[-note <msg_number>[,<msg_number>,…]] [+notimingchecks] [+nowarn<CODE>]
[-nowarn <category_number>] [-O0] [-quiet] [-R [<simargs>]] [-refresh]
[-source] [-sv] [-suppress <msg_number>[,<msg_number>,…]] [-time]
[-timescale <time_units>/<time_precision>] [+typdelays] [-u] [-v <library_file>] [-version]
[-vlog01compat] [-vlog95compat] [-warning <msg_number>[,<msg_number>,…]]
[-work <library_name>] [-y <library_directory>] <filename>

Arguments

• -93

Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993 extended
identifiers to preserve case in Verilog identifiers that contain uppercase letters. Optional.

• -compat

Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it is inefficient to do so. Using this option does not help you find event order

Commands
vlog

ModelSim Reference Manual, v6.2g 239
February 2007

dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. Refer to “Event Ordering in Verilog Designs” for additional information.

• -compile_uselibs[=<directory_name>]

Locates source files specified in a `uselib directive (Refer to “Verilog-XL uselib Compiler
Directive”), compiles those files into automatically created libraries, and updates the
modelsim.ini file with the logical mappings to the new libraries. Optional. If a
directory_name is not specified, ModelSim uses the name specified in the
MTI_USELIB_DIR environment variable. If that variable is not set, ModelSim creates the
directory mti_uselibs in the current working directory.

• -cuname

Used only in conjunction with -mfcu. Optional. The -cuname names the compilation unit
being created by vlog. The named compilation unit can then be specified on the vsim
command line, along with the <top> design unit. The purpose of doing so is to force
elaboration of specified compilation unit package, thereby forcing elaboration of a
necessary ’bind’ statement within that compilation unit that would otherwise not be
elaborated. An example of the necessary commands is:

vlog -cuname pkg_name -mfcu file1.sv file2.sv
vsim top pkg_name

You need to do this only in cases where you have a ’bind’ statement in a module that might
otherwise not be elaborated, because no module in the design depends on that compilation
unit. In other words, if a module that depends on that compilation unit exists, you don’t need
to force the elaboration, for it occurs automatically. Also, if you are using qverilog to
compile and simulate the design, this binding issue is handled properly automatically.

• +define+<macro_name>[=<macro_text>]

Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

`define <macro_name> <macro_text>

Optional. You can specify more than one macro with a single +define. For example:

vlog +define+one=r1+two=r2+three=r3 test.v

A command line macro overrides a macro of the same name defined with the `define
compiler directive.

• +delay_mode_distributed

Disables path delays in favor of distributed delays. Optional. Refer to “Delay Modes” for
details.

• +delay_mode_path

Sets distributed delays to zero in favor of using path delays. Optional.

ModelSim Reference Manual, v6.2g240

Commands
vlog

February 2007

• +delay_mode_unit

Sets path delays to zero and non-zero distributed delays to one time unit. Optional.

• +delay_mode_zero

Sets path delays and distributed delays to zero. Optional.

• -dpiheader <filename>

Generates a header file that may then be included in C source code for DPI import functions.
Optional. Refer to “DPI Use Flow” for additional information.

• -error <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "error." Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -f <filename>

Specifies a file with more command line arguments. Optional. Allows complex arguments
to be reused without retyping. Allows gzipped input files. Nesting of -f options is allowed.

The file syntax basically follows what you type on the command line with the exception that
newline characters are ignored. You can use environment variable expansion (for example
in a pathname) in -f files by using the $envname or $(envname) syntax.

• -fatal <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "fatal." Optional. Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -force_refresh <design_unit>

Forces the refresh of all specified design units. Optional. By default, the work library is
updated; use -work <library_name>, in conjunction with -force_refresh, to update a
different library (for example, vlog -work <your_lib_name> -force_refresh).

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the tool’s dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

 ** Error: (vsim-13) Recompile /u/test/dware/dware_61e_beta.dwpackages
because /home/users/questasim/linux/../synopsys.attributes has changed.

The -force_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -refresh argument.

A more conservative approach to working around -refresh dependency checks is to
recompile the source code, if it is available.

Commands
vlog

ModelSim Reference Manual, v6.2g 241
February 2007

• -gen_xml <design_unit> <filename>

Produces an XML-tagged file containing the interface definition of the specified module.
Optional. This option requires a two-step process where you must 1) compile <filename>
into a library with vlog (without -gen_xml) then 2) execute vlog with the -gen_xml switch,
for example:

vlib work
vlog counter.v
vlog -gen_xml counter counter.v

• -hazards

Detects event order hazards involving simultaneous reading and writing of the same register
in concurrently executing processes. Optional. You must also specify this argument when
you simulate the design with vsim. Refer to “Hazard Detection” for more details.

Note
Enabling -hazards implicitly enables the -compat argument. As a result, using this
argument may affect your simulation results.

• -help

Displays the command’s options and arguments. Optional.

• +incdir+<directory>

Specifies directories to search for files included with `include compiler directives. Optional.
By default, the current directory is searched first and then the directories specified by the
+incdir options in the order they appear on the command line. You may specify multiple
+incdir options as well as multiple directories separated by "+" in a single +incdir option.

• -incr

Performs an incremental compile. Optional. Default. Compiles only code that has changed.
For example, if you change only one module in a file containing several modules, only the
changed module will be recompiled. Note however that if the compile options change, all
modules are recompiled regardless if you use -incr or not.

• -isymfile

Generates a complete list of all imported TFs. Used with DPI to determine all imported TFs
that are expected by ModelSim. Valid only for Windows, RS6000 and RS64 platforms only.

• +libext+<suffix>

Works in conjunction with the -y option. Specifies file extensions for the files in a source
library directory. Optional. By default the compiler searches for files without extensions. If
you specify the +libext option, then the compiler will search for a file with the suffix
appended to an unresolved name. You may specify only one +libext option, but it may
contain multiple suffixes separated by "+". The extensions are tried in the order they appear
in the +libext option.

ModelSim Reference Manual, v6.2g242

Commands
vlog

February 2007

• -libmap <pathname>

Specifies a Verilog 2001 library map file. Optional. You can omit this argument by placing
the library map file as the first option on the vlog invocation (e.g., vlog top.map top.v
top_cfg.v).

• -libmap_verbose

Displays library map pattern matching information during compilation. Optional. Use to
troubleshoot problems with matching filename patterns in a library file.

• +librescan

Scans libraries in command-line order for all unresolved modules. Optional.

• -line <number>

Starts the compiler on the specified line in the Verilog source file. Optional. By default, the
compiler starts at the beginning of the file.

• -lint

Instructs ModelSim to perform the following lint-style checks: 1) warn when Module ports
are NULL; 2) warn when assigning to an input port; 3) warn when referencing undeclared
variables/nets in an instantiation; 4) warn when an index for a Verilog unpacked variable
array reference is out of bounds. The warnings are reported as WARNING[8]. You can also
enable this option using the Show_Lint variable in the modelsim.ini file.

This argument generates additional array bounds-checking code by inserting checks for out-
of-bound indexing into arrays. This functionality can slow down simulation.

• +maxdelays

Selects maximum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

• +mindelays

Selects minimum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

• -mfcu

Instructs the compiler to treat all files within a compilation command line as a single
compilation unit. Optional. The default behavior is to treat each file listed in a command as
a separate compilation unit, per IEEE P1800 Draft Standard for SystemVerilog. Prior
versions concatenated the contents of the multiple files into a single compilation unit by
default. You can also enable this option using the MultiFileCompilationUnit variable in the
modelsim.ini file.

• -noincr

Disables incremental compile previously turned on with -incr. Optional.

Commands
vlog

ModelSim Reference Manual, v6.2g 243
February 2007

• +nolibcell

By default all modules compiled from a source library are treated as though they contain a
`celldefine compiler directive. This option disables this default. The `celldefine directive
only affects the PLI access routines acc_next_cell and acc_next_cell_load. Optional.

• -nologo

Disables the startup banner. Optional.

• +nospecify

Disables specify path delays and timing checks. Optional.

• -note <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• +notimingchecks

Removes all timing check entries from the design as it is parsed. Optional.

• +nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings that
can be disabled include the <CODE> name in square brackets in the warning message. For
example,

** Warning: test.v(15): [RDGN] - Redundant digits in numeric
literal.

This warning message can be disabled by specifying +nowarnRDGN.

• -nowarn <category_number>

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. Multiple -nowarn switches are
allowed. Warnings may be disabled for all compiles via the Main window Compile >
Compile Options menu command or the modelsim.ini file (refer to “VHDL Compiler
Control Variables”).

The warning message categories are:

• -O0

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to work
around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out. Add the DisableOpt variable
to [vlog] section of the modelsim.ini file to set a permanent default.

12 non-LRM compliance in order to match Cadence behavior

13 constructs that code coverage can not handle

ModelSim Reference Manual, v6.2g244

Commands
vlog

February 2007

• -quiet

Disables 'Loading' messages. Optional.

• -R [<simargs>]

Instructs the compiler to invoke vsim after compiling the design. The compiler
automatically determines which top-level modules are to be simulated. The command line
arguments following -R are passed to the simulator, not the compiler. Place the -R option at
the end of the command line or terminate the simulator command line arguments with a
single "-" character to differentiate them from compiler command line arguments.

The -R option is not a Verilog-XL option, but it is used by ModelSim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. It is
not recommended that you regularly use this option because you will incur the unnecessary
overhead of compiling your design for each simulation run. Mainly, it is provided to ease
the transition to ModelSim.

• -refresh

Regenerates a library image. Optional. By default, the work library is updated; use -work
<library_name>, in conjunction with -refresh, to update a different library (for example,
vlog -work <your_lib_name> -refresh). If a dependency checking error occurs which
prevents the refresh, use the vlog -force_refresh argument. See vlog examples for more
information.

• -source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

• -sv

Enables SystemVerilog features and keywords. Optional. By default ModelSim follows the
rules of IEEE Std 1364-2001 and ignores SystemVerilog keywords. If a source file has a
".sv" extension, ModelSim will automatically parse SystemVerilog keywords.

• -suppress <msg_number>[,<msg_number>,…]

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. You cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Changing message Severity Level” for more information.

• -time

Reports the "wall clock time" vlog takes to compile the design. Optional. Note that if many
processes are running on the same system, wall clock time may differ greatly from the
actual "cpu time" spent on vlog.

• -timescale <time_units>/<time_precision>

Specifies the default timescale for modules not having an explicit timescale directive in
effect during compilation. Optional. The format of the -timescale argument is the same as
that of the `timescale directive. The format for <time_units> and <time_precision> is

Commands
vlog

ModelSim Reference Manual, v6.2g 245
February 2007

<n><units>. The value of <n> must be 1, 10, or 100. The value of <units> must be fs, ps,
ns, us, ms, or s. In addition, the <time_units> must be greater than or equal to the
<time_precision>.

• +typdelays

Selects typical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

• -u

Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Optional.

• -v <library_file>

Specifies a source library file containing module and UDP definitions. Optional. Refer to
“Verilog-XL Compatible Compiler Arguments” for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet defined.
Modules and UDPs within the file are compiled only if they match previously unresolved
references. Multiple -v options are allowed. See additional discussion in the examples.

• -version

Returns the version of the compiler as used by the licensing tools. Optional.

• -vlog01compat

Ensures compatibility with rules of IEEE Std 1364-2001. Default.

• -vlog95compat

Disables Verilog 2001 keywords, which ensures that code that was valid according to the
1364-1995 spec can still be compiled. By default ModelSim follows the rules of IEEE Std
1364-2001. Some requirements in 1364-2001 conflict with requirements in 1364-1995.
Optional. Edit the vlog95compat variable in the modelsim.ini file to set a permanent default.

• -warning <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Changing
Message Severity Level” for more information.

• -work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical library
work. Optional; by default, the compiled design units are added to the work library. The
specified pathname overrides the pathname specified for work in the project file.

• -y <library_directory>

Specifies a source library directory containing module and UDP definitions. Optional. Refer
to “Verilog-XL Compatible Compiler Arguments” for more information.

ModelSim Reference Manual, v6.2g246

Commands
vlog

February 2007

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet defined.
Files within this directory are compiled only if the file names match the names of previously
unresolved references. Multiple -y options are allowed. You will need to specify a file suffix
by using -y in conjunction with the +libext+<suffix> option if your filenames differ from
your module names. See additional discussion in the examples.

Note
Any -y arguments that follow a -refresh argument on a vlog command line are ignored.
Any -y arguments that come before the -refresh argument on a vlog command line are
processed.

• <filename>

Specifies the name of the Verilog source code file to compile. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

Examples

• Compile the Verilog source code contained in the file example.vlg.

vlog example.vlg

• After compiling top.v, vlog will scan the file und1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vlog top.v -v und1

• After compiling top.v, vlog will scan the vlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenames with a .v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y vlog_lib

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of ModelSim.

• If your library contains VHDL design units, be sure to regenerate the library with the
vcom command using the -refresh option as well. Refer to “Regenerating Your Design
Libraries” for more information.

vlog -work mylib -refresh

• The -incr option determines whether or not the module source or compile options have
changed as module1.v is parsed. If no change is found, the code generation phase is
skipped. Differences in compile options are determined by comparing the compiler
options stored in the _info file with the compiler options given. They must match
exactly

Commands
vlog

ModelSim Reference Manual, v6.2g 247
February 2007

.vlog module1.v -u -O0 -incr

• The -timescale option specifies the default timescale for module1.v, which did not have
an explicit timescale directive in effect during compilation. Quotes are necessary
because the argument contains white spaces.vlog module1.

v -timescale "1 ns / 1 ps"

ModelSim Reference Manual, v6.2g248

Commands
vmake

February 2007

vmake
The vmake utility allows you to use a UNIX or Windows MAKE program to maintain libraries.
You run vmake on a compiled design library, and the utility outputs a makefile. The utility
handles multiple source files per design unit and supports Verilog include files as well as
Verilog and VHDL PSL vunit files.

You can then run the makefile with a version of MAKE (not supplied with ModelSim) to
reconstruct the library. This command must be invoked from either the UNIX or the
Windows/DOS prompt.

A MAKE program is included with Microsoft Visual C/C++, as well as many other program
development environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. You run vmake only once; then you can simply run MAKE
to rebuild your design. If you add new design units or delete old ones, you should re-run vmake
to generate a new makefile.

The vmake utility ignores library objects compiled with -nodebug.

Syntax

vmake [-du <design_unit_name>] [-f <filename>] [-fullsrcpath] [-help] [-ignore]
[<library_name>] [<makefile>]

Arguments

• -du <design_unit_name>

Specifies that a vmake file will be generated only for the specified design unit. Optional.
You can specify this argument any number of times for a single vmake command.

• -f <filename>

Specifies a file to read command line arguments from. Optional.

• -fullsrcpath

Produces complete source file paths within generated makefiles. Optional. By default source
file paths are relative to the directory in which compiles originally occurred. This argument
makes it possible to copy and evaluate generated makefiles within directories that are
different from where compiles originally occurred.

• -help

Displays the command’s options and arguments. Optional.

• -ignore

Omits a make rule for the named primary design unit and its secondary design units.
Optional.

• <library_name>

Specifies the library name; if none is specified, then work is assumed. Optional.

Commands
vmake

ModelSim Reference Manual, v6.2g 249
February 2007

• <makefile>

Specifies the makefile name. Optional.

Examples

• To produce a makefile for the work library:

vmake >makefile

• You can also run vmake on libraries other than work:

vmake mylib >mylib.mak

• To rebuild mylib, specify its makefile when you run MAKE:

make -f mylib.mak

• Here is an example of how to use vmake and MAKE on your work library:

C:\MIXEDHDL> vmake >makefile

• Edit an HDL source file within the work library then enter:

C:\MIXEDHDL> make

Your design gets recompiled for you. You can change the design again and re-run
MAKE to recompile additional changes.

• You can also run vmake on libraries other than work. For example,

C:\MIXEDHDL> vmake mylib >mylib.mak

• To rebuild mylib, specify its makefile when you run MAKE:

C:\MIXEDHDL> make -f mylib.mak

ModelSim Reference Manual, v6.2g250

Commands
vmap

February 2007

vmap
The vmap command defines a mapping between a logical library name and a directory by
modifying the modelsim.ini file.

With no arguments, vmap reads the appropriate modelsim.ini file(s) and prints the current
logical library to physical directory mappings. Returns nothing.

Syntax

vmap [-help] [-c] [-del] [<logical_name>] [<path>]

Arguments

• -help

Displays the command’s options and arguments. Optional.

• -c

Copies the default modelsim.ini file from the ModelSim installation directory to the current
directory. Optional.

This argument is intended only for making a copy of the default modelsim.ini file to the
current directory. Do not use it while making your library mappings or the mappings may
end up in the incorrect copy of the modelsim.ini.

• -del

Deletes the mapping specified by <logical_name> from the current project file. Optional.

• <logical_name>

Specifies the logical name of the library to be mapped. Optional.

• <path>

Specifies the pathname of the directory to which the library is to be mapped. Optional. If
omitted, the command displays the mapping of the specified logical name.

Commands
vsim

ModelSim Reference Manual, v6.2g 251
February 2007

vsim
The vsim command is used to invoke the VSIM simulator, to view the results of a previous
simulation run (when invoked with the -view switch), or to view coverage data stored in the
UCDB from a previous simulation run (when invoked with the -viewcov switch).

You can simulate a VHDL configuration or an entity/architecture pair; a Verilog module or
configuration. If you specify a VHDL configuration, it is invalid to specify an architecture.
During elaboration vsim determines if the source has been modified since the last compile.

This command may be used in batch mode from the Windows command prompt. Refer to
“Batch Mode” for more information on the VSIM batch mode.

To manually interrupt design loading use the Break key or <Ctrl-c> from a shell.

You can invoke vsim from a command prompt or in the Transcript pane of the Main window.
You can also invoke it from the GUI by selecting Simulate > Start Simulation.

All arguments to the vsim command are case sensitive: -g and -G are not equivalent.

Syntax

vsim[-assertfile <filename>] [-c] [-do “<command_string>” | <macro_file_name>]
[+dumpports+collapse] [+dumpports+direction] [+dumpports+no_strength_range]
[+dumpports+unique] [-f <filename>] [-g<Name>=<Value> …] [-G<Name>=<Value> …]
[-gblso <filename>] [-gui] [-help] [-i] [-installcolormap] [-keeploaded] [-keeploadedrestart]
[-keepstdout] [-l <filename>] [-lib <libname>] [-L <library_name> …]
[-Lf <library_name> …] [-msgmode both | tran | wlf] [-nocompress]
[-multisource_delay min | max | latest] [+multisource_int_delays]
[+no_notifier] [+no_tchk_msg] [+notimingchecks] [-printsimstats]
[+pulse_int_e/<percent>] [+pulse_int_r/<percent>] [-quiet] [+sdf_iopath_to_prim_ok]
[-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>]
[-sdfmaxerrors <n>] [-sdfnoerror] [-sdfnowarn] [+sdf_verbose]
[-t [<multiplier>]<time_unit>]
[-tag <string>] [-title <title>] [-trace_foreign <int>] [+transport_int_delays]
[-vcdstim [<instance>=]<filename>] [-version]
[-view [<dataset_name>=]<WLF_filename>] [-viewcov
[<dataset_name>=]<UCDB_filename>]
[-error <msg_number>[,<msg_number>,…]]
[-fatal <msg_number>[,<msg_number>,…]]
[-note <msg_number>[,<msg_number>,…]]
[-suppress <msg_number>[,<msg_number>,…]]
[-warning <msg_number>[,<msg_number>,…]]
[-wlf <filename>] [-wlfcachesize <n>] [-wlfcollapsedelta] [-wlfcollapsetime]
[-wlfcompress] [-wlfdeleteonquit] [-wlfnocollapse] [-wlfnocompress] [-wlfnodeleteonquit]
[-wlfnoopt] [-wlfopt] [-wlfslim <size>] [-wlftlim <duration>]
[-colormap new] [-display <display_spec>] [-geometry <geometry_spec>] [-name <name>]
[-sync] [-visual <visual>]

ModelSim Reference Manual, v6.2g252

Commands
vsim

February 2007

[-absentisempty] [-nocollapse] [-nofileshare] [-noglitch] [+no_glitch_msg]
[-std_input <filename>] [-std_output <filename>] [-strictvital]
[-toggleMaxIntValues <int>] [-toggleNoIntegers] [-vital2.2b]

[+alt_path_delays] [+delayed_timing_checks] [-dpiexportobj <objfile>]
[-extend_tcheck_data_limit <percent>] [-extend_tcheck_ref_limit <percent>] [-hazards]
[+int_delays] [+maxdelays] [+mindelays] [+no_cancelled_e_msg] [+no_neg_tchk]
[+no_notifier] [+no_path_edge] [+no_pulse_msg] [-no_risefall_delaynets]
[+no_show_cancelled_e] [-noexcludehiz] [+no_tchk_msg] [+nosdferror] [+nosdfwarn]
[+nospecify] [+nowarn<CODE>] [+ntc_warn] [-onfinish ask | stop | exit]
[-pli "<object list>"] [+<plusarg>] [+pulse_e/<percent>] [+pulse_e_style_ondetect]
[+pulse_e_style_onevent] [+pulse_r/<percent>] [+sdf_nocheck_celltype]
[+show_cancelled_e]
[-sv_lib <shared_obj>] [-sv_liblist <filename>] [-sv_root <dirname>]
[+transport_path_delays] [+typdelays] [-v2k_int_delays]

[<library_name>.<design_unit>]

VSIM arguments are grouped by language:

• Arguments, all languages

• Arguments, VHDL

• Arguments, Verilog

• Arguments, object

Arguments, all languages

• -assertfile <filename>

Designates an alternative file for recording assertion messages. Optional. By default
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (refer to “Creating a Transcript File”).

• -c

Specifies that the simulator is to be run in command-line mode. Optional. Refer to “Modes
of Operation” for more information.

• -colormap new

Specifies that the window should have a new private colormap instead of using the default
colormap for the screen. Optional.

• -display <display_spec>

Specifies the name of the display to use. Optional. Does not apply to Windows platforms.

For example:

-display :0

Commands
vsim

ModelSim Reference Manual, v6.2g 253
February 2007

• -do “<command_string>” | <macro_file_name>

Instructs vsim to use the command(s) specified by <command_string> or the macro file
named by <macro_file_name> rather than the startup file specified in the .ini file, if any.
Optional. Multiple commands should be separated by semi-colons (;).

• +dumpports+collapse

Collapses vectors (VCD id entries) in dumpports output. Optional. The default behavior can
be changed by setting the DumpportsCollapse variable in the modelsim.ini file.

• +dumpports+direction

Modifies the format of extended VCD files to contain direction information. Optional.

• +dumpports+no_strength_range

Ignores strength ranges when resolving driver values for an extended VCD file. Optional.
This argument is an extension to the IEEE 1364 specification. Refer to “Resolving Values”
for additional information.

• +dumpports+unique

Generates unique VCD variable names for ports in a VCD file even if those ports are
connected to the same collapsed net. Optional.

• -error <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "error." Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -f <filename>

Specifies a file with more vsim command arguments. Optional. Allows complex argument
strings to be reused without retyping. Environment variable expansion (for example in a
pathname) does not occur in -f files.

• -fatal <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "fatal." Optional. Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -g<Name>=<Value> …

Assigns a value to all specified VHDL generics and Verilog parameters that have not
received explicit values in generic maps, instantiations, or via defparams (such as top-level
generics/parameters and generics/parameters that would otherwise receive their default
values). Optional. Note there is no space between -g and <Name>=<Value>.

"Name" is the name of the generic/parameter, exactly as it appears in the VHDL source
(case is ignored) or Verilog source. "Value" is an appropriate value for the declared data
type of a VHDL generic or any legal value for a Verilog parameter. Make sure the Value
you specify for a VHDL generic is appropriate for VHDL declared data types.

ModelSim Reference Manual, v6.2g254

Commands
vsim

February 2007

No spaces are allowed anywhere in the specification, except within quotes when specifying
a string value. Multiple -g options are allowed, one for each generic/parameter.

Name may be prefixed with a relative or absolute hierarchical path to select generics in an
instance-specific manner. For example, specifying -g/top/u1/tpd=20ns on the command line
would affect only the tpd generic on the /top/u1 instance, assigning it a value of 20ns.
Specifying -gu1/tpd=20ns affects the tpd generic on all instances named u1. Specifying -
gtpd=20ns affects all generics named tpd.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram/u1/tpd_hl=10ns -gtpd_hl=15ns top

This command sets tpd_hl to 10ns for the /top/ram/u1 instance. However, all other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records) cannot
be set from the command line. However, you can set string arrays, std_logic vectors, and bit
vectors if they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this command
from a shell, put a forward tick around the string. For example:

-gstrgen=’"This is a string"’

If working within the ModelSim GUI, you would enter the command as follows:

{-gstrgen="This is a string"}

• -G<Name>=<Value> …

Same as -g (see above) except that it will also override generics/parameters that received
explicit values in generic maps, instantiations, or via defparams. Optional. Note there is no
space between -G and <Name>=<Value>. This argument is the only way for you to alter the
generic/parameter, such as its length, (other than it’s value) after the design has been loaded.

• -gblso <filename>

On UNIX platforms, loads PLI/FLI shared objects with global symbol visibility. Essentially
all data and functions are exported from the specified shared object and are available to be
referenced and used by other shared objects. This option may also be specified with the
GlobalSharedObjectsList variable in the modelsim.ini file. Optional.

• -geometry <geometry_spec>

Specifies the size and location of the main window. Optional. Where <geometry_spec> is of
the form:

WxH+X+Y

Commands
vsim

ModelSim Reference Manual, v6.2g 255
February 2007

• -gui

Starts the ModelSim GUI without loading a design. Optional.

• -help

Displays the command’s options and arguments. Optional.

• -i

Specifies that the simulator is to be run in interactive mode. Optional.

• -installcolormap

For UNIX only. Causes vsim to use its own colormap so as not to hog all the colors on the
display. This is similar to the -install switch on Netscape. Optional.

• -keeploaded

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries when it
restarts or loads a new design. Optional. The shared libraries will remain loaded at their
current positions. User application code in the shared libraries must reset its internal state
during a restart in order for this to work effectively.

• -keeploadedrestart

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries during a
restart. Optional. The shared libraries will remain loaded at their current positions. User
application code in the shared libraries must reset its internal state during a restart in order
for this to work effectively.

We recommend using this option if you’ll be doing warm restores after a restart and the user
application code has set callbacks in the simulator. Otherwise, the callback function pointers
might not be valid if the shared library is loaded into a new position.

• -keepstdout

For use with foreign programs. Instructs the simulator to not redirect the stdout stream to the
Main window. Optional.

• -l <filename>

Saves the contents of the Transcript pane to <filename>. Optional. Default is taken from the
TranscriptFile variable (initially set to transcript) in the modelsim.ini.

• -lib <libname>

Specifies the default working library where vsim will look for the design unit(s). Optional.
Default is "work".

• -L <library_name> …

Specifies the library to search for design units instantiated from Verilog and for VHDL
default component binding. Refer to “Library Usage” for more information. If multiple
libraries are specified, each must be preceded by the -L option. Libraries are searched in the
order in which they appear on the command line.

ModelSim Reference Manual, v6.2g256

Commands
vsim

February 2007

• -Lf <library_name> …

Same as -L but libraries are searched before ‘uselib directives. Refer to “Library Usage” for
more information. Optional.

• -msgmode both | tran | wlf

Specifies the location(s) for the simulator to output elaboration and runtime messages. Refer
to the section "Message Viewer" in the User’s Manual for more information.

both — outputs messages to both the transcript and the WLF file. Default behavior

tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer.

wlf — outputs messages only to the WLF file/Message Viewer, therefore they are not
available in the transcript.

• -multisource_delay min | max | latest

Controls the handling of multiple PORT or INTERCONNECT constructs that terminate at
the same port. Optional. By default, the Module Input Port Delay (MIPD) is set to the max
value encountered in the SDF file. Alternatively, you may choose the min or latest of the
values. If you have a Verilog design and want to model multiple interconnect paths
independently, use the +multisource_int_delays argument.

• +multisource_int_delays

Enables multisource interconnect delay with pulse handling and transport delay behavior.
Works for both Verilog and VITAL cells. Optional.

Use this argument when you have interconnect data in your SDF file and you want the delay
on each interconnect path modeled independently. Pulse handling is configured using the
+pulse_int_e and +pulse_int_r switches (described below).

The +multisource_int_delays argument cannot be used if you compiled using the -novital
argument to vcom. The -novital argument instructs vcom to implement VITAL
functionality using VHDL code instead of accelerated code, and multisource interconnect
delays cannot be implemented purely within VHDL.

• -name <name>

Specifies the application name used by the interpreter for send commands. This does not
affect the title of the window. Optional.

• -nocompress

Causes VSIM to create uncompressed checkpoint files. Optional. This option may also be
specified with the CheckpointCompressMode variable in the modelsim.ini file.

• +no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
in both Verilog and VITAL for the entire design.

Commands
vsim

ModelSim Reference Manual, v6.2g 257
February 2007

• +no_tchk_msg

Disables error messages generated when timing checks are violated. Optional. For Verilog,
it disables messages issued by timing check system tasks. For VITAL, it overrides the
MsgOn arguments and generics.

Notifier registers are still toggled and may result in the propagation of Xs for timing check
violations.

• -note <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• +notimingchecks

Disables Verilog and VITAL timing checks for faster simulation. Optional. By default,
Verilog timing check system tasks ($setup, $hold,…) in specify blocks are enabled. For
VITAL, the timing check default is controlled by the ASIC or FPGA vendor, but most
default to enabled.

• -printsimstats

Prints out the simulation statistics at the end of the simulation before it exits. Edit the
PrintSimStats variable in the modelsim.ini file to set the simulation to print the stats by
default.

• +pulse_int_e/<percent>

Controls how pulses are propagated through interconnect delays, where <percent> is a
number between 0 and 100 that specifies the error limit as a percentage of the interconnect
delay. Optional. Used in conjunction with +multisource_int_delays (see above). This
option works for both Verilog and VITAL cells, though the destination of the interconnect
must be a Verilog cell. The source may be VITAL or Verilog.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_int_r/<percent>
below) propagates to the output as an X. If the rejection limit is not specified, then it
defaults to the error limit. For example, consider an interconnect delay of 10 along with a
+pulse_int_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to 80%
of 10. This results in the propagation of pulses greater than or equal to 8, while all other
pulses are filtered.

• +pulse_int_r/<percent>

Controls how pulses are propagated through interconnect delays, where <percent> is a
number between 0 and 100 that specifies the rejection limit as a percentage of the
interconnect delay. Optional. This option works for both Verilog and VITAL cells, though
the destination of the interconnect must be a Verilog cell. The source may be VITAL or
Verilog.

ModelSim Reference Manual, v6.2g258

Commands
vsim

February 2007

A pulse less than the rejection limit is filtered. If the error limit is not specified by
+pulse_int_e then it defaults to the rejection limit.

• -quiet

Disable 'Loading' messages during batch-mode simulation. Optional.

• +sdf_iopath_to_prim_ok

Prevents vsim from issuing an error when it cannot locate specify path delays to annotate. If
you specify this argument, IOPATH statements are annotated to the primitive driving the
destination port if a corresponding specify path is not found. Optional. Refer to “SDF to
Verilog Construct Matching” for additional information.

• -sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>

Annotates VITAL or Verilog cells in the specified SDF file (a Standard Delay Format file)
with minimum, typical, or maximum timing. Optional.

The optional argument @<delayScale> scales all values by the specified value. For
example, if you specify -sdfmax@1.5…, all maximum values in the SDF file will be scaled
to 150% of their original value.

The use of [<instance>=] with <sdf_filename> is also optional; it is used when the
backannotation is not being done at the top level. Refer to “Specifying SDF Files for
Simulation”.

• -sdfmaxerrors <n>

Controls the number of Verilog SDF missing instance messages that will be emitted before
terminating vsim. Optional. <n> is the maximum number of missing instance error
messages to be emitted. The default number is 5.

• -sdfnoerror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

• -sdfnowarn

Disables warnings from the SDF reader. Optional. Refer to “VHDL Simulation” for an
additional discussion of SDF.

• +sdf_verbose

Turns on the verbose mode during SDF annotation. The Transcript pane provides detailed
warnings and summaries of the current annotation as well as information including the
module name, source file name and line number. Optional.

• -suppress <msg_number>[,<msg_number>,…]

Prevents the specified message(s) from displaying. Optional. You cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Changing Message Severity Level” for more information.

Commands
vsim

ModelSim Reference Manual, v6.2g 259
February 2007

• -sync

Executes all X server commands synchronously, so that errors are reported immediately.
Does not apply to Windows platforms.

• -t [<multiplier>]<time_unit>

Specifies the simulator time resolution. Optional. <time_unit> must be one of the following:

fs, ps, ns, us, ms, sec

The default is 1ps; the optional <multiplier> may be 1, 10 or 100. Note that there is no space
between the multiplier and the unit (i.e., 10fs, not 10 fs).

If you omit the -t argument, the default time resolution depends on design type: in a Verilog
design with ‘timescale directives, the minimum time precision is used; in Verilog designs
without any timescale directives, or in a VHDL or mixed design, the value specified for the
Resolution variable in the modelsim.ini file is used.

Once you’ve begun simulation, you can determine the current simulator resolution by
invoking the report command with the simulator state option.

• -tag <string>

Specifies a string tag to append to foreign trace filenames. Optional. Used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.

• -title <title>

Specifies the title to appear for the ModelSim Main window. Optional. If omitted the
current ModelSim version is the window title. Useful when running multiple simultaneous
simulations. Text strings with spaces must be in quotes (e.g., "my title").

• -trace_foreign <int>

Creates two kinds of foreign interface traces: a log of what functions were called, with the
value of the arguments, and the results returned; and a set of C-language files to replay what
the foreign interface side did.

The purpose of the logfile is to aid the debugging of your PLI/VPI code. The primary
purpose of the replay facility is to send the replay file to MTI support for debugging co-
simulation problems, or debugging problems for which it is impractical to send the PLI/VPI
code.

• +transport_int_delays

Selects transport mode with pulse control for single-source nets (one interconnect path).
Optional. By default interconnect delays operate in inertial mode (pulses smaller than the
delay are filtered). In transport mode, narrow pulses are propagated through interconnect
delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. This option
works independently from +multisource_int_delays.

ModelSim Reference Manual, v6.2g260

Commands
vsim

February 2007

• -vcdstim [<instance>=]<filename>

Specifies a VCD file from which to re-simulate the design. Optional. The VCD file must
have been created in a previous ModelSim simulation using the vcd dumpports command.
Refer to “Using Extended VCD as Stimulus” for more information.

• -version

Returns the version of the simulator as used by the licensing tools. Optional.

• -view [<dataset_name>=]<WLF_filename>

Specifies a wave log format (WLF) file for vsim to read. Allows you to use vsim to view the
results from an earlier simulation. The Structure, Objects, Wave, and List windows can be
opened to look at the results stored in the WLF file (other ModelSim windows will not show
any information when you are viewing a dataset). See additional discussion in the
Examples.

• -viewcov [<dataset_name>=]<UCDB_filename>

Invokes vsim in the coverage view mode to display UCDB data.

• -visual <visual>

Specifies the visual to use for the window. Optional. Does not apply to Windows platforms.

Where <visual> may be:

<class> <depth> — One of the following:

{directcolor | grayscale | greyscale | pseudocolor | staticcolor | staticgray | staticgrey |
truecolor}

followed by:

<depth> — Specifies how many bits per pixel are needed for the visual.

default — Instructs the tool to use the default visual for the screen

<number> — Specifies a visual X identifier.

best <depth> — Instructs the tool to choose the best possible visual for the specified
<depth>, where:

<depth> — Specifies how many bits per pixel are needed for the visual.

• -warning <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Changing
Message Severity Level” for more information.

• -wlf <filename>

Specifies the name of the wave log format (WLF) file to create. The default is vsim.wlf.
Optional. This option may also be specified with the WLFFilename variable in the
modelsim.ini file.

Commands
vsim

ModelSim Reference Manual, v6.2g 261
February 2007

• -wlfcachesize <n>

Specifies the size in megabytes of the WLF reader cache. Optional. By default the cache
size is set to zero. WLF reader caching caches blocks of the WLF file to reduce redundant
file I/O. This should have significant benefit in slow network environments. This option
may also be specified with the WLFCacheSize variable in the modelsim.ini file.

• -wlfcollapsedelta

Instructs ModelSim to record values in the WLF file only at the end of each simulator delta
step. Any sub-delta values are ignored. May dramatically reduce WLF file size. This option
may also be specified with the WLFCollapseMode variable in the modelsim.ini file. Default.

• -wlfcollapsetime

Instructs ModelSim to record values in the WLF file only at the end of each simulator time
step. Any delta or sub-delta values are ignored. May dramatically reduce WLF file size.
This option may also be specified with the WLFCollapseMode variable in the modelsim.ini
file. Optional.

• -wlfcompress

Creates compressed WLF files. Default. Use -wlfnocompress to turn off compression. This
option may also be specified with the WLFCompress variable in the modelsim.ini file.

• -wlfdeleteonquit

Deletes the current simulation WLF file (vsim.wlf) automatically when the simulator exits.
Optional. This option may also be specified with the WLFDeleteOnQuit variable in the
modelsim.ini file.

• -wlfnocollapse

Instructs ModelSim to preserve all events and event order. May result in relatively larger
WLF files. This option may also be specified with the WLFCollapseMode variable in the
modelsim.ini file. Optional.

• -wlfnocompress

Causes vsim to create uncompressed WLF files. Optional. WLF files are compressed by
default in order to reduce file size. This may slow simulation speed by one to two percent.
You may want to disable compression to speed up simulation or if you are experiencing
problems with faulty data in the resulting WLF file. This option may also be specified with
the WLFCompress variable in the modelsim.ini file.

• -wlfnodeleteonquit

Preserves the current simulation WLF file (vsim.wlf) when the simulator exits. Default.
This option may also be specified with the WLFDeleteOnQuit variable in the modelsim.ini
file.

• -wlfnoopt

Disables optimization of waveform display in the Wave window. Optional. This option may
also be specified with the WLFOptimize variable in the modelsim.ini file.

ModelSim Reference Manual, v6.2g262

Commands
vsim

February 2007

• -wlfopt

Optimizes the display of waveforms in the Wave window. Default. Optional. This option
may also be specified with the WLFOptimize variable in the modelsim.ini file.

• -wlfslim <size>

Specifies a size restriction in megabytes for the event portion of the WLF file. Optional. The
default is infinite size (0). The <size> must be an integer.

Note that a WLF file contains event, header, and symbol portions. The size restriction is
placed on the event portion only. When ModelSim exits, the entire header and symbol
portion of the WLF file is written. Consequently, the resulting file will be larger than the
size specified with -wlfslim.

If used in conjunction with -wlftlim, the more restrictive of the limits takes precedence.

This option may also be specified with the WLFSizeLimit variable in the modelsim.ini file.

• -wlftlim <duration>

Specifies the duration of simulation time for WLF file recording. Optional. The default is
infinite time (0). The <duration> is an integer of simulation time at the current resolution;
you can optionally specify the resolution if you place curly braces around the specification.
For example,

{5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

The time range begins at the current simulation time and moves back in simulation time for
the specified duration. For example,

vsim -wlftlim 5000

writes at most the last 5000ns of the current simulation to the WLF file (the current
simulation resolution in this case is ns).

If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFTimeLimit variable in the modelsim.ini file.

The -wlfslim and -wlftlim switches were designed to help users limit WLF file sizes for
long or heavily logged simulations. When small values are used for these switches, the
values may be overridden by the internal granularity limits of the WLF file format.

Arguments, VHDL

• -absentisempty

Causes VHDL files opened for read that target non-existent files to be treated as empty,
rather than ModelSim issuing fatal error messages. Optional.

• -nocollapse

Disables the optimization of internal port map connections. Optional.

Commands
vsim

ModelSim Reference Manual, v6.2g 263
February 2007

• -nofileshare

Turns off file descriptor sharing. Optional. By default ModelSim shares a file descriptor for
all VHDL files opened for write or append that have identical names.

• -noglitch

Disables VITAL glitch generation. Optional.

Refer to “VHDL Simulation” for additional discussion of VITAL.

• +no_glitch_msg

Disable VITAL glitch error messages. Optional.

• -std_input <filename>

Specifies the file to use for the VHDL TextIO STD_INPUT file. Optional.

• -std_output <filename>

Specifies the file to use for the VHDL TextIO STD_OUTPUT file. Optional.

• -strictvital

Specifies to exactly match the VITAL package ordering for messages and delta cycles.
Optional. Useful for eliminating delta cycle differences caused by optimizations not
addressed in the VITAL LRM. Using this argument negatively impacts simulator
performance.

• -toggleMaxIntValues <int>

Specifies the maximum number of VHDL integer values to record for toggle coverage.
Optional. This limit variable may be changed on a per-signal basis. The default value of
<int> is 100 values.

• -toggleNoIntegers

Turns off toggle coverage recording of VHDL integer values. Optional.

• -vital2.2b

Selects SDF mapping for VITAL 2.2b (default is VITAL 2000). Optional.

Arguments, Verilog

• +alt_path_delays

Configures path delays to operate in inertial mode by default. Optional. In inertial mode, a
pending output transition is cancelled when a new output transition is scheduled. The result
is that an output may have no more than one pending transition at a time, and that pulses
narrower than the delay are filtered. The delay is selected based on the transition from the
cancelled pending value of the net to the new pending value. The +alt_path_delays option
modifies the inertial mode such that a delay is based on a transition from the current output
value rather than the cancelled pending value of the net. This option has no effect in
transport mode (see +pulse_e/<percent> and
+pulse_r/<percent>).

ModelSim Reference Manual, v6.2g264

Commands
vsim

February 2007

• +delayed_timing_checks

Causes timing checks to be performed on the delayed versions of input ports (used when
there are negative timing check limits). Optional.

• -dpiexportobj <objfile>

Generate specified DPI export object file. Required only for Windows, RS6000, and RS64
platforms. Refer to “DPI Use Flow” for additional information.

• -extend_tcheck_data_limit <percent>

• -extend_tcheck_ref_limit <percent>

Causes a one-time extension of qualifying data or reference limits in an attempt to provide a
delay net solution prior to any limit zeroing. A limit qualifies if it bounds a violation region
which does not overlap a related violation region.

<percent> is the maximum percent of limit relaxation.

• -hazards

Enables event order hazard checking in Verilog modules. Optional. You must also specify
this argument when you compile your design with vlog. Refer to “Hazard Detection” for
more details.

Note
Enabling -hazards implicitly enables the -compat argument. As a result, using this
argument may affect your simulation results.

• +int_delays

Optimizes annotation of interconnect delays for designs that have been compiled using -fast
(see vlog command). Optional. This argument causes vsim to insert "placeholder" delay
elements at optimized cell inputs, resulting in faster backannotation of interconnect delays
from an SDF file.

• +maxdelays

Selects the maximum value in min:typ:max expressions. Optional. The default is the typical
value. Has no effect if you specified the min:typ:max selection at compile time.

• +mindelays

Selects the minimum value in min:typ:max expressions. Optional. The default is the typical
value. Has no effect if you specified the min:typ:max selection at compile time.

• +no_cancelled_e_msg

Disables negative pulse warning messages. Optional. By default vsim issues a warning and
then filters negative pulses on specify path delays. You can drive an X for a negative pulse
using +show_cancelled_e.

Commands
vsim

ModelSim Reference Manual, v6.2g 265
February 2007

• +no_neg_tchk

Disables negative timing check limits by setting them to zero. Optional. By default negative
timing check limits are enabled. This is just the opposite of Verilog-XL, where negative
timing check limits are disabled by default, and they are enabled with the +neg_tchk option.

• +no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
on timing violations for the entire design.

• +no_path_edge

Causes ModelSim to ignore the input edge specified in a path delay. Optional. The result of
this argument is that all edges on the input are considered when selecting the output delay.
Verilog-XL always ignores the input edges on path delays.

• +no_pulse_msg

Disables the warning message for specify path pulse errors. Optional. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection limit
and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error results
in a warning message, and the pulse is propagated as an X. The +no_pulse_msg option
disables the warning message, but the X is still propagated.

• -no_risefall_delaynets

Disables the rise/fall delay net delay negative timing check algorithm. Optional. This
argument is provided to return ModelSim to its pre-6.0 behavior where violation regions
must overlap in order to find a delay net solution. In 6.0 versions and later, ModelSim uses
separate rise/fall delays, so violation regions need not overlap for a delay solution to be
found.

• +no_show_cancelled_e

Filters negative pulses on specify path delays so they don’t show on the output. Default. Use
+show_cancelled_e to drive a pulse error state.

• -noexcludehiz

Instructs ModelSim to include truth table rows that contain Hi-Z states in the coverage
count. Without this argument, these rows are automatically excluded. Optional.

• +no_tchk_msg

Disables error messages issued by timing check system tasks when timing check violations
occur. Optional. Notifier registers are still toggled and may result in the propagation of Xs
for timing check violations.

• +nosdferror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

ModelSim Reference Manual, v6.2g266

Commands
vsim

February 2007

• +nosdfwarn

Disables warnings from the SDF annotator. Optional.

• +nospecify

Disables specify path delays and timing checks. Optional.

• +nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings that
can be disabled include the <CODE> name in square brackets in the warning message. For
example:

** Warning: (vsim-3017) test.v(2): [TFMPC] - Too few port
connections. Expected <m>, found <n>.

This warning message can be disabled with +nowarnTFMPC.

• +ntc_warn

Enables warning messages from the negative timing constraint algorithm. Optional. By
default, these warnings are disabled.

This algorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of the
negative limits to zero and recalculates the delays. This process is repeated until a solution is
found. A warning message is issued for each negative limit set to zero.

• -onfinish ask | stop | exit

Customizes the simulator shutdown behavior when it encounters $finish in the design:

• ask —

o In batch mode, the simulation exits.

o In GUI mode, a dialog box pops up and asks for user confirmation on whether to
quit the simulation.

• stop — stops simulation and leave the simulation kernal running

• exit — exits out of the simulation without a prompt

By default, the simulator exits in batch mode; prompts you in GUI mode. Edit the OnFinish
variable in the modelsim.ini file to set the default operation of simulator shutdown behavior.

• -pli "<object list>"

Loads a space-separated list of PLI shared objects. Optional. The list must be quoted if it
contains more than one object. This is an alternative to specifying PLI objects in the
Veriuser entry in the modelsim.ini file, refer to “Simulator Control Variables”. You can use
environment variables as part of the path.

Commands
vsim

ModelSim Reference Manual, v6.2g 267
February 2007

• +<plusarg>

Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). Optional.

• +pulse_e/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the error limit as a percentage of the path delay.
Optional.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
propagates to the output as an X. If the rejection limit is not specified, then it defaults to the
error limit. For example, consider a path delay of 10 along with a +pulse_e/80 option. The
error limit is 80% of 10 and the rejection limit defaults to 80% of 10. This results in the
propagation of pulses greater than or equal to 8, while all other pulses are filtered. Note that
you can force specify path delays to operate in transport mode by using the +pulse_e/0
option.

• +pulse_e_style_ondetect

Selects the "on detect" style of propagating pulse errors (see +pulse_e). Optional. A pulse
error propagates to the output as an X, and the "on detect" style is to schedule the X
immediately, as soon as it has been detected that a pulse error has occurred. "on event" style
is the default for propagating pulse errors (see +pulse_e_style_onevent).

• +pulse_e_style_onevent

Selects the "on event" style of propagating pulse errors (see +pulse_e). Default. A pulse
error propagates to the output as an X, and the "on event" style is to schedule the X to occur
at the same time and for the same duration that the pulse would have occurred if it had
propagated through normally.

• +pulse_r/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the rejection limit as a percentage of the path
delay. Optional.

A pulse less than the rejection limit is suppressed from propagating to the output. If the error
limit is not specified by +pulse_e then it defaults to the rejection limit.

• +sdf_nocheck_celltype

Disables the error check a for mismatch between the CELLTYPE name in the SDF file and
the module or primitive name for the CELL instance. It is an error if the names do not
match. Optional.

• +show_cancelled_e

Drives a pulse error state (’X’) for the duration of a negative pulse on a specify path delay.
Optional. By default ModelSim filters negative pulses.

ModelSim Reference Manual, v6.2g268

Commands
vsim

February 2007

• -sv_lib <shared_obj>

Specifies the name of the DPI shared object with no extension. Required for use with DPI
import libraries. Refer to “DPI Use Flow” for additional information.

• -sv_liblist <filename>

Specifies the name of a bootstrap file containing names of DPI shared objects to load.
Optional.

• -sv_root <dirname>

Specifies the directory name to be used as the prefix for DPI shared object lookups.
Optional.

• +transport_path_delays

Selects transport mode for path delays. Optional. By default, path delays operate in inertial
mode (pulses smaller than the delay are filtered). In transport mode, narrow pulses are
propagated through path delays. Note that this option affects path delays only, and not
primitives. Primitives always operate in inertial delay mode.

• +typdelays

Selects the typical value in min:typ:max expressions. Default. Has no effect if you specified
the min:typ:max selection at compile time.

• -v2k_int_delays

Causes interconnect delays to be visible at the load module port per the IEEE 1364-2001
spec. Optional. By default ModelSim annotates INTERCONNECT delays in a manner
compatible with Verilog-XL. If you have $sdf_annotate() calls in your design that are not
getting executed, add the Verilog task $sdf_done() after your last $sdf_annotate() to remove
any zero-delay MIPDs that may have been created. May be used in tandem with the
+multisource_int_delays argument (see above).

Arguments, object

The object arguments may be a [<library_name>].<design_unit>, a .mpf file, a .wlf file, or a
text file. Multiple design units may be specified for Verilog modules and mixed
VHDL/Verilog configurations.

• <library_name>.<design_unit>

Specifies a library and associated design unit; multiple library/design unit specifications can
be made. Optional. If no library is specified, the work library is used. Environment
variables can be used. <design_unit> may be one of the following:

<configuration> Specifies the VHDL configuration to simulate.

<module> … Specifies the name of one or more top-level Verilog modules to
be simulated. Optional.

Commands
vsim

ModelSim Reference Manual, v6.2g 269
February 2007

• <MPF_file_name>

Opens the specified project. Optional.

• <WLF_file_name>

Opens the specified dataset. Optional.

• <text_file_name>

Opens the specified text file in a Source window. Optional.

Examples

• Invoke vsim on the entity cpu and assigns values to the generic parameters edge and
VCC.

vsim -gedge=’"low high"’ -gVCC=4.75 cpu

If working within the ModelSim GUI, you would enter the command as follows:

vsim {-gedge="low high"} -gVCC=4.75 cpu

Instruct ModelSim to view the results of a previous simulation run stored in the WLF
file sim2.wlf. The simulation is displayed as a dataset named test. Use the -wlf option to
specify the name of the WLF file to create if you plan to create many files for later
viewing.

vsim -view test=sim2.wlf

For example:

vsim -wlf my_design.i01 my_asic structure
vsim -wlf my_design.i02 my_asic structure

Annotate instance /top/u1 using the minimum timing from the SDF file myasic.sdf.

vsim -sdfmin /top/u1=myasic.sdf

Use multiple switches to annotate multiple instances:

vsim -sdfmin /top/u1=sdf1 -sdfmin /top/u2=sdf2 top

• This example searches the libraries mylib for top(only) and gatelib for cache_set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.

<entity> [(<architecture>)] Specifies the name of the top-level VHDL entity to be simulated.
Optional. The entity may have an architecture optionally
specified; if omitted the last architecture compiled for the
specified entity is simulated. An entity is not valid if a
configuration is specified.1

1. Most UNIX shells require arguments containing () to be single-quoted to prevent special parsing by the
shell. See the examples below.

ModelSim Reference Manual, v6.2g270

Commands
vsim

February 2007

vsim ’mylib.top(only)’ gatelib.cache_set

• Invoke vsim on test_counter and instructs the simulator to run until a break event and
quit when it encounters a $finish task.

vsim -do "set PrefMain(forceQuit) 1; run -all" work.test_counter

Commands
vsim<info>

ModelSim Reference Manual, v6.2g 271
February 2007

vsim<info>
The vsim<info> commands return information about the current vsim executable.

• vsimAuth

Returns the authorization level (PE/SE, VHDL/Verilog/PLUS).

• vsimDate

Returns the date the executable was built, such as "Apr 10 2000".

• vsimId

Returns the identifying string, such as "ModelSim 6.1".

• vsimVersion

Returns the version as used by the licensing tools, such as "1999.04".

• vsimVersionString

Returns the full vsim version string.

This same information can be obtained using the -version argument of the vsim command.

ModelSim Reference Manual, v6.2g272

Commands
vsource

February 2007

vsource
The vsource command specifies an alternative file to use for the current source file.

This command is used when the current source file has been moved. The alternative source
mapping exists for the current simulation only.

Syntax

vsource [<filename>]

Arguments

• <filename>

Specifies a relative or full pathname. Optional. If filename is omitted, the source file for the
current design context is displayed.

Examples

vsource design.vhd
vsource /old/design.vhd

Commands
wave

ModelSim Reference Manual, v6.2g 273
February 2007

wave
A number of wave commands can be use to manipulate the Wave window.

The following tables summarize the available options for manipulating cursors, for zooming,
and for adjusting the wave display view in the Wave window:

Table 2-5.

Cursor Commands Description

wave activecursor Sets the active cursor to the specified cursor or, if no cursor is
specified, reports the active cursor

wave addcursor Adds a new cursor at specified time and returns the number of
the newly added cursor

wave cursortime Moves or reports the time of the specified cursor or, if no
cursor is specified, the time of the active cursor

wave deletecursor Deletes the specified cursor or, if no cursor is specified, the
active cursor

wave seecursor Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display – 0% is the left edge, 100% is the right edge.

Table 2-6.

Zooming Commands Description

wave zoomin Zoom in the wave display by the specified factor. The default
factor is 2.0.

wave zoomout Zoom out the wave display by the specified factor. The default
factor is 2.0.

wave zoomfull Zoom the wave display to show the full simulation time.

wave zoomlast Return to last zoom range.

wave zoomrange Sets left and right edge of wave display to the specified start
time and end time. If times are not specified, reports left and
right edge times.

Table 2-7.

Display view Commands Description

wave interrupt Immediately stops wave window drawing

wave refresh Cleans wave display and redraws waves

ModelSim Reference Manual, v6.2g274

Commands
wave

February 2007

Syntax

wave activecursor [-window <win>] [<cursor-num>]

wave addcursor [-window <win>] [-time <time>] [-name <name>] [-lock <0|1>]

wave configcursor [<cursor-num>] [-window <win>] [<option> [<value>]]

wave cursortime [-window <win>] [-time <time>] [<cursor-num>]

wave deletecursor [-window <win>] [<cursor-num>]

wave interrupt [-window <win>]

wave refresh [-window <win>]

wave seecursor [-window <win>] [-at <percent>] [<cursor-num>]

wave seetime [-window <win>] [-at <percent>] <time>

wave zoomin [-window <win>] [<factor>]

wave zoomout [-window <win>] [<factor>]

wave zoomfull [-window <win>]

wave zoomlast [-window <win>]

wave zoomrange [-window <win>] [<start-time>] [<end-time>]

Arguments

• [-at <percent>]

Positions the display such that the time or cursor is the specified <percent> from the left
edge of the wave display. 0% is the left edge; 100% is the right edge. Optional. Default is
50%.

• [<cursor-num>]

Specifies a cursor number. Optional. If not specified, the active cursor is used.

• [<factor>]

A number that specifies how much you want to zoom into or out of the wave display.
Optional. Default value is 2.0.

wave seecursor Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display – 0% is the left edge, 100% is the right edge.

wave seetime Positions the wave display such that the specified time appears
at the specified percent from the left edge of the display – 0%
is the left edge, 100% is the right edge.

Table 2-7.

Display view Commands Description

Commands
wave

ModelSim Reference Manual, v6.2g 275
February 2007

• [-lock <0|1>]

Specify the lock state of the cursor. Optional. Default is ’0’, unlocked.

• [-name <name>]

Specify the name of the cursor. Optional. Default is "Cursor <n>" where <n> is the cursor
number.

• <option> [<value>]

Specify a value for the designated option. Currently supported options are -name, -time, and
-lock. Optional. If no option is specified, current value of all options are reported.

• [<start-time>]
[<end-time>]

start-time and end-time are times that specify a zoom range. If neither number is specified,
the command returns the current zoom range. If only one time is specified, then the zoom
range is set to start at 0 and end at specified time.

• [-time <time>]

Specifies a cursor time. Optional.

• [-window <win>]

All commands default to the active Wave window unless this argument is used to specify a
different Wave window. Optional.

Examples

• Either of these commands creates a zoom range with a start time of 20 ns and an end
time of 100 ns.

wave zoomrange 20ns 100ns
wave zoomrange 20 100

• Return the name of cursor 2:

wave configcursor 2 -name

• Name cursor 2, "reference cursor" and return that name with:

wave configcursor 2 -name {reference cursor}

• Return the values of all wave configcursor options for cursor 2:

wave configcursor 2

ModelSim Reference Manual, v6.2g276

Commands
when

February 2007

when
The when command instructs ModelSim to perform actions when the specified conditions are
met.

For example, you can use the when command to break on a signal value or at a specific
simulator time. Use the nowhen command to deactivate when commands.

The when command uses a when_condition_expression to determine whether or not to
perform the action. Conditions can include the following HDL objects: VHDL signals, and
Verilog nets and registers. The when_condition_expression uses a simple restricted language
(that is not related to Tcl), which permits only four operators and operands that may be either
HDL object names, signame’event, or constants. ModelSim evaluates the condition every time
any object in the condition changes, hence the restrictions.

Here are some additional points to keep in mind about the when command:

• The when command creates the equivalent of a VHDL process or a Verilog always
block. It does not work like a looping construct you might find in other languages such
as C.

• Virtual signals, functions, regions, types, etc. cannot be used in the when command.
Neither can simulator state variables other than $now.

• With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

Syntax

when [[-label <label>] [-id <id#>] {<when_condition_expression>} {<command>}]

Arguments

• -label <label>

Used to identify individual when commands. Optional.

• -id <id#>

Attempts to assign this id number to the when command. Optional. If the id number you
specify is already used, ModelSim will return an error.

Note
Ids for when commands are assigned from the same pool as those used for the bp
command. So, even if you haven’t used an id number for a when command, it’s possible
it is used for a breakpoint.

• {<when_condition_expression>}

Specifies the conditions to be met for the specified <command> to be executed. Required if
a command is specified. The condition is evaluated in the simulator kernel and can be an

Commands
when

ModelSim Reference Manual, v6.2g 277
February 2007

object name, in which case the curly braces can be omitted. The command will be executed
when the object changes value. The condition can be an expression with these operators:

The operands may be object names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation
 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ' EVENT
| (expression)

Literal ::= '<char>' | "<bitstring>" | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals, i.e., Name = Name is not possible.

Tcl variables can be used in the condition expression but you must replace the curly braces
({}) with double quotes (""). This works like a macro substitution where the Tcl variables
are evaluated once and the result is then evaluated as the when condition. Condition
expressions are evaluated in the vsim kernel, which knows nothing about Tcl variables.
That's why the condition expression must be evaluated in the GUI before it is sent to the
vsim kernel. See below for an example of using a Tcl variable.

The ">", "<", ">=", and "<=" operators are the standard ones for vector types, not the
overloaded operators in the std_logic_1164 package. This may cause unexpected results
when comparing objects that contain values other than 1 and 0. ModelSim does a lexical
comparison (position number) for values other than 1 and 0. For example:

 Name Operator

equals ==, =

not equal !=, /=

greater than >

less than <

greater than or equal >=

less than or equal <=

AND &&, AND

OR ||, OR

ModelSim Reference Manual, v6.2g278

Commands
when

February 2007

0000 < 1111 ## This evaluates to true
H000 < 1111 ## This evaluates to false
001X >= 0010 ## This also evaluates to false

• {<command>}

The command(s) for this argument are evaluated by the Tcl interpreter within the ModelSim
GUI. Any ModelSim or Tcl command or series of commands are valid with one
exception—the run command cannot be used with the when command. Required if a when
expression is specified. The command sequence usually contains a stop command that sets a
flag to break the simulation run after the command sequence is completed. Multiple-line
commands can be used.

Note
If you want to stop the simulation using a when command, you must use a stop command
within your when statement. DO NOT use an exit command or a quit command. The
stop command acts like a breakpoint at the time it is evaluated.

Examples

• The when command below instructs the simulator to display the value of object c in
binary format when there is a clock event, the clock is 1, and the value of b is 01100111.
Finally, the command tells ModelSim to stop.

when -label when1 {clk’event and clk=’1’ and b = "01100111"} {
echo "Signal c is [exa -bin c]"
stop

}

• The commands below show an example of using a Tcl variable within a when
command. Note that the curly braces ({}) have been replaced with double quotes ("").

set clkb_path /tb/ps/dprb_0/udprb/ucar_reg/uint_ram/clkb;
when -label when1 "$clkb_path'event and $clkb_path ='1'" {

echo "Detected Clk edge at path $clkb_path"
}

• The when command below is labeled a and will cause ModelSim to echo the message
“b changed” whenever the value of the object b changes.

when -label a b {echo "b changed"}

• The multi-line when command below does not use a label and has two conditions. When
the conditions are met, an echo and a stop command will be executed.

when {b = 1
 and c /= 0 } {
 echo "b is 1 and c is not 0"
 stop

}

• In the example below, for the declaration "wire [15:0] a;", the when command will
activate when the selected bits match a 7:

Commands
when

ModelSim Reference Manual, v6.2g 279
February 2007

when {a(3:1) = 3'h7} {echo "matched at time " $now}

• In the example below, we want to sample the values of the address and data bus on the
first falling edge of clk after sstrb has gone high.

::strobe is our state variable
set ::strobe Zero
This signal breakpoint only fires when sstrb changes to a '1'
when -label checkStrobe {/top/sstrb == '1'} {

Our state Zero condition has been met, move to state One
set ::strobe One
}

This signal breakpoint fires each time clk goes to '0'
when {/top/clk == '0'} {

if {$::strobe eq "One"} {
Our state One condition has been met
Sample the busses
echo Sample paddr=[examine -hex /top/paddr] :: sdata=[examine

-hex
/top/sdata]
reset our state variable until next rising edge of sstrb

(back to
state Zero)
set ::strobe Zero

}
}

Ending the simulation with the stop command

Batch mode simulations are often structured as "run until condition X is true," rather than "run
for X time" simulations. The multi-line when command below sets a done condition and
executes an echo and a stop command when the condition is reached.

The simulation will not stop (even if a quit -f command is used) unless a stop command is
executed. To exit the simulation and quit ModelSim, use an approach like the following:

onbreak {resume}
when {/done_condition == ’1’} {

echo "End condition reached"
if [batch_mode] {

set DoneConditionReached 1
stop

}
}
run 1000 us
if {$DoneConditionReached == 1} {

quit -f
}

Here’s another example that stops 100ns after a signal transition:

ModelSim Reference Manual, v6.2g280

Commands
when

February 2007

when {a = 1} {
If the 100ns delay is already set then let it go.
if {[when -label a_100] == ""} {
when -label a_100 { $now = 100 } {
delete this breakpoint then stop
nowhen a_100
stop

}
}

}

Time-based breakpoints

You can build time-based breakpoints into a when statement with the following syntax.

For absolute time (indicated by @) use:

when {$now = @1750 ns} {stop}

You can also use:

when {errorFlag = '1' OR $now = 2 ms} {stop}

This example adds 2 ms to the simulation time at which the when statement is first evaluated,
then stops. The white space between the value and time unit is required for the time unit to be
understood by the simulator.

You can also use variables, as shown in the following example:

set time 1000
when "\$now = $time" {stop}

The quotes instruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop

Note that "$now" has the ’$’ escaped. This prevents Tcl from expanding the variable, because if
it did, you would get:

when "0 = 1000" stop

See also

bp, disablebp, enablebp, nowhen

Commands
where

ModelSim Reference Manual, v6.2g 281
February 2007

where
The where command displays information about the system environment. This command is
useful for debugging problems where ModelSim cannot find the required libraries or support
files.

The command displays two system settings:

• current directory

This is the current directory that ModelSim was invoked from, or was specified on the
ModelSim command line.

• current project file

This is the .mpf file ModelSim is using. All library mappings are taken from here when a
project is open.

Syntax

where

Arguments

• None.

ModelSim Reference Manual, v6.2g282

Commands
wlf2log

February 2007

wlf2log
The wlf2log command translates a ModelSim WLF file (vsim.wlf) to a QuickSim II logfile.

The command reads the vsim.wlf WLF file generated by the add list, add wave, or log
commands in the simulator and converts it to the QuickSim II logfile format.

Note
This command should be invoked only after you have stopped the simulation using quit -
sim or dataset close sim.

Syntax

wlf2log [-bits] [-fullname] [-help] [-inout] [-input] [-internal] [-l <instance_path>] [-lower]
[-o <outfile>] [-output] [-quiet] <wlffile>

Arguments

• -bits

Forces vector nets to be split into 1-bit wide nets in the log file. Optional.

• -fullname

Shows the full hierarchical pathname when displaying signal names. Optional.

• -help

Displays a list of command options with a brief description for each. Optional.

• -inout

Lists only the inout ports. Optional. This may be combined with the -input, -output, or
-internal switches.

• -input

Lists only the input ports. Optional. This may be combined with the -output, -inout, or
-internal switches.

• -internal

Lists only the internal signals. Optional. This may be combined with the -input, -output, or -
inout switches.

• -l <instance_path>

Lists the signals at or below the specified HDL instance path within the design hierarchy.
Optional.

• -lower

Shows all logged signals in the hierarchy. Optional. When invoked without the -lower
switch, only the top-level signals are displayed.

Commands
wlf2log

ModelSim Reference Manual, v6.2g 283
February 2007

• -o <outfile>

Directs the output to be written to the file specified by <outfile>. Optional. The default
destination for the logfile is standard out.

• -output

Lists only the output ports. Optional. This may be combined with the -input, -inout, or
-internal switches.

• -quiet

Disables error message reporting. Optional.

• <wlffile>

Specifies the ModelSim WLF file that you are converting. Required.

ModelSim Reference Manual, v6.2g284

Commands
wlf2vcd

February 2007

wlf2vcd
The wlf2vcd command translates a ModelSim WLF file to a standard VCD file. Complex data
types that are unsupported in the VCD standard (records, memories, etc.) are not converted.

Note
This command should be invoked only after you have stopped the simulation using quit -
sim or dataset close sim.

Syntax

wlf2vcd [-help] [-o <outfile>] [-quiet] <wlffile>

Arguments

• -help

Displays a list of command options with a brief description for each. Optional.

• -o <outfile>

Specifies a filename for the output. By default, the VCD output goes to stdout. Optional.

• -quiet

Disables warning messages that are produced when an unsupported type (e.g., records) is
encountered in the WLF file. Optional.

• <wlffile>

Specifies the ModelSim WLF file that you are converting. Required.

Commands
wlfman

ModelSim Reference Manual, v6.2g 285
February 2007

wlfman
The wlfman command allows you to get information about and manipulate WLF files.

The command performs four functions depending on which mode you use:

• wlfman info generates file information, resolution, versions, etc.

• wlfman items generates a list of HDL objects (i.e., signals) from the source WLF file
and outputs it to stdout. When redirected to a file, the output is called an object_list_file,
and it can be read in by wlfman filter. The object_list_file is a list of objects, one per
line. Comments start with a '#' and continue to the end of the line. Wildcards are legal in
the leaf portion of the name. Here is an example:

/top/foo # signal foo
/top/u1/* # all signals under u1
/top/u1 # same as line above
-r /top/u2 # recursively, all signals under u2

Note that you can produce these files from scratch but be careful with syntax. wlfman
items always creates a legal object_list_file.

• wlfman filter reads in a WLF file and optionally an object_list_file and writes out
another WLF file containing filtered information from those sources. You determine the
filtered information with the arguments you specify.

• wlfman profile generates a report of the estimated percentage of file space that each
signal is taking in the specified WLF file. This command can identify signals that
account for a large percentage of the WLF file size (e.g., a logged memory that uses a
zero-delay integer loop to initialize the memory). You may be able to drastically reduce
WLF file size by not logging those signals.

• wlfman merge combines two WLF files with different signals into one WLF file. It
does not combine wlf files containing the same signals at different runtime ranges (i.e.,
mixedhdl_0ns_100ns.wlf & mixedhdl_100ns_200ns.wlf).

The different modes are intended to be used together. For example, you might run wlfman
profile and identify a signal that accounts for 50% of the WLF file size. If you don’t actually
need that signal, you can then run wlfman filter to remove it from the WLF file.

Syntax

wlfman info <wlffile>

wlfman items [-n] [-v] <wlffile>

wlfman filter [-begin <time>] [-end <time>] [-f <object_list_file>] [-r <object>]
[-s <symbol>] [-t <resolution>] -o <outwlffile> <sourcewlffile>

wlfman profile [-rank] [-top <number>] <wlffile>

wlfman merge [-noopt] [-opt] -o <outwlffile> [<wlffile1> <wlffile2>]

ModelSim Reference Manual, v6.2g286

Commands
wlfman

February 2007

Arguments for wlfman info

• <wlffile>

Specifies the WLF file from which you want information. Required.

Arguments for wlfman items

• -n

Lists regions only (no signals). Optional.

• -v

Produces verbose output that lists the object type next to each object. Optional.

• <wlffile>

Specifies the WLF file for which you want a profile report. Required.

Arguments for wlfman filter

• -begin <time>

Specifies the simulation time at which you want to begin reading information from the
source WLF file. Optional. By default the output includes the entire time that is recorded in
the source WLF file.

• -end <time>

Specifies the simulation time at which you want to end reading information from the source
WLF file. Optional.

• -f <object_list_file>

Specifies an object_list_file created by wlfman items to include in the output WLF file.
Optional.

• -r <object>

Specifies an object (region) to recursively include in the output. If <object> is a signal, the
output would be the same as using -s. Optional.

• -s <symbol>

Specifies an object to include in the output. Optional. By default all objects are output.

• -t <resolution>

Specifies the time resolution of the new WLF file. Optional. By default the resolution is the
same as the source WLF file.

• -o <outwlffile>

Specifies the name of the output WLF file. Required. The output WLF file will contain all
objects specified by -f <object_list_file>, -r <object>, and -s <symbol>. Output WLF files
are always written in the latest WLF version regardless of the source WLF file version.

• <sourcewlffile>

Specifies the source WLF file from which you want objects. Required.

Commands
wlfman

ModelSim Reference Manual, v6.2g 287
February 2007

Arguments for wlfman profile

• -rank

Sorts the report by percentage. Optional.

• -top <number>

Filters the report so that only the top <number> signals in terms of file space percentage are
displayed. Optional.

• <wlffile>

Specifies the WLF file from which you want object information. Required.

Arguments for wlfman merge

• -noopt

Disables WLF file optimizations when writing output WLF file. Optional.

• -opt

Forces WLF file optimizations when writing output WLF file. Optional. Default.

• -o <outwlffile>

Specifies the name of the output WLF file. Required. The output WLF file will contain all
objects from <wlffile1> and <wlffile2>. Output WLF files are always written in the latest
WLF version regardless of the source WLF file version.

• <wlffile1> <wlffile2>

Specifies the WLF files whose objects you want to copy into one WLF file. Optional.

Examples

• The output from this command would look something like this:

wlfman profile -rank top_vh.wlf

ModelSim Reference Manual, v6.2g288

Commands
wlfman

February 2007

#Repeated ID #'s mean those signals share the same
#space in the wlf file.
#
ID Transitions File % Name
#----- ----------- ------ ------------------------------------
 1 2192 33 % /top_vh/pdata
 1 /top_vh/processor/data
 1 /top_vh/cache/pdata
 1 /top_vh/cache/gen__0/s/data
 1 /top_vh/cache/gen__1/s/data
 1 /top_vh/cache/gen__2/s/data
 1 /top_vh/cache/gen__3/s/data
 2 1224 18 % /top_vh/ptrans
 3 1216 18 % /top_vh/sdata
 3 /top_vh/cache/sdata
 3 /top_vh/memory/data
 4 675 10 % /top_vh/strans
 5 423 6 % /top_vh/cache/gen__3/s/data_out
 6 135 3 % /top_vh/paddr.
.
.
.

• wlfman profile -top 3 top_vh.wlf

The output from this command would look something like this:

ID Transitions File % Name
#----- ----------- ------ ------------------------------------
 1 2192 33 % /top_vh/pdata
 1 /top_vh/processor/data
 1 /top_vh/cache/pdata
 1 /top_vh/cache/gen__0/s/data
 1 /top_vh/cache/gen__1/s/data
 1 /top_vh/cache/gen__2/s/data
 1 /top_vh/cache/gen__3/s/data
 2 1224 18 % /top_vh/ptrans
 3 1216 18 % /top_vh/sdata
 3 /top_vh/cache/sdata
 3 /top_vh/memory/data

See also

“WLF Files (Datasets) and Virtuals”

Commands
wlfrecover

ModelSim Reference Manual, v6.2g 289
February 2007

wlfrecover
The wlfrecover tool attempts to "repair" WLF files that are incomplete due to a crash or the file
being copied prior to completion of the simulation. You can run the tool from the VSIM> or
ModelSim> prompt or from a shell.

Syntax

wlfrecover <filename> [-force] [-q]

Arguments

• <filename>

Specifies the WLF file to repair. Required.

• -force

Disregards file locking and attempts to repair the file. Optional.

• -q

Hides all messages unless there is an error while repairing the file. Optional.

ModelSim Reference Manual, v6.2g290

Commands
write format

February 2007

write format
The write format command records the names and display options of the HDL objects
currently being displayed in the List or Wave window.

The file created is primarily a list of add listor add wave commands, though a few other
commands are included (see "Output" below). This file may be invoked with the do command
to recreate the List or Wave window format on a subsequent simulation run.

When you load a wave or list format file, ModelSim verifies the existence of the datasets
required by the format file. ModelSim displays an error message if the requisite datasets do not
all exist. To force the execution of the wave or list format file even if all datasets are not present,
use the -force switch with your do command. For example:

VSIM> do wave.do -force

Note that this will result in error messages for signals referencing nonexistent datasets. Also,
-force is recognized by the format file not the do command.

Syntax

write format list | wave <filename>

Arguments

• list | wave

Specifies that the contents of either the List or the Wave window are to be recorded.
Required.

• <filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

• Save the current data in the List window in a file named alu_list.do.

write format list alu_list.do

• Save the current data in the Wave window in a file named alu_wave.do.

write format wave alu_wave.do

Output

• Below is an example of a saved Wave window format file.

Commands
write format

ModelSim Reference Manual, v6.2g 291
February 2007

onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate -format Logic /cntr_struct/ld
add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/q
TreeUpdate [SetDefaultTree]
quietly WaveActivateNextPane
add wave -noupdate -format Logic /cntr_struct/p1
add wave -noupdate -format Logic /cntr_struct/p2
add wave -noupdate -format Logic /cntr_struct/p3
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {0 ns}
WaveRestoreZoom {0 ns} {1 us}
configure wave -namecolwidth 150
configure wave -valuecolwidth 100
configure wave -signalnamewidth 0
configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window pane. The TreeUpdate command then refreshes all five waveforms. The
second WaveActivateNextPane command creates a second pane which contains three
signals.The WaveRestoreCursors command restores any cursors you set during the
original simulation, and the WaveRestoreZoom command restores the Zoom range you
set. These four commands are used only in saved Wave format files; therefore, they are
not documented elsewhere.

See also

add list, add wave

ModelSim Reference Manual, v6.2g292

Commands
write list

February 2007

write list
The write list command records the contents of the List window in a list output file.

This file contains simulation data for all HDL objects displayed in the List window: VHDL
signals and variables and Verilog nets and registers.

Syntax

write list [-events] <filename>

Arguments

• -events

Specifies to write print-on-change format. Optional. Default is tabular format.

• <filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

• Save the current data in the List window in a file named alu.lst.

write list alu.lst

See also

write tssi

Commands
write preferences

ModelSim Reference Manual, v6.2g 293
February 2007

write preferences
The write preferences command saves the current GUI preference settings to a Tcl preference
file. Settings saved include Wave, Objects, and Locals window column widths; Wave, Objects,
and Locals window value justification; and Wave window signal name width.

Syntax

write preferences <preference file name>

Arguments

• <preference file name>

Specifies the name for the preference file. Optional. If the file is named modelsim.tcl,
ModelSim will read the file each time vsim is invoked. To use a preference file other than
modelsim.tcl you must specify the alternative file name with the MODELSIM_TCL
environment variable.

See also

You can modify variables by editing the preference file with the ModelSim notepad:

notepad <preference file name>

ModelSim Reference Manual, v6.2g294

Commands
write report

February 2007

write report
The write report command prints a summary of the design being simulated including a list of
all design units (VHDL configurations, entities, and packages, and Verilog modules) with the
names of their source files. The summary includes a list of all source files used to compile the
given design.

Syntax

write report [[<filename>] [-l | -s]] | [-tcl]

Arguments

• <filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the report is written to the Transcript pane.

• -l

Generates more detailed information about the design including a list of sparse memories.
Default.

• -s

Generates a short list of design information. Optional.

• -tcl

Generates a Tcl list of design unit information. Optional. This argument cannot be used with
a filename.

Examples

• Save information about the current design in a file named alu.rep.

write report alu.rep

Commands
write timing

ModelSim Reference Manual, v6.2g 295
February 2007

write timing
The write timing command prints timing information about the specified instance.

Syntax

write timing [-recursive] [-file <filename>] [<instance_name1>…<instance_nameN>]

Arguments

• -recursive

Generates timing information for the specified instance and all instances underneath it in the
design hierarchy. Optional.

• -file <filename>

Specifies the name of the output file where the data is to be written. Optional. If the -file
argument is omitted, timing information is written to the Transcript pane.

• <instance_name1>…<instance_nameN>

The name(s) of the instance(s) for which timing information will be written. Required.

Examples

• Write timing about /top/u1 and all instances underneath it in the hierarchy to the file
timing.txt.

write timing -r -f timing.txt /top/u1

• Write timing information about the designated instances to the Transcript pane.

write timing /top/u1 /top/u2 /top/u3 /top/u8

ModelSim Reference Manual, v6.2g296

Commands
write transcript

February 2007

write transcript
The write transcript command writes the contents of the Transcript pane to the specified file.
The resulting file can be used to replay the transcribed commands as a DO file (macro).

The command cannot be used in batch mode. In batch mode use the standard Transcript file or
redirect stdout.

Syntax

write transcript [<filename>]

Arguments

• <filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the transcript is written to a file named transcript.

See also

do

Commands
write tssi

ModelSim Reference Manual, v6.2g 297
February 2007

write tssi
The write tssi command records the contents of the List window in a "TSSI format" file.

The file contains simulation data for all HDL objects displayed in the List window that can be
converted to TSSI format (VHDL signals and Verilog nets). A signal definition file is also
generated.

The List window needs to be using symbolic radix in order for write tssi to produce useful
output.

Syntax

write tssi <filename>

Arguments

• <filename>

Specifies the name of the output file where the data is to be written. Required.

Description

“TSSI format” is documented in the Fluence TDS Software System, Chapter 2 of Volume I,
Getting Started, R11.1, dated November 15, 1999. In that document, TSSI format is called
Standard Events Format (SEF).

If the <filename> has a file extension (e.g., listfile.lst), then the definition file is given the same
file name with the extension .def (e.g., listfile.def). The values in the listfile are produced in the
same order that they appear in the List window. The directionality is determined from the port
type if the object is a port, otherwise it is assumed to be bidirectional (mode INOUT).

Objects that can be converted to SEF are VHDL enumerations with 255 or fewer elements and
Verilog nets. The enumeration values U, X, 0, 1, Z, W, L, H and - (the enumeration values
defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF values
according to the table below. Other values are converted to a question mark (?) and cause an
error message. Though the write tssi command was developed for use with std_ulogic, any
signal which uses only the values defined for std_ulogic (including the VHDL standard type
bit) will be converted.

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional

U N X ?

X N X ?

0 D L 0

1 U H 1

Z Z T F

W N X ?

ModelSim Reference Manual, v6.2g298

Commands
write tssi

February 2007

Bidirectional logic values are not converted because only the resolved value is available. The
Fluence (TSSI) TDS ASCII In Converter and ASCII Out Converter can be used to resolve the
directionality of the signal and to determine the proper forcing or expected value on the port.
Lowercase values x, z, w, l, and h are converted to the same values as the corresponding
capitalized values. Any other values will cause an error message to be generated the first time
an invalid value is detected on a signal, and the value will be converted to a question mark (?).

Note
The TDS ASCII In Converter and ASCII Out Converter are part of the TDS software
from Fluence Technology. ModelSim outputs a vector file, and Fluence’s tools determine
whether the bidirectional signals are driving or not.

See also

tssi2mti

L D L 0

H U H 1

- N X ?

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional

Commands
write wave

ModelSim Reference Manual, v6.2g 299
February 2007

write wave
 The write wave command records the contents of the Wave window in PostScript format.

The output file can then be printed on a PostScript printer.

Syntax

write wave[-width <real_num>] [-height <real_num>]
[-margin <real_num>] [-start <time>] [-end <time>] [-perpage <time>] [-landscape]
[-portrait] <filename>

Arguments

• -width <real_num>

Specifies the paper width in inches. Optional. Default is 8.5.

• -height <real_num>

Specifies the paper height in inches. Optional. Default is 11.0.

• -margin <real_num>

Specifies the margin in inches. Optional. Default is 0.5.

• -start <time>

Specifies the start time (on the waveform timescale) to be written. Optional.

• -end <time>

Specifies the end time (on the waveform timescale) to be written. Optional.

• -perpage <time>

Specifies the time width per page of output. Optional.

• -landscape

Use landscape (horizontal) orientation. Optional. This is the default orientation.

• -portrait

Use portrait (vertical) orientation. Optional. The default is landscape (horizontal).

• <filename>

Specifies the name of the PostScript output file. Required.

Examples

• Save the current data in the Wave window in a file named alu.ps.

write wave alu.ps

• Write two separate pages to top.ps. The first page contains data from 600ns to 700ns,
and the second page contains data from 701ns to 800ns.

write wave -start 600ns -end 800ns -perpage 100ns top.ps

ModelSim Reference Manual, v6.2g300

Commands
write wave

February 2007

To make the job of creating a PostScript waveform output file easier, use the File >
Print Postscript menu selection in the Wave window.

301

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

ModelSim Reference Manual, v6.2g
February 2007

— Symbols —
$finish behavior, customizing, 266
+typdelays, 245
{}, 15
’hasX, hasX, 25

— Numerics —
2001, keywords, disabling, 245

— A —
abort command, 40
absolute time, using @, 18
add list command, 42
add log command, 111
add memory command, 45
add watch command, 46
add wave command, 47
add_cmdhelp command, 52
addTime command, 169
alias command, 53
analog

signal formatting, 48
annotating interconnect delays,

v2k_int_delays, 268
archives, library, 236
argument, 242
arrays

indexes, 13
slices, 13, 15

arrays, VHDL, searching for, 21
assertions

testing for with onbreak command, 134
attributes, of signals, using in expressions, 25

— B —
batch_mode command, 54
batch-mode simulations

halting, 279
bd (breakpoint delete) command, 55
binary radix, mapping to std_logic values, 30
bookmark add wave command, 56

bookmark delete wave command, 57
bookmark goto wave command, 58
bookmark list wave command, 59
bp (breakpoint) command, 60
brackets, escaping, 15
break

on signal value, 276
breakpoints

conditional, 276
continuing simulation after, 153
deleting, 55
listing, 60
setting, 60
signal breakpoints (when statements), 276
time-based

in when statements, 280
busses

escape characters in, 15
user-defined, 49

— C —
case choice, must be locally static, 199
case sensitivity

VHDL vs. Verilog, 16
cd (change directory) command, 63
change command, 64
-check_synthesis argument, 197
combining signals, busses, 49
commands

abort, 40
add list, 42
add memory, 45
add watch, 46
add wave, 47
alias, 53
batch_mode, 54
bd (breakpoint delete), 55
bookmark add wave, 56
bookmark delete wave, 57
bookmark goto wave, 58

Index

302
February 2007

ModelSim Reference Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

bookmark list wave, 59
bp (breakpoint), 60
cd (change directory), 63
change, 64
configure, 66
dataset alias, 70
dataset clear, 71
dataset close, 72
dataset config, 73
dataset info, 74
dataset list, 75
dataset open, 76
dataset rename, 77, 78
dataset snapshot, 79
delete, 81
describe, 82
disablebp, 83
do, 84
drivers, 85
dumplog64, 86
echo, 87
edit, 88
enablebp, 89
environment, 90
examine, 92
exit, 96
find, 97
force, 104
help, 108
history, 109
layout, 110
log, 111
lshift, 113
lsublist, 114
mem compare, 115
mem display, 116
mem list, 118
mem load, 119
mem save, 122
mem search, 124
noforce, 128
nolog, 129
notation conventions, 11
notepad, 131
noview, 132

nowhen, 133
onbreak, 134
onElabError, 136
onerror, 137
pause, 138
printenv, 139, 140
pwd, 143
quietly, 144
quit, 145
radix, 146
readers, 147
report, 148
restart, 150
resume, 152
run, 153
searchlog, 157
setenv, 160
shift, 161
show, 162
status, 165
step, 166
stop, 167
tb (traceback), 168
transcript, 172
transcript file, 173
TreeUpdate, 291
tssi2mti, 174
unsetenv, 175
variables referenced in, 18
vcd add, 176
vcd checkpoint, 178
vcd comment, 179
vcd dumpports, 180
vcd dumpportsall, 182
vcd dumpportsflush, 183
vcd dumpportslimit, 184
vcd dumpportsoff, 185
vcd dumpportson, 186
vcd file, 187
vcd files, 189
vcd flush, 191
vcd limit, 192
vcd off, 193
vcd on, 194
vcom, 196

303ModelSim Reference Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

vdel, 204
vdir, 206
verror, 209
vgencomp, 210
view, 212
virtual count, 214
virtual define, 215
virtual delete, 216
virtual describe, 217
virtual expand, 218
virtual function, 219
virtual hide, 222
virtual log, 223
virtual nohide, 225
virtual nolog, 226
virtual region, 228
virtual save, 229
virtual show, 230
virtual signal, 231
virtual type, 234
vlib, 236
vlog, 238
vmake, 248
vmap, 250
vsim, 251
vsimDate, 271
vsimId, 271
vsimVersion, 271
wave, 273
WaveActivateNextPane, 291
WaveRestoreCursors, 291
WaveRestoreZoom, 291
when, 276
where, 281
wlf2log, 282
wlf2vcd, 284
wlfman, 285
wlfrecover, 289
write format, 290
write list, 292
write preferences, 293
write report, 294
write timing, 295
write transcript, 296
write tssi, 297

write wave, 299
comment characters in VSIM commands, 11
compatibility, of vendor libraries, 206
compiling

range checking in VHDL, 201
Verilog, 238
VHDL, 196

at a specified line number, 199
selected design units (-just eapbc), 198
standard package (-s), 201

compressing files
VCD files, 180, 189

concatenation
directives, 29
of signals, 28, 231

conditional breakpoints, 276
configurations, simulating, 251
configure command, 66
constants

in case statements, 199
values of, displaying, 82, 92

conversion, radix, 146

— D —
dataset alias command, 70
dataset clear command, 71
dataset close command, 72
dataset config command, 73
dataset info command, 74
dataset list command, 75
dataset open command, 76
dataset rename command, 77, 78
dataset snapshot command, 79
datasets

environment command, specifying with, 90
declarations, hiding implicit with explicit, 203
+define+, 239
delay

interconnect, 256
+delay_mode_distributed, 239
+delay_mode_path, 239
+delay_mode_unit, 240
+delay_mode_zero, 240
’delayed, 25
delete command, 81
deltas

304
February 2007

ModelSim Reference Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

collapsing in WLF files, 261
hiding in the List window, 67

dependencies, checking, 206
dependency errors, 197, 240
describe command, 82
design loading, interrupting, 251
design units

report of units simulated, 294
Verilog

adding to a library, 238
directories

mapping libraries, 250
disablebp command, 83
dividers

adding from command line, 47
divTime ccommand, 169
do command, 84
DO files (macros), 84
drivers command, 85
dump files, viewing in the simulator, 195
dumplog64 command, 86

— E —
echo command, 87
edit command, 88
enablebp command, 89
entities, specifying for simulation, 269
enumerated types

user defined, 234
environment command, 90
environment variables

reading into Verilog code, 239
specifying UNIX editor, 88
state of, 140
using in pathnames, 16

environment, displaying or changing
pathname, 90

eqTime command, 169
errors

getting details about messages, 209
onerror command, 137
SDF, disabling, 258

escape character, 15
event order

changing in Verilog, 238, 239
examine command, 92

exit command, 96
exiting the simulator, customizing behavior,

266
extended identifier, 24
extended identifiers, 16

— F —
-f, 240
file compression

VCD files, 180, 189
find command, 97
force command, 104
format file

List window, 290
Wave window, 290

formatTime command, 170

— G —
generics

assigning or overriding values with -g and -
G, 253

examining generic values, 92
limitation on assigning composite types,

254
glitches

disabling generation
from command line, 263

global visibility
PLI/FLI shared objects, 254

gteTime command, 169
gtTime command, 169
GUI_expression_format, 22

syntax, 23

— H —
’hasX, 25
hazards

-hazards argument to vlog, 241
-hazards argument to vsim, 264

help command, 108
history

of commands
shortcuts for reuse, 19

history command, 109

305ModelSim Reference Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

— I —
implicit operator, hiding with vcom -explicit,

203
+incdir+, 241
indexed arrays, escaping square brackets, 15
interconnect delays, 256

annotating per Verilog 2001, 268
internal signals, adding to a VCD file, 176
interrupting design loading, 251
intToTime command, 169

— K —
keywords

disabling 2001 keywords, 245
enabling SystemVerilog keywords, 244

— L —
layout command, 110
libraries

archives, 236
dependencies, checking, 206
design libraries, creating, 236
listing contents, 206
refreshing library images, 201, 244
vendor supplied, compatibility of, 206
Verilog, 255

lint-style checks, 242
List window

adding items to, 42
loading designs, interrupting, 251
log command, 111
log file

log command, 111
nolog command, 129
QuickSim II format, 282
redirecting with -l, 255
virtual log command, 223
virtual nolog command, 226

lshift command, 113
lsublist command, 114
lteTime command, 169
ltTime command, 169

— M —
macros (DO files)

breakpoints, executing at, 61

executing, 84
forcing signals, nets, or registers, 104
parameters

passing, 84
relative directories, 84
shifting parameter values, 161

+maxdelays, 242
mc_scan_plusargs, PLI routine, 267
mem compare command, 115
mem display command, 116
mem list command, 118
mem load command, 119
mem save command, 122
mem search command, 124
memory window

add memory command, 45
adding items to, 45

memory, comparing contents, 115
memory, displaying contents, 116
memory, listing, 118
memory, loading contents, 119
memory, saving contents, 122
memory, searching for patterns, 124
messages

echoing, 87
getting more information, 209
loading, disabling with -quiet, 244
loading, disbling with -quiet, 201

-mfcu, 242
+mindelays, 242
mnemonics, assigning to signal values, 234
mulTime command, 169
multi-source interconnect delays, 256

— N —
name case sensitivity, VHDL vs. Verilog, 16
negative pulses

driving an error state, 267
negative timing

extending check limits, 264
neqTime command, 169
nets

drivers of, displaying, 85
readers of, displaying, 147
stimulus, 104
values of

306
February 2007

ModelSim Reference Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

examining, 92
-no_risefall_delaynets, 265
noforce command, 128
+nolibcell, 243
nolog command, 129
notepad command, 131
noview command, 132
+nowarn<CODE>, 243
nowhen command, 133

— O —
object_list_file, WLF files, 285
onbreak command, 134
onElabError command, 136
onerror command, 137
optimizations

disabling for Verilog designs, 243
disabling for VHDL designs, 201

order of events
changing in Verilog, 238, 239

— P —
parameters

using with macros, 84
pathnames

in VSIM commands, 12
spaces in, 12

pause command, 138
PLI

loading shared objects with global symbol
visibility, 254

printenv command, 139, 140
projects

override mapping for work directory with
vcom, 202

override mapping for work directory with
vlog, 245

propagation, preventing X propagation, 256
pulse error state, 267
pwd command, 143

— Q —
QuickSim II logfile format, 282
quietly command, 144
quit command, 145

— R —
radix

changing in Objects, Locals, Dataflow,
List, and Wave windows, 146

character strings, displaying, 234
of signals being examined, 93
of signals in Wave window, 49

radix command, 146
range checking

disabling, 200
enabling, 201

readers command, 147
RealToTime command, 169
record field selection, syntax, 13
refresh, dependency check errors, 197, 240
refreshing library images, 201, 244
report command, 148
reporting

variable settings, 18
resolution

specifying with -t argument, 259
restart command, 150
resume command, 152
run command, 153

— S —
scaleTime command, 169
scope resolution operator, 13
scope, setting region environment, 90
SDF

annotation verbose mode, 258
controlling missing instance messages, 258
errors on loading, disabling, 258
warning messages, disabling, 258

search libraries, 255
searching

binary signal values in the GUI, 30
List window

signal values, transitions, and names,
22

VHDL arrays, 21
searchlog command, 157
setenv command, 160
shared objects

loading with global symbol visibility, 254

307ModelSim Reference Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

shift command, 161
shortcuts

command history, 19
command line caveat, 19

show command, 162
signals

alternative names in the Wave window (-
label), 48

attributes of, using in expressions, 25
breakpoints, 276
combining into a user-defined bus, 49
drivers of, displaying, 85
environment of, displaying, 90
finding, 97
force time, specifying, 106
log file, creating, 111
pathnames in VSIM commands, 12
radix

specifying for examine, 93
specifying in List window, 43
specifying in Wave window, 49

readers of, displaying, 147
states of, displaying as mnemonics, 234
stimulus, 104
values of

examining, 92
replacing with text, 234

simulating
delays, specifying time units for, 18
design unit, specifying, 251
saving simulations, 111, 260
stepping through a simulation, 166
stopping simulation in batch mode, 279

simulations
saving results, 78, 79

Simulator commands, 40
simulator resolution

vsim -t argument, 259
simulator version, 260, 271
simultaneous events in Verilog

changing order, 238, 239
spaces in pathnames, 12
sparse memories

listing with write report, 294
specify path delays, 267

square brackets, escaping, 15
startup

alternate to startup.do (vsim -do), 253
status command, 165
Std_logic

mapping to binary radix, 30
step command, 166
stop command, 167
subTime command, 169
symbolic constants, displaying, 234
symbolic names, assigning to signal values,

234
synthesis

rule compliance checking, 197
SystemVerilog

enabling with -sv argument, 244
multiple files in a compilation unit, 242
scope resolution, 13

— T —
tb command, 168
Tcl

history shortcuts, 19
variable

in when commands, 277
TFMPC

disabling warning, 266
time

absolute, using @, 18
simulation time units, 18

time collapsing, 261
time resolution

setting
with vsim command, 259

time, time units, simulation time, 18
timescale directive warning

disabling, 266
timing

disabling checks, 243
disabling checks for entire design, 257
negative check limits

extending, 264
title, Main window, changing, 259
transcript

redirecting with -l, 255
reducing file size, 173

308
February 2007

ModelSim Reference Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

transcript command, 172
transcript file command, 173
TreeUpdate command, 291
TSCALE, disabling warning, 266
TSSI, 297
tssi2mti command, 174

— U —
-u, 245
undeclared nets, reporting an error, 242
unsetenv command, 175
user-defined bus, 49

— V —
-v, 245
v2k_int_delays, 268
validTime command, 170
values

describe HDL items, 82
examine HDL item values, 92
replacing signal values with strings, 234

variable settings report, 18
variables

describing, 82
referencing in commands, 18
value of

changing from command line, 64
examining, 92

vcd add command, 176
vcd checkpoint command, 178
vcd comment command, 179
vcd dumpports command, 180
vcd dumpportsall command, 182
vcd dumpportsflush command, 183
vcd dumpportslimit command, 184
vcd dumpportsoff command, 185
vcd dumpportson command, 186
vcd file command, 187
VCD files

adding items to the file, 176
capturing port driver data, 180
converting to WLF files, 195
creating, 176
dumping variable values, 178
flushing the buffer contents, 191
generating from WLF files, 284

inserting comments, 179
internal signals, adding, 176
specifying maximum file size, 192
specifying name of, 189
specifying the file name, 187
state mapping, 187, 189
turn off VCD dumping, 193
turn on VCD dumping, 194
viewing files from another tool, 195

vcd files command, 189
vcd flush command, 191
vcd limit command, 192
vcd off command, 193
vcd on command, 194
vcd2wlf command, 195
vcom command, 196
vcom Examples, 202
vdel command, 204
vdir command, 206
vector elements, initializing, 64
vendor libraries, compatibility of, 206
Verilog

$finish behavior, customizing, 266
capturing port driver data with -dumpports,

187
Verilog 2001

disabling support, 245
verror command, 209
version

obtaining with vsim command, 260
obtaining with vsim<info> commands, 271

vgencomp command, 210
VHDL

arrays
searching for, 21

field naming syntax, 13
VHDL-1993, enabling support for, 196
VHDL-2002, enabling support for, 196
view command, 212
viewing

waveforms, 260
virtual count commands, 214
virtual define command, 215
virtual delete command, 216
virtual describe command, 217

309ModelSim Reference Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

virtual expand commands, 218
virtual function command, 219
virtual hide command, 222
virtual log command, 223
virtual nohide command, 225
virtual nolog command, 226
virtual region command, 228
virtual save command, 229
virtual show command, 230
virtual signal command, 231
virtual type command, 234
vlib command, 236
vlog

multiple file compilation, 242
vlog command, 238
vmake command, 248
vmap command, 250
vsim build date and version, 271
vsim command, 251
vsim Examples, 269

— W —
WARNING[8], -lint argument to vlog, 242
warnings

SDF, disabling, 258
suppressing VCOM warning messages,

200, 243
suppressing VLOG warning messages, 243
suppressing VSIM warning messages, 266

watch window
add watch command, 46
adding items to, 46

watching signal values, 46
wave commands, 273
wave log format (WLF) file, 260

of binary signal values, 111
Wave window

adding items to, 47
WaveActivateNextPane command, 291
waveform logfile

log command, 111
waveforms

optimizing viewing of, 262
saving and viewing, 111

WaveRestoreCursors command, 291
WaveRestoreZoom command, 291

when command, 276
when statement

time-based breakpoints, 280
where command, 281
wildcard characters

for pattern matching in simulator
commands, 17

windows
List window

output file, 292
saving the format of, 290

opening
from command line, 212

Wave window
path elements, changing, 68

WLF files
collapsing deltas, 261
collapsing time steps, 261
converting to VCD, 284
creating from VCD, 195
filtering, combining, 285
limiting size, 262
log command, 111
optimizing waveform viewing, 262
repairing, 289
saving, 78, 79
specifying name, 260

wlf2log command, 282
wlf2vcd command, 284
wlfman command, 285
wlfrecover command, 289
write format command, 290
write list command, 292
write preferences command, 293
write report command, 294
write timing command, 295
write transcript command, 296
write tssi command, 297
write wave command, 299

— X —
X propagation

disabling for entire design, 256

— Y —
-y, 245

310
February 2007

ModelSim Reference Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

— Z —
zoom

wave window
returning current range, 273

Third-Party Information

This section provides information on third-party software that may be included in the ModelSim product, including any
additional license terms.

• This product may include Valgrind third-party software.

©Julian Seward. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

• This product may use MinGW GCC third-party software.

©Red Hat, Inc. All rights reserved.

©Pipeline Associates, Inc. All rights reserved.

©Matthew Self. All rights reserved.

©National Research Council of Canada. All rights reserved.

©The Regents of the University of California.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

©Free Software Foundation, Inc. All rights reserved.

Refer to the license file in your install directory:

<install_directory>/docs/legal/mingw_gcc.pdf

• This software application may include GNU GCC third-party software.

© AT&T. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that
this entire notice is included in all copies of any software which is or includes a copy or modification of this software and
in all copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN
PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY REPRESENTATION OR WARRANTY OF
ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.

Refer to the license file in your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf

• This software application may include GNU GCC third-party software.

© Doug Bell. All Rights Reserved.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Refer to the license file in your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf

• This software application may include GNU third-party software distributed by The Free Software Foundation.

© Free Software Foundation.

To view a copy of the GNU GPL, LGPL, Library, and Documentation licenses, refer to:

http://www.fsf.org/licensing/licenses.

Refer to the license file in your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf

• This software application may include GNU GCC third-party software.

©The Regents of the University of California. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Refer to the license file in your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf

• This product may include freeWrap open source software

© Dennis R. LaBelle All Rights Reserved.

Disclaimer of warranty: Licensor provides the software on an ``as is'' basis. Licensor does not warrant, guarantee, or make
any representations regarding the use or results of the software with respect to it correctness, accuracy, reliability or
performance. The entire risk of the use and performance of the software is assumed by licensee. ALL WARANTIES
INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
MERCHANTABILITY ARE HEREBY EXCLUDED.

• This software application may include MinGW GNU diffutils version 2.7 third-party software.

© 1991, 1993 The Regents of the University of California. All rights reserved.

© UNIX System Laboratories, Inc.

All or some portions of this file are derived from material licensed to the University of California by American Telephone
and Telegraph Co. or Unix System Laboratories, Inc. and are reproduced herein with the permission of UNIX System
Laboratories, Inc.

* This code is derived from software contributed to Berkeley by
* Hugh Smith at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*

 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

• This software application may include MinGW GNU diffutils version 2.7 third-party software. You can view the
complete license at:http://www.fsf.org/licensing/licenses/lgpl.html

Refer to the license file in your install directory:

<install_directory>/docs/legal/lgpl.pdf

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/terms_conditions/enduser.cfm

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software between you, the end user, as an authorized
representative of the company acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited acting directly or through their subsidiaries (collectively “Mentor Graphics”). Except for license
agreements related to the subject matter of this license agreement which are physically signed by you and an
authorized representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties'
entire understanding relating to the subject matter and supersede all prior or contemporaneous agreements. If you
do not agree to these terms and conditions, promptly return or, if received electronically, certify destruction of
Software and all accompanying items within five days after receipt of Software and receive a full refund of any
license fee paid.

1. GRANT OF LICENSE. The software programs, including any updates, modifications, revisions, copies, documentation
and design data (“Software”), are copyrighted, trade secret and confidential information of Mentor Graphics or its
licensors who maintain exclusive title to all Software and retain all rights not expressly granted by this Agreement.
Mentor Graphics grants to you, subject to payment of appropriate license fees, a nontransferable, nonexclusive license to
use Software solely: (a) in machine-readable, object-code form; (b) for your internal business purposes; (c) for the license
term; and (d) on the computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half
mile (800 meter) radius. Mentor Graphics’ standard policies and programs, which vary depending on Software, license
fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be
limited, for example, to execution of a single session by a single user on the authorized hardware or for a restricted period
of time (such limitations may be technically implemented through the use of authorization codes or similar devices); and
(c) support services provided, including eligibility to receive telephone support, updates, modifications, and revisions.

2. EMBEDDED SOFTWARE. If you purchased a license to use embedded software development (“ESD”) Software, if
applicable, Mentor Graphics grants to you a nontransferable, nonexclusive license to reproduce and distribute executable
files created using ESD compilers, including the ESD run-time libraries distributed with ESD C and C++ compiler
Software that are linked into a composite program as an integral part of your compiled computer program, provided that
you distribute these files only in conjunction with your compiled computer program. Mentor Graphics does NOT grant
you any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating systems or other
embedded software products into your products or applications without first signing or otherwise agreeing to a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE. Software may contain code for experimental testing and evaluation (“Beta Code”), which may not be used
without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to you a
temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code without charge
for a limited period of time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed
as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to release
commercially in any form. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the
Beta Code under normal conditions as directed by Mentor Graphics. You will contact Mentor Graphics periodically
during your use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of your
evaluation and testing, you will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements. You agree that any written evaluations and all inventions, product
improvements, modifications or developments that Mentor Graphics conceived or made during or subsequent to this
Agreement, including those based partly or wholly on your feedback, will be the exclusive property of Mentor Graphics.
Mentor Graphics will have exclusive rights, title and interest in all such property. The provisions of this section 3 shall
survive the termination or expiration of this Agreement.

 IMPORTANT INFORMATION

USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE SOFTWARE. USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH

IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND
CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/terms_conditions/enduser.cfm

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the authorized use. Each
copy must include all notices and legends embedded in Software and affixed to its medium and container as received from
Mentor Graphics. All copies shall remain the property of Mentor Graphics or its licensors. You shall maintain a record of
the number and primary location of all copies of Software, including copies merged with other software, and shall make
those records available to Mentor Graphics upon request. You shall not make Software available in any form to any
person other than employees and on-site contractors, excluding Mentor Graphics' competitors, whose job performance
requires access and who are under obligations of confidentiality. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does not disclose it or use it except as
permitted by this Agreement. Except as otherwise permitted for purposes of interoperability as specified by applicable
and mandatory local law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way derive from
Software any source code. You may not sublicense, assign or otherwise transfer Software, this Agreement or the rights
under it, whether by operation of law or otherwise (“attempted transfer”), without Mentor Graphics’ prior written consent
and payment of Mentor Graphics’ then-current applicable transfer charges. Any attempted transfer without Mentor
Graphics' prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics' option, result in
the immediate termination of the Agreement and licenses granted under this Agreement. The terms of this Agreement,
including without limitation, the licensing and assignment provisions shall be binding upon your successors in interest
and assigns. The provisions of this section 4 shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period Software, when properly installed, will substantially
conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not warrant
that Software will meet your requirements or that operation of Software will be uninterrupted or error free. The
warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. You
must notify Mentor Graphics in writing of any nonconformity within the warranty period. This warranty shall not be
valid if Software has been subject to misuse, unauthorized modification or improper installation. MENTOR
GRAPHICS' ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS'
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR
GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET THIS
LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED WITH THIS AGREEMENT.
MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE
WHICH IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST; OR
(C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH
RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF
INTELLECTUAL PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY
WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS
OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
(INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS' OR ITS LICENSORS'
LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR
GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE
PROVISIONS OF THIS SECTION 6 SHALL SURVIVE THE EXPIRATION OR TERMINATION OF THIS
AGREEMENT.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE
LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN
ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY. THE PROVISIONS OF THIS SECTION 7 SHALL SURVIVE THE
EXPIRATION OR TERMINATION OF THIS AGREEMENT.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS
LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS

DESCRIBED IN SECTION 7. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE EXPIRATION OR
TERMINATION OF THIS AGREEMENT.

9. INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against you alleging that
Software infringes a patent or copyright or misappropriates a trade secret in the United States, Canada, Japan, or
member state of the European Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. You understand and agree that as conditions to Mentor
Graphics' obligations under this section you must: (a) notify Mentor Graphics promptly in writing of the action;
(b) provide Mentor Graphics all reasonable information and assistance to defend or settle the action; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a) replace or modify Software so
that it becomes noninfringing; (b) procure for you the right to continue using Software; or (c) require the return of
Software and refund to you any license fee paid, less a reasonable allowance for use.

9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the combination of Software with any
product not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of Software as part of an infringing process; (e) a
product that you make, use or sell; (f) any Beta Code contained in Software; (g) any Software provided by Mentor
Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphics for its attorney fees and other costs
related to the action upon a final judgment.

9.4. THIS SECTION IS SUBJECT TO SECTION 6 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO
ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION
BY ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

10. TERM. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate
upon notice if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 1, 2, or
4. For any other material breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days
written notice if you are in material breach and fail to cure such breach within the 30 day notice period. If Software was
provided for limited term use, this Agreement will automatically expire at the end of the authorized term. Upon any
termination or expiration, you agree to cease all use of Software and return it to Mentor Graphics or certify deletion and
destruction of Software, including all copies, to Mentor Graphics’ reasonable satisfaction.

11. EXPORT. Software is subject to regulation by local laws and United States government agencies, which prohibit export
or diversion of certain products, information about the products, and direct products of the products to certain countries
and certain persons. You agree that you will not export any Software or direct product of Software in any manner without
first obtaining all necessary approval from appropriate local and United States government agencies.

12. RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense and is commercial computer
software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a U.S.
Government subcontractor is subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics
Corporation, 8005 SW Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

13. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics from Microsoft
or other licensors, Microsoft or the applicable licensor is a third party beneficiary of this Agreement with the right to
enforce the obligations set forth herein.

14. AUDIT RIGHTS. You will monitor access to, location and use of Software. With reasonable prior notice and during
your normal business hours, Mentor Graphics shall have the right to review your software monitoring system and
reasonably relevant records to confirm your compliance with the terms of this Agreement, an addendum to this
Agreement or U.S. or other local export laws. Such review may include FLEXlm or FLEXnet report log files that you
shall capture and provide at Mentor Graphics’ request. Mentor Graphics shall treat as confidential information all of your
information gained as a result of any request or review and shall only use or disclose such information as required by law
or to enforce its rights under this Agreement or addendum to this Agreement. The provisions of this section 14 shall
survive the expiration or termination of this Agreement.

15. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF OREGON, USA, IF YOU ARE
LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF IRELAND IF YOU ARE LOCATED
OUTSIDE OF NORTH OR SOUTH AMERICA. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the
laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia (except for Japan) arising out of or in relation to
this Agreement shall be resolved by arbitration in Singapore before a single arbitrator to be appointed by the Chairman of
the Singapore International Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the
Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be incorporated by reference
in this section 15. This section shall not restrict Mentor Graphics’ right to bring an action against you in the jurisdiction
where your place of business is located. The United Nations Convention on Contracts for the International Sale of Goods
does not apply to this Agreement.

16. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in
full force and effect.

17. PAYMENT TERMS AND MISCELLANEOUS. You will pay amounts invoiced, in the currency specified on the
applicable invoice, within 30 days from the date of such invoice. Any past due invoices will be subject to the imposition
of interest charges in the amount of one and one-half percent per month or the applicable legal rate currently in effect,
whichever is lower. Some Software may contain code distributed under a third party license agreement that may provide
additional rights to you. Please see the applicable Software documentation for details. This Agreement may only be
modified in writing by authorized representatives of the parties. Waiver of terms or excuse of breach must be in writing
and shall not constitute subsequent consent, waiver or excuse.

Rev. 060210, Part No. 227900

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Syntax and Conventions
	Documentation Conventions
	File and Directory Pathnames
	Design Object Names
	Object Name Syntax
	SystemVerilog Scope Resolution Operator
	Specifying Names
	Escaping Brackets and Spaces in Array Slices
	Further Details

	Environment Variables and Pathnames
	Name Case Sensitivity
	Extended Identifiers

	Wildcard Characters
	Filtering Wildcard Matching for Certain Commands
	WildcardFilter Preference Variable

	Simulator Variables
	Simulation Time Units
	Command Shortcuts
	Command History Shortcuts
	Numbering Conventions
	VHDL Numbering Conventions
	VHDL Style 1
	VHDL Style 2
	Searching for VHDL Arrays in the Wave and List Windows

	Verilog Numbering Conventions

	GUI_expression_format
	Expression Typing
	Scalar Types
	Array Types

	Expression Syntax
	Tcl Macros
	Constants
	Array Constants, Expressed in Any of the Following Formats
	Variables
	Array variables
	Signal attributes
	Operators
	Casting
	Examples of Expression Syntax

	Signal and Subelement Naming Conventions
	Grouping and Precedence
	Concatenation of Signals or Subelements
	Concatenation Syntax for VHDL
	Concatenation Syntax for Verilog
	Concatenation Directives
	Examples of Concatenation

	Record Field Members
	Searching for Binary Signal Values in the GUI

	Chapter 2 Commands
	abort
	add dataflow
	add list
	add memory
	add watch
	add wave
	add_cmdhelp
	alias
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	cd
	change
	configure
	dataset alias
	dataset clear
	dataset close
	dataset config
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	do
	drivers
	dumplog64
	echo
	edit
	enablebp
	environment
	examine
	exit
	find
	find infiles
	find insource
	formatTime
	force
	help
	history
	layout
	log
	lshift
	lsublist
	mem compare
	mem display
	mem list
	mem load
	mem save
	mem search
	modelsim
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	pause
	precision
	printenv
	project
	pwd
	quietly
	quit
	radix
	readers
	report
	restart
	resume
	run
	runStatus
	searchlog
	see
	setenv
	shift
	show
	simstats
	status
	step
	stop
	tb
	Time
	transcript
	transcript file
	tssi2mti
	unsetenv
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vdel
	vdir
	verror
	vgencomp
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsource
	wave
	when
	where
	wlf2log
	wlf2vcd
	wlfman
	wlfrecover
	write format
	write list
	write preferences
	write report
	write timing
	write transcript
	write tssi
	write wave

	Index
	Third-Party Information
	End-User License Agreement

